
PHYSICAL REVIEW B 88, 155133 (2013)

Floquet generation of Majorana end modes and topological invariants

Manisha Thakurathi,1 Aavishkar A. Patel,2 Diptiman Sen,1 and Amit Dutta3

1Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3Department of Physics, Indian Institute of Technology, Kanpur 208 016, India
(Received 8 April 2013; revised manuscript received 20 September 2013; published 28 October 2013)

We show how Majorana end modes can be generated in a one-dimensional system by varying some of the
parameters in the Hamiltonian periodically in time. The specific model we consider is a chain containing spinless
electrons with a nearest-neighbor hopping amplitude, a p-wave superconducting term, and a chemical potential;
this is equivalent to a spin- 1

2 chain with anisotropic XY couplings between nearest neighbors and a magnetic
field applied in the ẑ direction. We show that varying the chemical potential (or magnetic field) periodically in
time can produce Majorana modes at the ends of a long chain. We discuss two kinds of periodic driving, periodic
δ-function kicks, and a simple harmonic variation with time. We discuss some distinctive features of the end
modes such as the inverse participation ratio of their wave functions and their Floquet eigenvalues which are
always equal to ±1 for time-reversal-symmetric systems. For the case of periodic δ-function kicks, we use the
effective Hamiltonian of a system with periodic boundary conditions to define two topological invariants. The first
invariant is a well-known winding number, while the second invariant has not appeared in the literature before.
The second invariant is more powerful in that it always correctly predicts the numbers of end modes with Floquet
eigenvalues equal to +1 and −1, while the first invariant does not. We find that the number of end modes can
become very large as the driving frequency decreases. We show that periodic δ-function kicks in the hopping and
superconducting terms can also produce end modes. Finally, we study the effect of electron-phonon interactions
(which are relevant at finite temperatures) and a random noise in the chemical potential on the Majorana modes.
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I. INTRODUCTION

Topological phases of quantum matter have been exten-
sively studied for several years.1–3 Typically, these are phases
which have only gapped states in the bulk (which therefore
do not contribute at low temperatures to properties such as
transport) but have gapless states at the boundaries. (For
three-, two-, and one-dimensional systems, the boundaries
are given by surfaces, edges, and end points, respectively).
Further, the number of species of gapless boundary modes
is given by a topological invariant whose nature depends on
the spatial dimensionality of the system and the symmetries
that it possesses, such as spin rotation symmetry, particle-hole
symmetry, and time-reversal symmetry. The significance of a
topological invariant is that it does not change if the system is
perturbed (say, by impurities), as long as the bulk states remain
gapped and the symmetry of the system is not changed by the
perturbation. Examples of systems with topological phases in-
clude two- and three-dimensional topological insulators, quan-
tum Hall systems, and wires with p-wave superconductivity.

Recently, there has been considerable interest in systems
in which the Hamiltonian varies with time in a periodic way
which gives rise to some topological features.4–26 Some of
these papers have discussed boundary modes and topological
invariants.4–6,10,17–20,22 Recently, a photonic topological insula-
tor has been demonstrated experimentally; a two-dimensional
lattice of helical waveguides has been shown to exhibit
topologically protected edge states.27 However, the existence
of topological invariants and the relation between them and the
number of Majorana modes at the boundary seem to be unclear,
particularly if the driving frequency is small.18 Further, the
Majorana boundary modes are of two types (corresponding
to eigenvalues of the Floquet operator being +1 or −1, as

discussed below); it would be interesting to know how the
numbers of these two types of modes can be obtained from
a topological invariant. The effect of time-reversal-symmetry
breaking on the boundary modes has also not been studied
in detail. In this paper, we address all these questions for a
one-dimensional model where both Majorana end modes and
topological invariants can be numerically studied without great
difficulty.

The plan of this paper is as follows. In Sec. II, we introduce
the system of interest and review some of its properties. Our
system is a tight-binding model of spinless electrons with
p-wave superconducting pairing and a chemical potential.
By the Jordan-Wigner transformation,28 this can be shown
to be equivalent to a spin- 1

2 XY chain placed in a magnetic
field pointing in the ẑ direction. We discuss the energy
spectrum and the three phases that this model has when the
Hamiltonian is time independent. In Sec. III, we review the
topological invariants that one-dimensional models with and
without time-reversal symmetry have when periodic boundary
conditions are imposed. In Sec. IV, we discuss our numerical
method of studying the Floquet evolution and the modes that
appear at the ends of a system when the Hamiltonian varies
with time in a periodic way. In Sec. V, we study what happens
when one of the terms in the Hamiltonian (the chemical
potential in the electron language or the magnetic field in
the spin language) is given a periodic δ-function kick.29 We
study the ranges of parameters in which Majorana end modes
appear at the ends of an open system and various properties
of these modes such as their number and Floquet eigenvalues.
We then use the Floquet operator for a system with periodic
boundary conditions to define two topological invariants. The
first invariant is a winding number which gives the total
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number of end modes. The second invariant appears to be new;
we find that it correctly predicts the numbers of end modes
with Floquet eigenvalues equal to +1 and −1 separately.
We find that end modes can either appear or disappear as
the driving frequency is varied, and our second topological
invariant predicts where this occurs. For a special choice of
parameters, we are able to find analytical expressions for the
wave functions of the Majorana end modes and to confirm that
the second topological invariant correctly gives the numbers of
end modes with Floquet eigenvalues equal to ±1. The effect of
time-reversal-symmetry breaking on the end modes is studied;
we find that that the end modes may survive but they are no
longer of the Majorana type. In Sec. VI, we briefly study what
happens if the hopping amplitude and superconducting term
are given periodic δ-function kicks. We show that the effect of
this on the Majorana end modes is quite different from the case
in which the chemical potential is given δ-function kicks. In
Sec. VII, we consider the case in which the chemical potential
varies in time in a simple harmonic way, and we show that
the wave function of the end modes can change significantly
with time. In Sec. VIII, we study the effects of some aperiodic
perturbations such as electron-phonon interactions and noise
on the Majorana end modes. We summarize our main results
and point out some directions for future work in Sec. IX.

II. THE MODEL

We consider a lattice model of spinless electrons with a
nearest-neighbor hopping amplitude γ , a p-wave supercon-
ducting pairing � between neighboring sites, and a chemical
potential μ. For a finite and open chain with N sites, the
Hamiltonian takes the form

H =
N−1∑
n=1

[γ (f †
n fn+1 + f

†
n+1fn) + �(fnfn+1 + f

†
n+1f

†
n )]

−
N∑

n=1

μ(2f †
n fn − 1), (1)

where γ , �, and μ are all real; we may assume that γ > 0
without loss of generality. In this section, we will assume that
all these parameters are time independent. The operators fn in
Eq. (1) satisfy the usual anticommutation relations {fm,fn} =
0 and {fm,f

†
n } = δmn. (We will set both Planck’s constant h̄

and the lattice spacing equal to 1 in this paper). We introduce
the Majorana operators

a2n−1 = fn + f †
n and a2n = i(fn − f †

n ) (2)

for n = 1,2, . . . ,N . We can check that these are Hermitian op-
erators satisfying {am,an} = 2δmn. In terms of these operators,
Eq. (1) takes the form

H = i

N−1∑
n=1

[Jxa2na2n+1 − Jya2n−1a2n+2]

+ i

N∑
n=1

μa2n−1a2n, (3)

Jx = 1

2
(γ − �) and Jy = 1

2
(γ + �).

Note that the Hamiltonian is invariant under the parity trans-
formation P corresponding to a reflection of the system about
its midpoint, i.e., a2n → (−1)na2N+1−2n and a2n+1 → a2N−2n.

