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Spatially modulated electronic nematicity in the three-band model of cuprate superconductors
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Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the
underdoped regime. Intraunit cell charge ordering tendencies point to electronic nematic order involving
oxygen orbitals. In this context, we investigate charge instabilities in the Emery model and calculate the charge
susceptibility within diagrammatic perturbation theory. In this approach, the onset of charge order is signaled by
a divergence of the susceptibility. Our calculations reveal three different kinds of order: a commensurate (q = 0)
nematic order, and two incommensurate nematic phases with modulation wave vectors that are either axial or
oriented along the Brillouin zone diagonal. We examine the nematic phase diagram as a function of the filling,
the interaction parameters, and the band structure. We also present results for the excitation spectrum near the
nematic instability, and show that a soft nematic mode emerges from the particle-hole continuum at the transition.
The Fermi surface reconstructions that accompany the modulated nematic phases are discussed with respect to
their relevance for magneto-oscillation and photoemission measurements. The modulated nematic phases that
emerge from the three-band Emery model are compared to those found previously in one-band models.
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I. INTRODUCTION

Cuprate superconductors are susceptible to spin- and
charge-density-ordered phases that compete with supercon-
ductivity. This is well established in La-based cuprates,1–3

where (quasi)static spin/charge stripes are widely observed,
even in coexistence with superconductivity.4,5 However, their
presence in other cuprate families is generally unconfirmed.
Because density waves are one of the proposed origins for
the pseudogap in the underdoped regime, it is necessary
to establish whether charge and spin order are universal
amongst the cuprates. The recent discovery of charge order
(without spin order) in underdoped YBa2Cu3O6+x (YBCO)
is an important step in this direction. In this work, we
describe incommensurate charge-ordered phases that arise in
the three-band Emery model for cuprates, and discuss the
extent to which these are consistent with the charge order
detected in YBCO.

Early evidence for broken-symmetry phases in YBCO
came from magneto-oscillation experiments, which identified
a reconstructed Fermi surface6,7 with an electronlike Fermi
surface pocket8 that emerges when strong magnetic fields are
applied. These experiments were theoretically discussed from
the perspective of density waves.9 Nernst effect measurements
found a uniaxial symmetry breaking,10 consistent with a
charge-density wave (CDW). Subsequent nuclear magnetic
resonance (NMR) experiments further suggested a commen-
surate CDW with a period of four unit cells, with no evidence
for any spin ordering.11 In this work, the authors made a
clear distinction between ortho-II YBCO (with hole doping
p ∼ 0.108–0.12) where only charge order is seen, and lower
dopings near the superconductor-insulator transition where
charge and spin order are both seen.12–14

More recently, x-ray scattering15–17 experiments have
identified a CDW phase in the same doping and magnetic
field range in which Fermi surface pockets are detected.

The charge pattern is aligned with the crystalline axes15,16

and is incommensurate, with a weakly doping dependent
period of ∼3.2 lattice constants. Whether this CDW is
uniaxial10,11 or biaxial18,19 has not been resolved, and may
depend on doping.17 Regardless of the details, x-ray and
NMR experiments established that the incommensurate CDW
competes with the superconductivity,16,20 implying that both
phases operate on similar energy scales.

The x-ray results suggest that this charge-ordered state
is distinct from the stripe phase in La-based cuprates;5,17,19

however, its relation to apparent charge-ordered phases in Bi-
based cuprates is still not clear. Photoemission experiments on
underdoped Bi cuprates have found spectral features21–24 that
are consistent with competing nonsuperconducting phases.
Scanning tunneling microscopy (STM) experiments25–31 fur-
ther pointed to intraunit cell charge order. The simplest
candidates for such order are uniaxial “nematic” or biaxial
“checkerboard” phases involving a spontaneous transfer of
charge between oxygen px and py orbitals within the CuO2

unit cell.
In this work, we report on possible charge-ordered phases

within the three-band Emery model,32 which includes cop-
per d and oxygen p orbitals. We have calculated the
charge susceptibility χαβ(q,ω) (α and β are orbital indices)
diagrammatically.33,34 The leading instabilities of the model
are obtained from divergences of the static susceptibility
χαβ(q). We find that, through much of the phase diagram, the
leading instability is to an incommensurate (finite-q) charge
modulation involving primarily the oxygen orbitals. When
the ordering wave vector q∗ tends to zero, this phase evolves
continuously into the commensurate nematic phase proposed
by Fischer and Kim35 to explain the STM results for Bi
cuprates.