We can map the above system to a spin- 1
2 XY chain placed

in a magnetic field pointing in the ẑ direction. We define
the Jordan-Wigner transformation from N spin- 1

2 ’s to 2N

Majorana operators28

a2n−1 =
⎛
⎝n−1∏

j=1

σ z
j

⎞
⎠ σx

n ,

(4)

a2n =
⎛
⎝n−1∏

j=1

σ z
j

⎞
⎠ σy

n ,

where the σa
n denote the Pauli matrices at site n, and n =

1,2, . . . ,N . Equation (3) can then be rewritten as

H = −
N−1∑
n=1

[
Jxσ

x
n σ x

n+1 + Jyσ
y
n σ

y

n+1

] −
N∑

n=1

μσz
n . (5)

In all our numerical calculations, we will set γ = −�; this
implies that Jy = 0 and Jx = γ , so that our system will
be equivalent to an Ising model (with interaction Jx) in a
transverse magnetic field μ.

The system discussed above is time-reversal symmetric.
The time-reversal transformation involves complex conjugat-
ing all objects, including i → −i. With the usual convention
for the Pauli matrices, Eq. (4) implies that

a2n → −a2n and a2n+1 → a2n+1. (6)

Hence, Eq. (3) is time-reversal symmetric.
The energy spectrum of this system in the bulk can be found

by considering a chain with periodic boundary conditions. We
define the Fourier transform fk = 1√

N

∑N
n=1 fne

ikn, where the
momentum k goes from −π to π in steps of 2π/N . Then,
Eq. (1) can be written in momentum space as

H = 2(γ − μ)f †
0 f0 + 2(−γ − μ)f †

πfπ

+
∑

0<k<π

(f †
k f−k)hk

(
fk

f
†
−k

)
,

hk = 2(γ cos k − μ)τ z + 2� sin kτy, (7)

where the τ a are Pauli matrices denoting pseudospin. The
dispersion relation follows from Eq. (7) and is given by30,31

Ek =
√

4(γ cos k − μ)2 + 4�2 sin2 k. (8)

Depending on the values of γ , �, and μ, the system has
three phases where Ek is nonzero for all values of k.30,31 The
phase diagram is shown in Fig. 1. Phase I lies in the region
�/γ < 0 and −1 < μ/γ < 1. In this phase, a long and open
chain has a zero-energy Majorana mode at the left (right) end in
which am is nonzero only if m is odd (even). This can be seen
by considering the extreme case Jx > 0 and Jy = μ = 0 in
Eq. (3). Then, that Hamiltonian is independent of a1 at the left
end and a2N at the right end; hence, we have zero-energy modes
corresponding to these two operators. In the spin- 1

2 language
of Eq. (5), phase I corresponds to long-range ferromagnetic
order of σx . Next, phase II lies in the region �/γ > 0 and
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FIG. 1. (Color online) Phase diagram of the model in Eq. (1) as a
function of μ/γ and �/γ . Phases I and II are topological, while III
is nontopological.

−1 < μ/γ < 1; here, a long and open chain has a zero-energy
Majorana mode at the left (right) end in which am is nonzero
only if m is even (odd). In the spin- 1

2 language, this phase
corresponds to long-range ferromagnetic order of σy . Finally,
phase III consists of the two regions with μ/γ < −1 and
μ/γ > 1. In this phase, there are no zero-energy Majorana
modes at either end of an open chain. In the spin language,
this is a paramagnetic phase with no long-range order. The
three phases are separated from each other by quantum critical
lines where the energy Ek vanishes for some values of k. The
critical lines are given by μ/γ = ±1 for all values of �, and
−1 � μ/γ � 1 for � = 0. We will see in the next section that
the three phases can be distinguished from each other by a
topological invariant which is given by a winding number.

III. TOPOLOGICAL INVARIANTS FOR A
TIME-INDEPENDENT HAMILTONIAN

In this section, we review the meaning of a topological
phase and the topological invariants which exist for a one-
dimensional system with a time-independent Hamiltonian
which may or may not have time-reversal symmetry.31 This
discussion will be useful for Sec. V where we will study if
similar topological invariants exist for a system in which the
Hamiltonian varies periodically with time.

We begin by considering a general Hamiltonian which is
quadratic in terms of Majorana fermions:

H = i

2N∑
m,n=1

amMmnan, (9)

where M is a real antisymmetric matrix; hence, iM is
Hermitian. We can show that the nonzero eigenvalues of iM

come in pairs ±λj (where λj > 0), and the corresponding
eigenvectors are complex conjugates of each other, xj and x∗

j .
This follows because iMxj = λjxj implies iMx∗

j = −λjx
∗
j .

The zero eigenvalues must be even in number and their
eigenvectors can be chosen to be real. This is because iMxj = 0

implies iMx∗
j = 0, and we can then choose the eigenvectors

to be the real combinations xj + x∗
j and i(xj − x∗

j ).
Given the time-reversal transformation in Eq. (6), we

see that the Hamiltonian in Eq. (9) will have time-reversal
symmetry if the matrix elements Mmn are zero whenever both
m and n are even or both are odd. Further, let us assume that
the system is translation invariant and has periodic boundary
conditions so that Mmn is only a function of m − n modulo
2N . Defining the Dirac fermions fn using Eq. (2), we then
find that the Hamiltonian will have the form given in Eq. (7),
with31

hk = a2,kτ
y + a3,kτ

z, (10)

where a2/3,k are some real and periodic functions of k. The
corresponding dispersion is then given by Ek =

√
a2

2,k + a2
3,k .

Although Eq. (7) defines a2/3,k only for 0 � k � π , it is
convenient to analytically continue these definitions to the
entire range −π � k � π . Next, we map hk to the vector
�Vk = a2,kŷ + a3,k ẑ in the y-z plane. Let us define the angle
φk = tan−1(a3,k/a2,k) made by the vector �Vk with respect to
the ẑ axis. Following Refs. 18 and 32, we now define a winding
number by following the change in φk as we go around the
Brillouin zone, i.e.,

W =
∫ π

−π

dk

2π

dφk

dk
. (11)

This can take any integer value and is a topological invariant,
namely, it does not change under small changes in hk unless hk

happens to pass through zero for some value of k in which case
the winding number becomes ill defined; this can only happen
if the energy Ek = 0 at some value of k which means that the
bulk gap is zero. In a gapped phase, therefore, Eq. (11) defines
a Z-valued topological invariant. We call a phase topological
if W �= 0; such a phase will have W zero-energy Majorana
modes at each end of long chain.31 If W = 0, the phase is
nontopological and does not have any Majorana end modes.

We can now look at the three phases discussed after Eq. (8).
We discover, by taking appropriate limits (such as μ � γ,�

or μ � γ,�) that the winding number takes the values −1,
+1, and 0 in phases I, II, and III, respectively.

Next, we note that if time-reversal-symmetry breaking
terms were present in the Hamiltonian in (9), terms propor-
tional to τ x and the identity matrix I will appear in hk in
addition to terms proportional to τ y and τ z. Then, as k goes
from −π to π , hk will generate a closed curve in three or
four dimensions instead of only two dimensions, and it would
not be possible to define a winding number as a topological
invariant. However, it turns out that one can define a Z2-valued
topological invariant in that case.31,33 We find that at k = 0
and π , hk only has a component along τ z; this is essentially
because k = −k in those two cases, hence, terms proportional
to τ x , τ y , and I can not appear in hk . Let us denote h0 = g0τ

z

and hπ = gπτ z. Assuming that we are in a gapped phase,
so that hk �= 0 for all values of k, the Z2-valued topological
invariant is defined as ν = sgn(g0gπ ) (here sgn denotes the
signum function). If ν = −1, the phase is topological and has
one zero-energy Majorana mode at each end of a long chain,
but if ν = 1, the phase is nontopological and does not have
any Majorana end modes.
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Finally, we can ask what would happen if one considered
a time-reversal-symmetric system which is in a topological
phase with winding number W (and hence has W zero-energy
Majorana modes at each end of a long chain), and introduced
a weak time-reversal-breaking term in the Hamiltonian. Gen-
erally, what happens is that pairs of end modes move away
from zero energy to energies ±E; the number of modes which
remain at zero energy (and hence are Majorana modes) is 1 if
W is odd and 0 if W is even. Thus, the Z-valued invariant W

would reduce to the Z2-valued invariant ν as ν = (−1)W .