The possibility of finite-q “modulated nematic order”
(MNO) was raised previously in one-band models.36–42 In this
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context, “nematic” refers to an anisotropic renormalization of
the bond-centered kinetic energy that disrupts the tetragonal
symmetry of the lattice. This anisotropy can be viewed as the
result of integrating out inequivalent oxygen orbitals in a three-
band model,40 and in this light the one-band bond-centered
nematicity may be related to the nematic phase reported here,
which is characterized by a spontaneous transfer of charge
between Opx and Opy orbitals. Note that we make a distinction
between MNO, for which the charge transfer is predominantly
intraunit cell, and conventional CDW order, for which the
charge transfer is interunit cell.

Despite the differences between one- and three-band mod-
els, there are some surprising similarities in the structure of the
modulations. Within the “hot-spot” model36,40 the modulation
wave vector q∗ lies along the Brillouin zone diagonal. Holder
and Metzner39 considered a more general interaction and
found that q∗ may be either diagonal or axial (bond-aligned),
depending on the Fermi-surface shape. Here, we find that the
doping dependence of q∗ is qualitatively the same as that found
by Holder and Metzner, even though the mechanism which
drives the instability is different.

Earlier, a different charge instability, involving charge
transfer between Cu and O was found in the three-band
Emery model when the energies of Opx , Opy , and Cud

orbitals are close to degenerate.33,34,43 This charge-transfer
instability does not occur for the more realistic range of
parameters studied below. In the strong-coupling limit of
the Emery model it was instead argued that the interaction
Vpp between neighboring oxygen sites confines the motion
of doped holes to one-dimensional channels which thereby
suggests a possible source for nematicity.44 A continuum
theory for the quantum phase transition to the nematic state
was subsequently developed.45

We describe the model and the diagrammatic calculations
in detail in Sec. II; results are presented in Sec. III. From
the static nematic susceptibility, we obtain phase diagrams as
functions of temperature, doping, and interaction strengths.
We show that, for realistic model parameters, there exists
a wide doping range over which incommensurate nematic
order is preferred over commensurate order. The results for
the dynamical susceptibility show that the nematic transition
is marked by a soft mode that emerges from the particle-hole
continuum near the nematic instability. We also describe the
expected Fermi surface reconstruction in the nematic phase.
In Sec. IV, we compare one- and three-band models showing
why they generate similar phase diagrams despite significant
differences in the models. Finally, we discuss to what extent
our results for modulated nematic order are compatible with
the existing experimental evidence for charge ordering.

II. MODEL AND CALCULATIONS

In this section, we describe briefly the three-band Emery
model32 and outline the calculation of the charge susceptibility
matrix χαβ(q,ω).

A. Hamiltonian

The unit cell of a single CuO2 plane is illustrated in Fig. 1.
It consists of three orbitals, one copper dx2−y2 orbital and two
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FIG. 1. (Color online) Unit cell for the three-band Emery model.
The model includes one copper dx2−y2 orbital along with two oxygen
orbitals, denoted by Opx and Opy . Hopping matrix elements (tpd

and tpp) and Coulomb interaction strengths (Ud , Up , Vpd , Vpp) are
indicated. Throughout, we fix tpd = 1, Ud = 9, Up = 3, and Vpd = 1.

oxygen orbitals labeled Opx and Opy , that form σ bonds with
the Cud orbital. The noninteracting tight-binding Hamiltonian
in momentum space is given by

Ĥ0 =
∑
kσ

(ĉ†kdσ ,ĉ
†
kxσ ,ĉ

†
kyσ ,)H0(k)

⎛
⎝

ĉkdσ

ĉkxσ

ĉkyσ

⎞
⎠ , (1)

where ĉkασ is the annihilation operator for an electron with
wave vector k, spin σ , and orbital index α; α = d, x, y

indicates Cud, Opx , Opy orbitals, respectively. In the matrix
elements of

H0(k) =

⎛
⎜⎝

εd 2tpdsx −2tpdsy

2tpdsx εx −4tppsxsy

−2tpdsy −4tppsxsy εy

⎞
⎟⎠ , (2)

with sx = sin(kx/2), sy = sin(ky/2), tpd and tpp are the
nearest-neighbor p-d and p-p hopping amplitudes (see Fig. 1).
εd denotes the Cud orbital energy and εx and εy the correspond-
ing energies of the Opx and Opy orbitals. In calculating H0, the
signs of the hopping matrix elements are determined by the
phases of the nearest atomic wave-function lobes (indicated
by “+” and “−” in Fig. 1) for a given bond. For the H0,23

and H0,32 matrix elements, we introduced an extra minus
sign as that enables us to obtain a realistic Fermi surface
for a nonzero tpp value. Such a sign change can arise from
indirect hopping through the Cu4s orbital.46 Unless otherwise
specified, we take εx = εy ≡ εp, choose tpd = 1 as the unit of
energy, and adopt the common estimate for the charge-transfer
energy �CT = εd − εp = 2.5.47 To understand the role of the
Fermi-surface shape, we consider two cases: tpp = 0 and 0.5.
The former gives a highly nested Fermi surface, while the
latter is consistent with band-structure calculations for the
cuprates.48

The energy eigenvalues and eigenvectors follow from the
diagonalization of H0(k):

S†(k)H0(k)S(k) = �(k), (3)
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where 	ij (k) = δijE
i
k is the diagonal eigenvalue matrix

containing the band energies Ei
k, and S(k) is a 3 × 3 matrix of

eigenvectors.
The interaction term in the Hamiltonian includes intraor-

bital and interorbital Coulomb interactions. We consider
intraorbital interactions Ud and Up at the Cud and Op orbitals
and interorbital interactions Vpd and Vpp between nearest-
neighbor p-d and p-p orbitals, respectively, as illustrated in
Fig. 1.

The interaction term is

V̂ = 1

2N

∑
αβ

∑
q

Vαβ(q)n̂α(q)n̂β(−q), (4)

where n̂α(q) = ∑
σk ĉ

†
kασ ĉk+qασ and

Vαβ(q) =
∑

R

e−iq·(R+rβ−rα )Vαβ(R). (5)

R denotes the lattice vectors and rα ,rβ the positions of orbitals
α,β within the unit cell. Explicitly,

Vαβ(q) = δα,dδβ,dUd + (δα,xδβ,x + δα,yδβ,y)Up

+ (δα,xδβ,d + δα,dδβ,x)2Vpd cos(qx/2)

+ (δα,yδβ,d + δα,dδβ,y)2Vpd cos(qy/2)

+ (δα,yδβ,x + δα,xδβ,y)4Vpp cos(qx/2) cos(qy/2).

(6)

Throughout this paper, we set Ud = 9, Up = 3, and Vpd = 1
(in units of tpd ).48

B. Charge susceptibility

In order to detect tendencies for nematic instabilities, we
consider the order parameter

ON (q) = nx(q) − ny(q), (7)

which measures the charge transfer between Opx and Opy

orbitals. The corresponding nematic susceptibility is given by

χN (q) = ∂ON (q)

∂φ(q)
(8)

= χxx(q) − χxy(q) + χyy(q) − χyx(q). (9)

φ(q) = εx(q) − εy(q) is a nematic perturbing potential, and
the charge susceptibility matrix is

χαβ(q) = δnα(q)

δεβ(q)
, (10)

with δnα(q) the change in the charge density nα(q) = 〈n̂α(q)〉
due to a weak perturbation δεβ(q) of the orbital energies.
For dynamical perturbations with frequency ω, Eq. (10)
generalizes to the dynamic susceptibility χαβ(q,ω). For the
remainder of this section, we adopt the shorthand notation
q ≡ (q,ω).