IV. FLOQUET EVOLUTION

We will now study what happens when the Hamiltonian
varies periodically in time, namely, the matrix M in Eq. (9)
changes with time as M(t) such that M(t + T ) = M(t), where
T denotes the time period.

We consider the Heisenberg operators an(t). These satisfy
the equations

dan(t)

dt
= i[H (t),an(t)]. (12)

Given that H (t) = i
∑

mn am(t)Mmn(t)an(t), we obtain

dam(t)

dt
= 4

2N∑
n=1

Mmn(t)an(t). (13)

If a denotes the column vector (a1a2, . . . ,a2N )T and M denotes
the matrix Mmn, we can write the above equation as da(t)/dt =
4M(t)a(t). The solution of this is given by

a(t) = U (t,0)a(0),
(14)

where U (t2,t1) = T e
4

∫ t2
t1

dtM(t)
,

and T denotes the time-ordering symbol. The time evolution
operator U (t1,t2) is a unitary (in fact, real and orthogonal)
matrix which can be numerically computed given the form
of M(t). It satisfies the properties U (t2,t1) = U−1(t1,t2) and
U (t3,t1) = U (t3,t2)U (t2,t1).

If M(t) varies with a time period T , we will call U (T ,0)
the Floquet operator. The eigenvalues of U (T ,0) are given
by phases eiθj and they come in complex conjugate pairs
if eiθj �= 1. This is because U (T ,0)ψj = eiθj ψj implies
that U (T ,0)ψ∗

j = e−iθj ψ∗
j . For eigenvalues eiθj = ±1 (these

eigenvalues may, in principle, appear with no degeneracy), the
eigenvectors can be chosen to be real; one can show this using
an argument similar to the one given above for zero eigenvalues
of the matrix iM .

In Secs. V and VII, we will consider two kinds of periodic
driving of the chemical potential μ(t) with a time period T ,
namely, periodic δ-function kicks29 and a simple harmonic
variation with time. In Sec. VI, we will consider what happens
if the hopping amplitude and superconducting term are given
periodic δ-function kicks. In each case, we will look for
eigenvectors of U (T ,0) which are localized near the ends of
the chain. Before discussing the specific results in the next
three sections, let us describe our method of finding Majorana
end modes and some of their general properties.

A convenient numerical method for finding eigenvectors of
U (T ,0) which are localized at the ends is to look at the inverse

participation ratio (IPR). We assume that the eigenvectors,
denoted as ψj , are normalized so that

∑2N
m=1 |ψj (m)|2 = 1 for

each value of j ; here, m = 1,2, . . . ,2N labels the components
of the eigenvector. We then define the IPR of an eigenvector as
Ij = ∑2N

m=1 |ψj (m)|4. If ψj is extended equally over all sites
so that |ψj (m)|2 = 1/(2N ) for each m, then Ij = 1/(2N ); this
will approach zero as N → ∞. But, if ψj is localized over a
distance ξ (which is of the order of the decay length of the
eigenvector and remains constant as N → ∞), then we will
have |ψj (m)|2 ∼ 1/ξ in a region of length ξ and ∼0 elsewhere;
then, we have Ij ∼ 1/ξ which will remain finite as N → ∞.
If N is sufficiently large, a plot of Ij versus j will be able to
distinguish between states which are localized (over a length
scale � N ) and states which are extended. Once we find a
state j for which Ij is significantly larger than 1/(2N ) (which
is the value of the IPR for a completely extended state), we
look at a plot of the probabilities |ψj (m)|2 versus m to see
whether it is indeed an end state. Finally, we check if the form
of |ψj (m)|2 and the value of IPR remain unchanged if N is
increased.

In all the periodic driving protocols discussed in Secs. V,
VI, and VII, we find, for certain ranges of the parameter
values, that U (T ,0) has one or more pairs of eigenvectors
with substantial values of the IPR. For each such pair, we
find that the corresponding Floquet eigenvalues are complex
conjugates of each other and they are both close to 1 (or −1);
the two eigenvalues approach 1 (or −1) as we increase the
system size N keeping all the other parameters the same.
Let us denote the corresponding eigenvectors by ψ1(m) and
ψ2(m), where m = 1,2, . . . ,2N . In the limit that N → ∞ and
the eigenvalues approach 1 (or −1), any linear combination
of ψ1 and ψ2 will also be an eigenvector of U (T ,0) with the
same eigenvalue. In that limit, suppose that we find that the
probabilities of the two orthogonal linear combinations, given
by |[ψ1(m) ± ψ2(m)]|2, are peaked close to m = 1 and 2N , and
that they decay as m moves away from 1 or 2N . We can then
interpret these linear combinations as edge states produced
by the time-dependent chemical potential. The deviation of
the two Floquet eigenvalues from 1 (or −1) is a measure
of the tunneling between the two edge states. The larger the
tunneling, the greater is the deviation of the eigenvalues from
±1; this, in turn, implies that the two edge states decay less
rapidly as we go away from the ends of the chain since a slower
decay increases the tunneling between the two states.

The situation discussed in the previous paragraph is similar
in some respects to the problem of a time-independent
double-well potential in one dimension which is reflection
symmetric about one point, say, x = 0. Then, the eigenstates
of the Hamiltonian are simultaneously eigenstates of the parity
operator. The lowest-energy states in the parity-even and -odd
sectors differ in energy by an amount which depends on the
tunneling amplitude between the two wells; the corresponding
wave functions, denoted by ψ+ and ψ−, are symmetric and
antisymmetric combinations of wave functions which are
localized in the two wells separately. In the limit that the
tunneling amplitude goes to zero, the two states become
degenerate in energy; further, the linear combinations ψ+ ±
ψ− describe states which are localized in the two separate
wells. In our Floquet problem, the two end states with opposite
parity have complex conjugate eigenvalues of U (T ,0) given
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by e±iθ . In the limit that N → ∞ and the tunneling between
the two states goes to zero, the eigenvalues of U (T ,0) must
become degenerate; this can only happen if e±iθ approach
either +1 or −1.

Finally, after finding the end modes, we check if their wave
functions are real in the limit of large N . We call the end
modes Majorana if they satisfy three properties: their Floquet
eigenvalues must be equal to ±1, they must be separated by
a finite gap from all the other eigenvalues, and their wave
functions must be real.

V. PERIODIC δ-FUNCTION KICKS IN
CHEMICAL POTENTIAL

In this section, we consider the case where the chemical
potential is given δ-function kicks periodically in time. One
reason for choosing to consider periodic kicks is that this is
known to produce interesting effects in quantum systems such
as dynamical localization.29 We will also see that this system is
considerably easier to study both numerically and analytically
than the case of a simple harmonic time dependence which
will be discussed in Sec. VII.

We begin by taking the chemical potential in Eq. (3) to be
of the form

μ(t) = c0 + c1

∞∑
n=−∞

δ(t − nT ), (15)

where T = 2π/ω is the time period and ω is the driving
frequency. Using Eq. (6), we note that this system has
time-reversal symmetry: H ∗(−t) = H (t) for all values of t .
[In general, we say that a system has time-reversal symmetry
if we can find a time t0 such that H ∗(t0 − t) = H (t) for all t ,
and does not have time-reversal symmetry if no such t0 exists.]
As discussed in the following, we numerically compute the
operator U (T ,0) for various values of the parameters γ , �, c0,
c1, ω and the system size N . We then find all the eigenvalues
and eigenvectors of U (T ,0). Since the system is invariant under
parity P , one can choose the eigenvectors of U (T ,0) to also
be eigenvectors of P .

The Floquet operator for a periodic δ-function kick can be
written as a product of two terms: an evolution with a constant
chemical potential c0 for time T followed by an evolution with
a chemical potential c1δ(t − T ). Namely,

U (T ,0) = e4M1e4M0T , (16)

where M0/1 are (2N )-dimensional antisymmetric matrices
whose nonzero matrix elements can be found using Eqs. (3)
and (9):

(M0)2n+1,2n = −(M0)2n,2n+1 = −1

4
(γ − �),

(M0)2n−1,2n+2 = −(M0)2n+2,2n−1 = −1

4
(γ + �),

(17)
(M0)2n−1,2n = −(M0)2n,2n−1 = c0

2
,

(M1)2n−1,2n = −(M1)2n,2n−1 = c1

2

for an appropriate range of values of n. However, in order to
make the time-reversal symmetry more transparent, it turns
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FIG. 2. (Color online) IPRs of different eigenvectors of the
Floquet operator for a 200-site system with a periodic δ-function
kick with γ = 1, � = −1, c0 = 2.5, c1 = 0.2, and ω = 12. The two
eigenvectors with the largest IPRs both have an IPR equal to 0.142
and Floquet eigenvalue equal to −1.

out to be more convenient to use the symmetrized expression

U (T ,0) = e2M1e4M0T e2M1 . (18)

It is easy to show that the Floquet operators in Eqs. (16)
and (18) have the same eigenvalues, while their eigenvectors
are related by a unitary transformation. We will see below that
the symmetrized form in Eq. (18) leads to some simplifications
when we derive an effective Hamiltonian and a topological
invariant.

We now consider a 200-site system (hence with a 400-
dimensional Hamiltonian) with γ = 1, � = −1, c0 = 2.5,
c1 = 0.2, and ω = 12. Figure 2 shows the IPRs of the different
eigenvectors. Two of the IPRs clearly stand out with a value
of 0.142 each. We find that they both have Floquet eigenvalue
eiθ = −1, and the value of θ = π is separated by a gap of
0.148 from the values of θ for all the other eigenvalues. The
corresponding eigenvectors are localized at the two ends of the
system and are real; the corresponding probabilities are shown
in Fig. 3. The state at the left end has nonzero am only if m

is even, while the state at the right end has nonzero am only
for m odd. It is important to note that the periodic driving has
produced Majorana end modes even though for the parameter
values given above, μ(t) � γ at all values of t according to
Eq. (15), i.e., even though the corresponding time-independent
system lies at all times in phase III [discussed in the paragraph
after Eq. (8)], which is a nontopological phase.

We now vary ω to see how many Majorana end modes
there are at each end of the system, and, more specifically,
how many of these modes have Floquet eigenvalues equal
to ±1. We denote the number of eigenvalues lying near +1
and −1 by the integers N+ and N−, respectively. Figure 4
shows a plot of N± versus ω for a 200-site system with γ = 1,
� = −1, c0 = 2.5, and c1 = 0.2. (We have checked that these
eigenvalues are separated from all the other eigenvalues by
a gap which remains finite as N becomes large.) We see that
although the number of end modes is not a monotonic function
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FIG. 3. (Color online) Majorana end states for a 200-site system
with a periodic δ-function kick with γ = 1, � = −1, c0 = 2.5, c1 =
0.2, and ω = 12. These states correspond to the two eigenvectors with
the largest IPRs in Fig. 2.

of ω, the number generally increases as ω decreases. The
reason for this will become clear in what follows.

A. Topological invariants

We saw above that there are a number of Majorana end
modes, which can be further separated into N± depending on
whether the Floquet eigenvalues eiθ lie near +1 or −1. Further,
the eigenvalues θ = 0 and π are separated from all the other
eigenvalues by a gap which remains finite as N → ∞. We then
expect the integers N+ and N− to be topological invariants,
i.e., they will not change under small changes in the various
parameters of the system. The only way in which these integers
can change is if the eigenvalue gap closes and reopens as we
vary the system parameters.
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FIG. 4. (Color online) Plot of the number of end states versus ω

for a 200-site system, with Floquet eigenvalues +1 (N+, blue squares)
and −1 (N−, red stars), for a periodic δ-function kick with γ = 1,
� = −1, c0 = 2.5, and c1 = 0.2.

We therefore look for a topological invariant for this time-
dependent problem.4,6,10,18,19 Interestingly, we will discover
that we can define a topological invariant in two different
ways: one is a winding number which only gives the total
number of Majorana modes at each end of a chain, while the
other also gives the individual values of N+ and N− which are
the numbers of end modes with Floquet eigenvalues equal to
+1 and −1.

To define the topological invariants, we consider a system
with periodic boundary conditions. Then, the system is
translation invariant and the momentum k is a good quantum
number; the system decomposes into a sum of subsystems
labeled by different values of k lying in the range [0,π ]. For
each value of k, we define a Floquet operator Uk(T ,0) which
is a 2 × 2 unitary matrix. Using Eqs. (7), (15), and (18), we
find that

Uk(T ,0) = eic1τ
z

e−i2T [(γ cos k−c0)τ z+� sin kτy ]eic1τ
z

, (19)

where we take k to lie in the full range −π � k � π .
Let us assume that 2c1/π is not equal to an integer and

� �= 0. We now prove an interesting fact about Uk(T ,0),
namely, that it can be equal to ±I only if k = 0 or π and
if T is given by a discrete set of values. First, given the above
conditions on c1 and �, we can show that Uk(T ,0) �= ±I for
any value of k �= 0 or π . Next, if k = 0 or π , we see from
Eq. (19) that Uk(T ,0) �= ±I unless 2T (c0 ± γ ) + 2c1 = nπ ,
i.e., unless ω = 2π/T satisfies

ω = 4π (c0 ± γ )

nπ − 2c1
(20)

for some integer value of n. The ± sign in Eq. (20) corresponds
to k = π and 0, respectively. Equation (20) holds only for a
discrete set of values ω. For all other values of ω, therefore,
Uk(T ,0) will not be equal to ±I for any value of k. This
also means that for all k, the Floquet eigenvalues [which are
given by the eigenvalues of Uk(T ,0)] will be separated by a
gap from ±1. We are now ready to define our topological
invariants.

First topological invariant. Given Eq. (19), let us define an
effective Hamiltonian heff,k as

Uk(T ,0) = e−iheff,k . (21)

The structure of Eq. (19) is such that heff,k takes the form

heff,k = a2,kτ
y + a3,kτ

z (22)

as in Eq. (10). [Indeed, this is the reason we choose the Floquet
operator of the form given in Eq. (18) rather than in Eq. (16).]
Note that Eqs. (19) and (21) do not determine heff,k uniquely.
To define heff,k uniquely, we impose the condition that the
coefficients in Eq. (22) satisfy 0 <

√
a2

2,k + a2
3,k < π . [It is

possible to impose this if Uk(T ,0) �= ±I ; this will be true
if ω does not satisfy Eq. (20).] Given the form in Eq. (22),
we can then compute a winding number W as described in
Eq. (11).

We note in passing that the condition 0 < a2
2,k + a2

3,k < π

implies that heffk can be mapped to a point on the surface
of a sphere whose polar angles (α,β) are given by α =√

a2
2,k + a2

3,k and β = tan−1(a3,k/a2,k). As k goes from 0 to
2π , we obtain a closed curve which does not pass through the
north and south poles. The integer W can then be related to
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FIG. 5. (Color online) Closed curves in the (a2,k,a3,k) plane for
ω = 3, 7, 12, and 17 for a 200-site system with γ = 1, � = −1, c0 =
2.5, and a periodic δ-function kick with c1 = 0.2. The corresponding
winding numbers around the origin [the point (0,0) shown by a red
dot] are given by 2, 2, 1, and 0, respectively.

the winding number of this curve around either the north pole
or the south pole. Note that the winding numbers around the
north and south poles are given by the same integer.