The dynamic charge susceptibility is evaluated using the
Kubo formula and an infinite summation of ladder and bubble
diagrams, as shown in Fig. 2. For this purpose, it is useful
to define an effective interaction for the charge channel,34 as

=(a)

(b)

(c)

=

=

+

+

+

V (q)
V (k − k )

Γ

ΓΓ Vρ Vρ

Vρ

VX VD

α

α

β

βα α

β β

k

k + q

k

k + q

k

k + q

k

k + q
α α

β β

FIG. 2. (a) Diagrammatic representation of the dynamic charge
susceptibility Eq. (20) in terms of the bare susceptibility and the
interaction vertex (k,k′,q). (b) Ladder diagrams corresponding to
Eq. (17) for the interaction vertex. (c) The effective interaction in the
charge channel, as in Eq. (11).

represented diagrammatically in Fig. 2(c):

Vρ,αα′ββ ′ (k,k′,q) = −δα′,αδβ ′,βVαβ(k′ − k)

+ δα′,βδβ ′,α2Vαβ(q). (11)

The first and the second terms on the right describe the
exchange and the direct interaction, respectively. Similarly, for
the spin susceptibility the same set of diagrams is evaluated
using the effective interaction in the spin channel34

Vσ,αα′ββ ′(k,k′,q) = −δα′,αδβ ′,βVαβ(k′ − k). (12)

With Eq. (11), the interaction vertex αα′ββ ′ (k,k′,q) in the
charge channel is conveniently obtained in the compact
form shown in Fig. 2(b). Once this equation is solved
for αα′ββ ′(k,k′,q), the susceptibility is calculated from the
diagrams in Fig. 2(a).

In order to solve the integral equation for the interaction
vertex, we project onto a set of basis functions in orbital and
momentum space,33 which transforms the integral equation in
Fig. 2(b) into a matrix equation:

Vαβ(k′ − k) =
∑
i,j

gi
αβ(k)Ṽ ij

X g
j

αβ(k′), (13)

Vαβ (q) =
∑
i,j

gi
ααṼ

ij

D (q)gj

ββ, (14)

αα′ββ ′ (k,k′,q) =
∑
i,j

gi
αβ ′(k)̃ij (q)gj

α′β(k′). (15)

The functions gi
αβ (k) form a 19-dimensional basis (i ∈ [1,19]),

and they are explicitly defined in the Appendix. X̃ denotes the
matrix representation, with matrix elements X̃ij , of a quantity
X with respect to the basis functions. In this notation, ṼD(q),
ṼX, and �̃(q) are defined by Eqs. (13)–(15). ṼD(q) and ṼX

are also explicitly given in the Appendix. We note that Ṽ
ij

D (q)
is nonzero only for i,j = 9,10,11, for which gi

αβ(k) does not
explicitly depend on k.

Using Eqs. (13) and (14), we obtain

Ṽρ(q) = 2ṼD(q) − ṼX. (16)

This equation, combined with Eq. (15), enables one to express
the integral equation in Fig. 2(b) as a matrix equation, the
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inversion of which leads to

�̃(q) = [1 + Ṽρ(q)χ̃χ0(q)]−1Ṽρ(q). (17)

χ̃χ0(q) is the projected bare susceptibility

χ̃
ij

0 (q) = −1

N

∑
k,μν

∑
θθ ′γ γ ′

gi
γ ′γ (k)Mγ ′θθ ′γ

νμkq

×
[
f

(
Eν

k

) − f
(
E

μ

k+q

)]

ω + Eν
k − E

μ

k+q + iδ
g

j

θθ ′ (k), (18)

with f (E) the Fermi function and

M
γ ′θθ ′γ
νμkq = Sγ ′ν(k)S∗

θν(k)Sθ ′μ(k + q)S∗
γμ(k + q). (19)

The charge susceptibility then follows as

χαβ(q) = χ0
αβ(q) −

∑
ij

Ai
αα(q)�̃

ij
(q)Aj

ββ(q), (20)

where

χ0
αβ(q) = −1

N

∑
k,μν

M
βααβ

νμkq

[
f

(
Eν

k

) − f
(
E

μ

k+q

)]

ω + Eν
k − E

μ

k+q + iδ
(21)

is the bare charge susceptibility, and

A
j

γγ ′(q) = 1

N

∑
k,μν

∑
θθ ′

M
γ ′θθ ′γ
νμkq

f
(
Eν

k

) − f
(
E

μ

k+q

)

ω + Eν
k − E

μ

k+q + iδ
g

j

θθ ′ (k).

(22)

Equation (20), which corresponds to Fig. 2(a), is the final result
for the charge susceptibility.

III. RESULTS

We identify charge instabilities from divergences of the
charge susceptibility matrix. The focus is on nematic order that
is marked by a divergence of χN (q) and driven by the repulsive
interaction Vpp. We start with a general discussion of MNO
and the structure of χN (q) and then present the results which
show how the instability depends on Vpp, the hole density p =
5 − n, and the temperature T . n is the number of electrons per
unit cell, and p is thus measured relative to half-filling of the
Cud orbital. We consider the two cases tpp = 0 and 0.5, which
correspond to a small and a large Fermi surface curvature,
respectively. The latter value is motivated by band-structure
calculations and matches reasonably well the Fermi surface
of cuprate materials. Subsequently, we discuss the spectrum
of the dynamical susceptibility χN (q,ω) in the isotropic phase
near the nematic transition and the consequences of MNO for
the reconstruction of the Fermi surface.

A. Nematic susceptibility

As an example, we show in Fig. 3(a) the static nematic
susceptibility χN (q) for a set of parameters near the MNO
instability. For the selected parameters, χN (q) is sharply
peaked at the diagonal wave vector q∗/2π = 0.06(1,1). The
inverse susceptibility at q∗ is plotted in Fig. 3(b) as a function
of Vpp; this figure shows that χN (q∗) diverges at Vpp = 2.22,
which marks the boundary between an isotropic phase for
Vpp < 2.22 and MNO with a modulation wave vector q∗.

FIG. 3. (Color online) (a) Nematic susceptibility χN (q) for p =
0.15, T = 0.016, Vpp = 2.2, and tpp = 0.5. (b) Vpp dependence
of 1/χN (q∗) showing the divergence of the susceptibility close to
Vpp = 2.22.

In fact, because χN (q) has the full point group symmetry of
the lattice, it actually diverges simultaneously at four distinct
q values related to q∗ by π/2 rotations. Our calculations
therefore admit both unidirectional order (involving only q∗
and −q∗) and bidirectional checkerboard order (involving
all four q vectors). Further extensions of the calculations
are required to determine which phase is dominant, and in
single-band models it has been shown that this depends on
details of the interaction and Fermi surface.37

Depending on model parameters, three kinds of nematic
phases emerge from the calculations: a commensurate phase
(q∗ = 0), the diagonal phase with q∗ = (q0,q0) as described
above, and an axial phase for which the modulation wave
vector is aligned with the crystalline axes, i.e., q∗ = (q0,0)
or q∗ = (0,q0). The charge modulations associated with both
the diagonal and the axial phases are illustrated in Fig. 4.
These figures are for model parameters near the MNO phase
boundary, where the response to a weak perturbing potential
is large. We show results for unidirectional and bidirectional
nematic modulations: for the unidirectional case, the charge
modulations are generated assuming a nematic perturbing
potential of the form δεd = 0, δεx(r) = −δεy(r) = δε cos(q∗ ·
r), for which

δnα(r) =
∑

β

χαβ(q∗)δεβ(r). (23)

For the bidirectional case, a second perturbation, with q∗
rotated by π/2, is added to the right-hand side of Eq. (23).

Figure 4 shows that in all cases the charge transfer occurs
almost entirely between the oxygen atoms; the Cud charge
modulations are at least an order of magnitude smaller than
the oxygen modulations and are too small to see in the figure.
Furthermore, in each of the MNO patterns shown in Fig. 4,
the charge transfer is predominantly within the unit cell, with
the interunit cell charge transfers being orders of magnitude
smaller. For this reason, it is natural to think of the broken-
symmetry phase as a modulated nematic rather than a CDW.

B. Phase boundaries

We now examine how the phase boundary between isotropic
and nematic phases depends on various model parameters. To
begin with, we show in Figs. 5(a) and 6(a) the phase boundaries
at low T in the p-Vpp plane for tpp = 0 and 0.5, respectively.
In both figures, the system is isotropic for small Vpp, and the
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FIG. 4. (Color online) Charge-density modulations for (a)–(c)
diagonal and (d)–(f) axial modulated nematic order, at hole densities
p = 0.14 and 0.20, respectively, for tpp = 0.5. The corresponding q∗

values are given in Fig. 6(b). Circle diameter indicates the magnitude
of the charge modulation, with red (blue) corresponding to a negative
(positive) modulation. While all orbitals are shown, modulations
are only large enough to be seen on the oxygen px and py orbitals.
The bidirectional patterns in (c) are obtained by adding the patterns
in (a) and (b); those in (f) are obtained by adding (d) and (e).

phase boundary marks where χN (q∗) first diverges as Vpp is
increased. The value of q∗ at which this happens depends on
the hole density p, and is shown in Figs. 5(b) and 6(b).