In Fig. 5, we show the closed curves in the (a2,k,a3,k) plane
for four values of ω for a 200-site system with γ = 1, � = −1,
c0 = 2.5, and a periodic δ-function kick with c1 = 0.2. For
ω = 3, 7, 12, and 17, the winding numbers around the origin
are given by 2, 2, 1, and 0, respectively. These agree exactly
with the number of Majorana modes at each end of an open
chain for those values of ω as shown in Fig. 6.
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FIG. 6. (Color online) Comparison of the number of Majorana
modes at each end of a 200-site system (black solid, y axis on left)
and the winding number (magenta dashed, y axis on right) as a
function of ω from 1 to 18, for γ = 1, � = −1, c0 = 2.5, and a
periodic δ-function kick with c1 = 0.2. The inset shows a range of ω

from 0.2 to 1 where there is a large number of Majorana modes.

In Fig. 6, we compare the number of Majorana modes at
each end of a chain and the winding number as a function
of ω, for a 200-site system with γ = 1, � = −1, c0 = 2.5,
and c1 = 0.2. In preparing that figure, we have considered
only those values of ω for which Eq. (20) is not satisfied. We
see that the number of end modes and the winding number
completely agree in the range 0.2 � ω � 18. Note that in the
limit ω → ∞, i.e., T → 0, Eq. (19) becomes independent of
k, and we therefore obtain a single point in the (a2,k,a3,k) plane.
This corresponds to a curve with zero winding number which
is consistent with the observation that there is a maximum
value of ω beyond which there are no Majorana end modes.

In Fig. 6, we have not shown the number of Majorana end
modes for ω < 0.2. For small ω, we see that the number of
end modes increases. (We will make this more precise below.)
However, it becomes more and more difficult to identify the
end modes as ω becomes small; we find that there are a large
number of what appear to be end modes, but many of them have
decay lengths which are not much smaller than the system sizes
that we have considered and their Floquet eigenvalues differ
slightly from ±1. Thus, we have to go to very large system
sizes to confirm if all of these are really Majorana end modes,
i.e., if their Floquet eigenvalues approach ±1 and if these are
separated from all other eigenvalues by a finite gap in the limit
of infinite system size.

Second topological invariant. We observe that the momenta
k = 0 and π play a special role since Uk(T ,0) can be equal
to ±I at only those two values. Equation (19) shows that
U0(T ,0) = eiπb0τ

z

and Uπ (T ,0) = eiπbπ τ z

, where we choose
b0/π in the simplest possible way, namely,

b0 = 4(c0 − γ )

ω
+ 2c1

π
,

(23)
bπ = 4(c0 + γ )

ω
+ 2c1

π
,

where ω = 2π/T . We now define a finite line segment, called
Lω, which goes from b0 to bπ in one dimension which we will
call the z axis.

For ω → ∞, the line Lω collapses to a single point given by
z = 2c1/π . We have assumed earlier that this is not an integer.
As ω is decreased, Lω will move and also increase in size.
For our system parameters γ = 1, c0 = 2.5, and c1 = 0.2,
we find that the right end of Lω, given by bπ in Eq. (23),
crosses the point z = n with n = 1 at some value of ω. At
this point, we see from Eq. (19) that the Floquet eigenvalue at
k = π is equal to einπ = −1. We therefore expect that when
ω decreases a little more and Lω includes the point z = 1, a
Majorana mode will appear at each end of an open chain with
the Floquet eigenvalue equal to −1. For our parameters, we
therefore predict, by setting bπ = 1, that the first Majorana end
mode will appear at ω � 16.04. This agrees well with Fig. 6
which shows that a Majorana end mode first appears in the
range 16 � ω � 17 and it has a Floquet eigenvalue equal to
−1. As ω is decreased further, the right end of Lω given by
bπ crosses the point z = n with n = 2 at another value of ω;
Eq. (19) then shows that the Floquet eigenvalue at k = π is
equal to einπ = 1. As ω is decreased a little more, Lω will
include the point z = 2, and we then expect that Majorana
end modes will appear with the Floquet eigenvalue equal to
1. For our parameters, bπ = 2 occurs at ω � 7.48. This also
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FIG. 7. (Color online) Plot of b0 and bπ as a function of ω for
a system with γ = 1, � = −1, c0 = 2.5, and a periodic δ-function
kick with c1 = 0.2. For each value of ω, the number of even and
odd integers lying in the shaded region between b0 and bπ gives
the number of Majorana modes at each end of a chain with Floquet
eigenvalues equal to +1 and −1, respectively.

agrees well with Fig. 6 which shows that a Majorana end mode
appears in the range 7 � ω � 8 with a Floquet eigenvalue
equal to 1. As ω is decreased further, the left end of Lω, given
by b0 in Eq. (23), crosses the point z = n with n = 1 at some
value of ω; Eq. (19) then shows that the Floquet eigenvalue at
k = 0 is equal to einπ = −1. As ω is decreased a little more,
Lω no longer includes the point z = 1 and we expect that the
Majorana end modes with Floquet eigenvalue equal to −1 will
disappear. For our parameters, b0 = 1 occurs at ω = 6.88. We
see in Fig. 6 that a Majorana end mode with Floquet eigenvalue
equal to −1 disappears in the range 6 � ω � 7.

The general pattern is now clear. If c0 ± γ are both positive,
the left and right ends of the line segment Lω will both move
in the +z direction as ω decreases, i.e., as T increases. Then, a
Majorana end mode with Floquet eigenvalue (−1)n will appear
whenever the right end of Lω crosses a point z = n, while
an end mode with Floquet eigenvalue (−1)n will disappear
whenever the left end of Lω crosses z = n. These will happen,
respectively, when bπ and b0 in Eq. (23) become equal to an
integer n.

The above arguments can be rephrased as follows. For any
value of ω, the number of points z = n (where n is an integer)
which lie inside the line segment Lω is equal to the number of
Majorana modes at each end of a chain. Further, the numbers of
points with n odd and even will give the numbers of end modes
with Floquet eigenvalue equal to −1 and 1, respectively. We
have numerically verified these statements for all the values of

ω shown in Fig. 4. In Fig. 7, we show b0 and bπ (i.e., the left and
right ends of Lω) as functions of ω for the parameters γ = 1,
� = −1, c0 = 2.5, and c1 = 0.2. The Majorana end modes
correspond to the integers lying within the shaded region.

It is clear that the numbers of odd and even integers lying
inside Lω are topological invariants since these numbers do
not change for small changes of the system parameters. These
numbers can change only at values of ω where either b0 or bπ

in Eq. (23) becomes equal to an integer. When that happens,
Eq. (19) becomes equal to ±I at either k = 0 or π , and there
is no gap to the Floquet eigenvalues at neighboring values
of k.

We have studied what happens for arbitrary (not necessarily
positive) values of γ , �, c0, noninteger values of 2c1/π , and
ω. The general result is as follows. Assuming that b0/π are
not integers, we consider all the integers lying between b0 and
bπ . Of these, let n>

e (n>
o ) and n<

e (n<
o ), respectively, denote

the numbers of even (odd) integers which are greater than and
less than 2c1/π . Then, the numbers N+ and N− of modes
at each end of a chain with Floquet eigenvalues +1 and −1
are given by N+ = |n>

e − n<
e | and N− = |n>

o − n<
o |. (We will

present an explicit proof of this in Sec. V B for a special
choice of parameters.) We also find that the winding number
W is given by |W | = |n>

e − n<
e + n>

o − n<
o |. Hence, |W | is

generally not equal to the total number of modes N+ + N−
at each end of a chain [although |W | − (N+ + N−) is always
an even integer]. In Table I, we list the values of N+, N−,
and |W | versus ω for a 200-site system with γ = 1, � = −1,
c0 = 0.5, and c1 = 0.2. In this case, c0 + γ > 0, c0 − γ < 0,
and 0 < 2c1/π < 1. Hence, n<

e ,n<
o �= 0 and |W | �= N+ + N−

in general. In all cases, the values of N+, N−, and |W | obtained
numerically and from Eq. (22) match those obtained using b0

and bπ in Eq. (23).
In the limit ω → 0, we can show from Eq. (23) that the

number of Majorana end modes diverges asymptotically as
8|γ |/ω if c0 ± γ have the same sign and as 8|c0|/ω if c0 ± γ

have opposite signs. We see in Fig. 6, particularly in the inset,
that the number of end modes does diverge as 8/ω (recall that
we have set γ = 1).