Figures 5(a) and 6(a) also include the curves along which
χN (q = 0) diverges. We see that there is a wide range of p over
which χN (q∗) diverges at a lower Vpp than χN (0), signaling
that MNO dominates over commensurate nematic order. There
are also regions where only the q = 0 instability is shown; in
these regions, this is the first instability which appears as Vpp

is increased.
The magnitude and the orientation of q∗ depend on the

filling relative to the “van Hove filling” pvH, which is defined as
the hole density p at which the van Hove singularities at (π,0)
and (0,π ) cross the Fermi energy. pvH marks the boundary
between holelike (p < pvH) and electronlike (p > pvH) Fermi
surfaces. The value of pvH depends on the Fermi surface
curvature: pvH = 0 for tpp = 0 and pvH = 0.177 for tpp = 0.5.
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* |

t
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FIG. 5. (Color online) (a) Charge instabilities for the commen-
surate (q = 0) and axial modulated nematic phases for tpp = 0 at
T = 0.0005. The system is isotropic for small Vpp . Solid curves
indicate the leading divergence of χN (q) as Vpp is increased; dashed
curves indicate subleading instabilities. The phase transition is thus to
an axial nematic phase for p � 0.09, and to a commensurate nematic
phase for p > 0.09. The modulation wave vector for the axial nematic
phase is shown in (b), and it vanishes at the van Hove filling pvH = 0.0.
The model parameters are tpd = 1, εd = 0, �CT = εd − εp = 2.5,
Vpd = 1, Ud = 9, and Up = 3.

For reference, cuprate superconductors have holelike Fermi
surfaces in the doping range where charge-ordered phases are
observed.
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FIG. 6. (Color online) As in Fig. 5, but for tpp = 0.5. Here, the
leading instability is to a diagonal nematic phase for p < pvH, where
pvH = 0.177 for this value of tpp .
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FIG. 7. (Color online) Phase diagram in the p-T plane for (a)
tpp = 0 and (b) tpp = 0.5. Solid curves indicate the leading divergence
of χN (q) upon cooling; dashed lines indicate subleading instabilities.
The inset in (a) shows a zoom into the left corner of the nematic
region where axial order is dominant. The crosses in (b) indicate the
points in the phase diagram at which the dynamic susceptibility is
shown in Fig. 8. Model parameters are as in Fig. 5.

In both Figs. 5 and 6, the nematic instability is to a
commensurate phase at large p. At lower fillings, but still
above pvH, the leading instability is incommensurate, with an
axial modulation wave vector that decreases as p is reduced:
when tpp = 0, q∗ vanishes continuously as p → pvH , at which
point the charge order is commensurate. For tpp = 0.5, there
is a discontinuous transition to the commensurate phase at
p = 0.19 > pvH. Below the van Hove filling, |q∗| grows as p

is reduced. In this range of doping, the modulation wave vector
is axial for tpp = 0 (Fig. 5) and diagonal for tpp = 0.5 (Fig. 6).
For the relative hole filling p = pvH − 0.05, the crossover
between diagonal and axial order occurs for tpp ≈ 0.12. As we
discuss further in Sec. IV A, the overall doping dependence is
similar to that found by Holder and Metzner.39

In Fig. 7, we map the nematic instability in the p-T plane for
fixed Vpp. Results for tpp = 0 and 0.5 are shown in Figs. 7(a)
and 7(b), respectively. In both cases, the system is isotropic at
high T , and the leading instability upon cooling is indicated
by a solid line; dashed lines indicate subleading instabilities.