B. Analytical results for Majorana end modes in a special case

For the case � = −γ and c0 = 0, it turns out that we
can analytically find the wave functions of the Majorana end
modes. Further, we can explicitly prove that the number of
Majorana modes is indeed governed by the quantities b0, bπ ,
and 2c1/π as discussed above.

We consider a semi-infinite chain in which n goes from 1
to ∞ in Eq. (1); we will only discuss the Majorana modes
at the left end of this chain. As discussed above, the Floquet
operator which performs a time evolution for one time period
T = 2π/ω consists of a symmetrized product of three steps.

TABLE I. Values of N+, N−, and |W | versus ω for γ = 1, � = −1, c0 = 0.5, and c1 = 0.2. |W | �= N+ + N− for 4 � ω � 6.

ω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N+ 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
N− 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
|W | 4 2 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
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The first step evolves from time t = 0 to ε (where ε denotes an
infinitesimal quantity), the second step evolves from t = ε to
T − ε, and the third step evolves from t = T − ε to T . At all
times, the Heisenberg operators an(t) satisfy the equations
dan(t)/dt = i[H (t),an(t)]. The first step corresponds to a
Hamiltonian

H1 = ic1

2
δ

(
t − ε

2

) ∞∑
n=1

a2n−1a2n. (24)

This gives

a2n−1(ε) = a2n−1(0) cos c1 + a2n(0) sin c1,
(25)

a2n(ε) = a2n(0) cos c1 − a2n−1(0) sin c1

for all n � 1. The second step corresponds to the Hamiltonian

H0 = iγ

∞∑
n=1

a2na2n+1 (26)

for � = −γ and c0 = 0. [The simple form in Eq. (26) is a
special feature of this particular choice of γ , �, and c0. For
any other choice of these parameters, the Hamiltonian would
not decompose into terms involving pairs of different Majorana
operators, and the time evolution in this step would not have a
simple form.] Equation (26) gives

a2n(T − ε) = a2n(ε) cos(2γ T ) + a2n+1(ε) sin(2γ T ),

a2n+1(T − ε) = a2n+1(ε) cos(2γ T ) − a2n(ε) sin(2γ T )

(27)

for all n � 1. Note that a1(t) does not evolve in this step as
H0 does not contain a1; hence, a1(T − ε) = a1(ε). Finally, the
third step corresponds to the Hamiltonian

H1 = ic1

2
δ

(
t − T + ε

2

) ∞∑
n=1

a2n−1a2n, (28)

which gives

a2n−1(T ) = a2n−1(T − ε) cos c1 + a2n(T − ε) sin c1,
(29)

a2n(T ) = a2n(T − ε) cos c1 − a2n−1(T − ε) sin c1.

We now discover that the equations above have two solutions
for Majorana end modes which correspond to Floquet eigen-
values being equal to +1 and −1, i.e., with an(T ) = ±an(0),
respectively, for all n � 1.

(i) For eigenvalues equal to +1, we find an unnormalized
solution of the form

a2n−1(0) = [tan c1 cot(γ T )]n and a2n(0) = 0 (30)

for all n � 1.
(ii) For eigenvalues equal to −1, we find a solution of the

form

a2n−1(0) = 0 and a2n(0) = [− cot c1 cot(γ T )]n (31)

for all n � 1.
We see that the wave function an(0) is real, and the

probability |an(0)|2 has a very simple structure; depending
on the Floquet eigenvalue, it vanishes for all odd n or all even
n, while for the other values of n it decreases exponentially as
n increases.

Equations (30) and (31) imply that Majorana end modes
appear or disappear when | tan c1 cot(γ T )| or | cot c1 cot(γ T )|
becomes equal to 1. These are precisely the same conditions
as b0 or bπ in Eq. (23) becoming equal to an integer n, with
Floquet eigenvalue equal to (−1)n. We can also explicitly
confirm the following result stated above. Namely, we consider
all the integers lying between b0 and bπ , assuming that b0, bπ ,
and 2c1/π are not integers. Of these, let n>

e (n>
o ) and n<

e (n<
o ),

respectively, denote the numbers of even (odd) integers which
are greater than and less than 2c1/π . Then, the numbers N+
and N− of Majorana modes at the left of the chain with Floquet
eigenvalue equal to +1 and −1 are given by N+ = |n>

e − n<
e |

and N− = |n>
o − n<

o |. Interestingly, we find that N± can only
be equal to 0 or 1 in this case.

C. Effect of time-reversal-symmetry breaking

Given a periodically driven time-reversal-symmetric sys-
tem which has Majorana end modes (namely, modes with
real eigenvectors and Floquet eigenvalues equal to ±1 which
are separated from all other eigenvalues by a gap), we may
ask what would happen if we add small terms which break
time-reversal symmetry. We discover that the end modes
persist and their Floquet eigenvalues continue to be separated
from all other eigenvalues by a gap. However, the Floquet
eigenvalues move slightly away from ±1 in complex conjugate
pairs, and the eigenvectors become complex; hence, they can
no longer be called Majorana modes. This is illustrated in
Fig. 8 which shows the Floquet eigenvalues for the modes at
each end of the chain for the time-reversal-symmetric case
given in Eq. (15), while Fig. 9 shows the Floquet eigenvalues
for a case with

μn(t) = c0 + c1

∞∑
n=−∞

δ(t − nT ) + c2

∞∑
n=−∞

δ

(
t − T

4
− nT

)
,

(32)
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FIG. 8. (Color online) Floquet eigenvalues close to ±1 for a
1000-site system with γ = 1, � = −1, c0 = 2.5, and a δ-function
kick with c1 = 0.2 at t = 0 which is repeated with a time period T =
2π . For this time-reversal-symmetric case, there are four eigenvalues
at exactly +1 and −1 each, separated by a gap from all other
eigenvalues; these are shown more clearly in the inset.
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FIG. 9. (Color online) Floquet eigenvalues close to ±1 for a 1000-
site system with γ = 1, � = −1, c0 = 2.5, and two δ-function kicks
with c1 = 0.2 and c2 = 0.1 at t = 0 and T/4 which are repeated with
a time period T = 2π . For this case with no time-reversal symmetry,
there are four eigenvalues close to but not exactly at +1 and −1,
separated by a gap from all other eigenvalues; these are shown more
clearly in the inset.

which breaks time-reversal symmetry. Although we can not
clearly see from Fig. 9 that the Floquet eigenvalues of the
end modes have moved away from ±1, we have checked
numerically that this is so. For a 2800-site system (this is a
large enough system size that there is no mixing between the
two ends), we find that at each end, the Floquet eigenvalues
near −1 are given by −1 ± 0.0015i and −1 ± 0.0037i,
and the eigenvalues near +1 are given by 1 ± 0.0007i and
1 ± 0.0040i.

VI. PERIODIC δ-FUNCTION KICKS IN HOPPING
AND SUPERCONDUCTING TERMS

In this section, we will briefly discuss the case where the
hopping and superconducting terms in Eq. (1) are given δ-
function kicks periodically in time. We will again show that
this too can produce Majorana end modes. In particular, we
find that there is a Majorana mode at each end of a chain
even in the limit of very large driving frequency ω; this is in
contrast to the case of periodic δ-function kicks in the chemical
potential where there is an upper limit on ω beyond which there
are no Majorana modes. We will limit our discussion to some
observations on the Floquet operator and the winding number;
we will not consider the possibility of a second topological
invariant here.

We consider the case where the chemical potential μ is
independent of time, while

γ = −� = γ0 + γ1

∞∑
n=−∞

δ(t − nT ). (33)

(As mentioned earlier, this corresponds to an Ising model in
a transverse magnetic field, where the Ising interaction Jx is
given periodic δ-function kicks while the magnetic field does

not vary with time.) Equations (7) and (18) then imply that

Uk(T ,0) = e−iγ1(cos kτ z−sin kτy )

×e−i2T [(γ0 cos k−μ)τ z−γ0 sin kτy ]

×e−iγ1(cos kτ z−sin kτy ). (34)

Equation (34) implies that in the limit ω → ∞, i.e., T → 0,
Uk(T ,0) = e−i(a2,kτ

y+a2,kτ
z), where

a2,k = −2γ1 sin k and a3,k = 2γ1 cos k. (35)

As k goes from −π to π , this generates a closed curve
with winding number +1. This implies that there will be
one Majorana mode at each end of the chain when ω → ∞.
Numerically, we find that this is indeed the case. We will now
prove this analytically for a special set of parameters following
a procedure similar to the one followed in Sec. V B.

We consider the case γ0 = 0. Considering only the left end
of the chain starting from n = 1 and assuming some initial
values of the Heisenberg operators an(0), we can successively
find an(ε), an(T − ε), and an(T ) using three sets of evolution
equations

a2n+1(ε) = a2n+1(0) cos γ1 − a2n(0) sin γ1,
(36)

a2n(ε) = a2n(0) cos γ1 + a2n+1(0) sin γ1,

a2n−1(T − ε) = a2n − 1(ε) cos(2μT ) + a2n(ε) sin(2μT ),
(37)

a2n(T − ε) = a2n(ε) cos(2μT ) − a2n−1(ε) sin(2μT ),

and

a2n+1(T ) = a2n+1(T − ε) cos γ1 − a2n(T − ε) sin γ1,
(38)

a2n(T ) = a2n(T − ε) cos γ1 + a2n+1(T − ε) sin γ1.

Equations (36)–(38) are valid for all n � 1. Note that a1 does
not evolve at all from t = 0 to ε and again from t = T − ε

to T .
We then discover that the above equations have two kinds

of solutions.
(i) For Floquet eigenvalue equal to +1, i.e., an(T ) = an(0)

for all n, we find an unnormalized solution of the form a1(0) =
1, while a2n+1 = [tan(μT ) cot γ1]n/ cos γ1 and a2n(0) = 0 for
all n � 1. This solution exists if | tan(μT ) cot γ1| < 1. In the
limit T → 0, it reduces to a1(0) = 1 and all other an(0) = 0.

(ii) For Floquet eigenvalue equal to −1, i.e., an(T ) =
−an(0), we find an unnormalized solution of the form a1(0) =
1, while a2n+1 = [− cot(μT ) cot γ1]n/ cos(γ1) and a2n(0) = 0
for all n � 1. This solution exists if | cot(μT ) cot γ1| < 1.

VII. SIMPLE HARMONIC VARIATION OF CHEMICAL
POTENTIAL WITH TIME

In this section, we discuss the case where the chemical
potential varies harmonically with t . Namely, the chemical
potential in Eq. (3) takes the form

μ(t) = c0 + c1 cos(ωt + φ). (39)

The Floquet operator can be written as the time-ordered
product

U (T ,0) = T e4
∫ T

0 dtM(t), (40)
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where M(t) is an antisymmetric matrix with the nonzero
elements

(M)2n+1,2n = −(M)2n,2n+1 = − 1
4 (γ − �),

(M)2n−1,2n+2 = −(M)2n+2,2n−1 = − 1
4 (γ + �),

(M)2n−1,2n = −(M)2n,2n−1

= 1
2 [c0 + c1 cos(ωt + φ)]. (41)

Unlike the case of the periodic δ-function kick, the Floquet
operator is no longer a product of only two or three operators;
it has to be computed by dividing the time period T into a large
number of time steps of size �t each, and then multiplying
T/�t operators in a time-ordered way. Finally, we have to
check that the results do not change significantly once �t has
been made sufficiently small. Hence, this problem takes much
more computational time. For the same reason, a numerical
calculation of the Floquet operator Uk(T ,0) takes more time
here than the corresponding expression given in Eq. (19) for
a periodic δ-function kick. We will not consider the existence
of topological invariants here.

Having computed the operator U (T ,0), where T = 2π/ω,
we again find all the eigenvalues and eigenvectors of U (T ,0)
which are also eigenvectors of the parity operator P . As
functions of the parameters γ , �, c0, c1, φ, ω, and N , we find
that the qualitative features of the Majorana end modes that
we find are similar to the case of the periodic δ-function kicks.
As before, we find that end modes can appear even when the
chemical potential places the corresponding time-independent
system in a nontopological phase at all times t .

The effect of the phase φ in Eqs. (39) and (41) turns out
to be interesting. The Floquet operator U (T ,0), now denoted
by Uφ(T ,0), clearly depends on φ. However, we can show that
the eigenvalues of Uφ(T ,0) are independent of φ.34 To see this,
note that a shift in the phase φ by an amount δ is equivalent to
a shift in time by the amount δ/ω. Hence,

Uφ(T ,0) = U0(T + φ/ω,φ/ω)

= U0(T + φ/ω,T )U0(T ,φ/ω)
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FIG. 10. (Color online) Plot of the probabilities of the two end
states for a 100-site system with γ = 1, � = −1, c0 = 2.5, and a
simple harmonic driving with c1 = 0.3, ω = 14, and φ = 0.
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FIG. 11. (Color online) Plot of the probabilities of the two end
states for a 100-site system with γ = 1, � = −1, c0 = 2.5, and a
simple harmonic driving with c1 = 0.3, ω = 14, and φ = π/2.

= U0(T + φ/ω,T )U0(T ,0)U−1
0 (φ/ω,0)

= U0(φ/ω,0)U0(T ,0)U−1
0 (φ/ω,0), (42)

where we have used the fact that U0(T + φ/ω,T ) =
U0(φ/ω,0). Equation (42) shows that Uφ(T ,0) is related to
U0(T ,0) by a unitary transformation involving U0(φ/ω,0);
hence, they have the same eigenvalues while their eigenvectors
are related by the same unitary transformation. This also
implies that studying how an eigenvector corresponding to a
particular eigenvalue of Uφ(T ,0) changes with φ is equivalent
to studying how that eigenvector changes with time under
evolution with U0(t = φ/ω,0).

The effect of a phase change on the wave functions of the
Majorana end modes can sometimes be quite dramatic. We
consider a 100-site system with γ = 1, � = −1, c0 = 2.5,
c1 = 0.3, and ω = 14. Figures 10 and 11 show the probabilities
of the two end modes for φ = 0 and π/2, respectively;
equivalently, we can think of these figures as showing the
effect of evolving the end modes by a time of T/4. We see that
the detailed form of the end mode wave functions are quite
different in the two cases. For φ = 0, the wave function am of
the mode at the left (right) end is nonzero only if m is even
(odd). For φ = π/2, both end modes have wave functions in
which am is nonzero for both even and odd values of m.

VIII. EFFECTS OF ELECTRON-PHONON INTERACTIONS
AND NOISE ON MAJORANA END MODES

An important question relevant to the experimental detec-
tion of Majorana end modes generated by periodic driving
is whether such modes are stable under perturbations which
do not have the same periodicity as the driving term. For
instance, at finite temperature, there will be phonons with a
range of frequencies ω′, and we may be interested in the effect
of electron-phonon interactions on the Majorana end modes.
We may also be interested in the effect of a random noise in
some of the parameters in the Hamiltonian. We will discuss
both these questions here.
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Given a Majorana mode produced by driving with a
frequency ω, let us define the quasienergy gap as �E =
ω�θ/(2π ), where �θ is the gap between the Floquet eigen-
values of the bulk modes (which are of the form eiθ ) and
the Majorana mode (which must have eiθ = ±1, i.e., θ = 0
or π ). It has been shown in Ref. 8 that the Majorana mode
will survive if the phonon frequencies ω′ (which are mainly
governed by the temperature) are much smaller than the gap
�E and the driving frequency ω is much larger than both
ω′ and the bandwidth. The basic argument for this result is
that the driving with frequency ω and an interaction between
an electron and a phonon with frequency ω′ can combine
to produce transitions between two states whose energies
differ by ω′ + nω, where n is an integer. (We are assuming
here that the electron-phonon interaction is small so that only
one-phonon processes are important.) If n = 0, then we can
not have a transition between the Majorana mode and a bulk
mode if ω′ � �E. On the other hand, if n �= 0, then ω′ + nω

is much larger than the bandwidth; then, there is no bulk mode
available to which we can make a transition from the Majorana
mode.

Applied to our model, the argument outline above implies
that if ω is much larger than the bandwidth of the time-
independent part of the Hamiltonian [this is equal to 4|γ + c0|
as we can show using Eq. (8)], a Majorana mode will
survive if the phonon frequencies are much smaller than the
corresponding quasienergy gap �E. Conversely, if ω is of the
order of or smaller than the bandwidth, then the Majorana
mode may not be stable against electron-phonon interactions.
The large number of Majorana modes that we found in Sec. V A
for very small values of ω may therefore not be stable against
electron-phonon interactions.

We have numerically also studied what happens when the
chemical potential has a term which is uniform in space but
varies randomly in time; in addition, the chemical potential
is given periodic δ-function kicks. We compute the Floquet
operator by dividing the total time T̄ into a large number
of steps (of size �T̄ each) and multiplying the time evolution
operators over all the steps in a time-ordered way. We consider
a chain with γ = 1, � = −1, c0 = 2.5, c1 = 0.2, with a range
of system sizes from 200 to 1000 and a range of frequencies
ω from 1 to 16. To study the effect of noise, we add a term to
the chemical potential μ(t) which is of the form rp(t), where
p(t) is a random variable which is uniformly distributed from
−1 to 1 and is uncorrelated at different times [this is achieved
by choosing p(t) to be a different random number at each time
step of our numerical calculations], and r is the coefficient of
the random term. We have studied the effect of the noise over
a total time T̄ ranging from T to 11T , where T = 2π/ω. (This
implies that our noise has a period varying from T to 11T ,
rather than being truly aperiodic.) We find that for 4 � ω � 16,
the Majorana end modes survive up to a value of r which is
about 0.3. For smaller values of ω = 2,3, the Majorana modes
survive up to a value of r of about 0.05, while for ω = 1, they
survive up to r of about 0.025. The critical value of r varies
somewhat from one run to another as is expected for a random
noise. [We have not studied how r depends on the quasienergy
gap ω�θ/(2π ); note that this gap also generally decreases as
ω decreases.] To conclude, a noise in the chemical potential
does not destroy the Majorana modes if the strength of the

noise is less than some value which decreases with the driving
frequency ω.

We note that electron-phonon interactions and noise do not
have the same effects in our system. The random noise that
we have considered contains terms with a very large number
of frequencies ranging from 2π/T̄ to 2π/�T̄ , and all these
terms interact with the electrons. On the other hand, we have
only considered processes in which only one phonon interacts
with the electrons and each phonon has a single frequency ω′.
The electron-phonon interactions and noise therefore affect
the Majorana modes in different ways.

IX. CONCLUSIONS

In this work, we have shown that periodic driving of a
one-dimensional model of electrons with p-wave supercon-
ductivity or a spin- 1

2 XY chain in a transverse magnetic field
can generate Majorana modes at the ends if we have a large
and open system which is time-reversal symmetric. To simplify
the calculations, we have mainly studied the case in which the
chemical potential of the electrons (or the transverse magnetic
field in the spin language) is given a periodic δ-function kick.
However, similar results are found when the chemical potential
(or magnetic field) is driven in a simple harmonic way, or when
the hopping and superconducting terms are given periodic
δ-function kicks.

The Majorana end modes exist only for very large system
sizes and have three characteristic features: the Floquet
eigenvalues are exactly equal to ±1, they are separated from
all the other eigenvalues by a finite gap, and the wave functions
are real. If the system is not time-reversal symmetric, we
find that there may still be end modes whose eigenvalues are
separated from all the others by a finite gap may; however, the
eigenvalues are no longer exactly at ±1, and the wave functions
are not real. Hence, these can not be called Majorana modes.

In analogy with the known topological invariants which
predict the number of zero-energy Majorana end modes for a
system with a time-independent Hamiltonian, we have studied
if the driven system has topological invariants which can
correctly predict the number of end modes. We have shown
that there are two topological invariants which work for a wide
range of the driving frequency ω for the case of the periodic
δ-function kick. The first invariant is a winding number which
is similar in form to the topological invariant for a time-
independent Hamiltonian with time-reversal symmetry; this
invariant sometimes, but not always, gives the total number of
end modes. The second invariant is superior in that it separately
gives us the numbers of end modes with Floquet eigenvalues
equal to +1 and −1 for all values of the parameters. The
second invariant also gives us a simple condition which
can predict the values of ω at which end modes appear or
disappear.

We have studied the effects of some experimentally relevant
perturbations such as electron-phonon interactions and a
random noise on the Majorana end modes. We generally find
that the Majorana modes become more robust as the driving
frequency ω increases.

Recently, there has been considerable excitement over
claims of the detection of Majorana modes in semi-
conducting/superconducting nanowires35–39 following some
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theoretical proposals.40–43 A zero-bias peak has been observed
in the tunneling conductance into one end of the nanowire, and
it has been suggested that this is the signature of a Majorana end
mode. Our results can be tested in similar systems by applying
a gate voltage to the nanowire which varies periodically in time
in some way. One would like to see if such a time-dependent
gate voltage can give rise to a zero-bias peak; this has recently
been studied in Ref. 22. An important question which needs
to be investigated in this context is how the Majorana end
modes appear in the steady state after the oscillatory part of

the gate voltage is switched on. This would require a treatment
of various relaxation mechanisms which may be present in
the system.5 Finally, the effects that disorder in the chemical
potential44–48 and electron-electron interactions48–51 have on
the Majorana end modes also need to be examined.

ACKNOWLEDGMENT

For financial support, M.T. and A.D. thank CSIR, India, and
D.S. thanks DST, India, for Project No. SR/S2/JCB-44/2010.

1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
3L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
4T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82,
235114 (2010).

5N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490 (2011).
6L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys.
Rev. Lett. 106, 220402 (2011).

7Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett.
107, 216601 (2011).

8T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev.
B 84, 235108 (2011).

9N. H. Lindner, D. L. Bergman, G. Refael, and V. Galitski, Phys.
Rev. B 87, 235131 (2013).

10M. Trif and Y. Tserkovnyak, Phys. Rev. Lett. 109, 257002 (2012).
11A. Russomanno, A. Silva, and G. E. Santoro, Phys. Rev. Lett. 109,

257201 (2012).
12V. M. Bastidas, C. Emary, G. Schaller, and T. Brandes, Phys. Rev.

A 86, 063627 (2012).
13V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Phys. Rev.

Lett. 108, 043003 (2012).
14M. Tomka, A. Polkovnikov, and V. Gritsev, Phys. Rev. Lett. 108,

080404 (2012).
15A. Gomez-Leon and G. Platero, Phys. Rev. B 86, 115318 (2012);

Phys. Rev. Lett. 110, 200403 (2013).
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