Figure 7(a) is dominated by a transition to commensurate
nematic order extending over a broad doping range that
includes both holelike (p < 0) and electronlike (p > 0) Fermi
surfaces. The system exhibits reentrance at both the lower and
upper ends of the doping range where nematic order is encoun-

tered: as T is lowered, the system passes through an isotropic-
to-nematic transition followed by a nematic-to-isotropic tran-
sition. The shape of the commensurate phase boundary is
essentially the same as that found in a previous mean-field
study.35 The new result in Fig. 7(a) is the existence of a phase
boundary spanning −0.07 < p < −0.062 between isotropic
and axial MNO phases at low T . This figure shows that the
axial MNO phase found at low T (Fig. 5) is fragile for tpp = 0
and subdominant to the commensurate phase at higher T .

While the MNO phase boundary represents only a small
fraction of Fig. 7(a), it is much more important when we
adopt the more realistic value of tpp = 0.5 in Fig. 7(b).
In particular, the leading instability is to a diagonal MNO
phase for a wide doping range of holelike Fermi surfaces
(p < pvH). This doping range is similar to the range over which
charge modulations are observed experimentally. However,
there are two significant discrepancies with the experiments:
the values of q∗ obtained here are a factor of 2 to 3 smaller
than those observed experimentally, and the orientation of
q∗ is diagonal, while experiments observe axial order. The
first discrepancy might be resolved by using a band structure
tailored specifically to ortho-II YBCO;49 this likely requires
going beyond the three-band model. These issues will be
discussed in more detail in Sec. IV B.

Finally, we note that the nematic instability is actually
subleading for our model parameters; the leading instability is
to a spin-density wave (SDW) state. A calculation of the spin
susceptibility, performed in the same manner as for the charge
susceptibility, but using the effective interaction in the spin
channel (12) in place of (11), shows that the SDW involves
primarily the Cud orbitals and is driven by the large onsite
repulsion Ud on the copper atoms. For p = 0.14, tpp = 0.5,
and Vpp = 2.2, the onset temperature for the SDW is higher
than the nematic transition temperature provided Ud > 1.08
while for smaller Ud , the nematic instability occurs at higher
T . There are two reasons why this SDW phase may not matter
for nematic order. First, strong correlation effects, neglected
here, will renormalize the interaction vertex, and thereby lead
to a lower magnetic transition temperature than predicted
by weak-coupling theory. Second, the onset of SDW order
does not preclude nematic order because the SDW and MNO
involve different orbitals. This raises the intriguing possibility
that these phases might coexist, with little or no competition,
in some regions of the phase diagram.

C. Dynamical susceptibility

Figure 8 shows the dynamical susceptibility at the mod-
ulation wave vector q∗ in the isotropic phase. Results are
shown for the same parameters as in Fig. 7(b), with p = 0.14,
Vpp = 2.2, and for T = 0.014 and 0.030. These filling and
temperature values are indicated by crosses in Fig. 7(b). The
lower temperature T = 0.014 is close to the nematic transition,
while the higher temperature T = 0.030 is approximately
twice the transition temperature.

Aside from the nematic susceptibility χN (q,ω), the total
charge susceptibility

χρ(q,ω) = ∂(nd + nx + ny)

∂(εd + εx + εy)
=

∑
α,β

χαβ(q,ω) (24)
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FIG. 8. (Color online) Imaginary part of the frequency dependent
susceptibility at q∗. Results are for tpp = 0.5, hole density p = 0.14,
and Vpp = 2.2. (a) Plots of the nematic, the charge-transfer, and the
charge susceptibilities slightly above the nematic transition (T =
0.014). The inset shows an expanded view of the frequency range
3.5 < ω < 3.8. For comparison, the bare susceptibilities are shown
in (b). The temperature dependence of the low-frequency spectrum
is separately displayed for the nematic (c), the charge-transfer (d),
and the charge susceptibilities (e). Panel (c) shows the emergence
of a sharp low-frequency peak in the nematic susceptibility near the
nematic transition. For reference, the points on the phase diagram at
which the susceptibilities are evaluated are marked with crosses in
Fig. 7(b).

and the charge-transfer susceptibility34

χCT(q,ω) = ∂(nd − nx − ny)

∂(εd − εx − εy)

= χρ(q,ω) − 2
∑

α=x,y

[χdα(q,ω) + χαd (q,ω)] (25)

are included. The frequency dependence of these three
susceptibilities is shown in Fig. 8(a) in comparison to the
bare versions of these susceptibilities in Fig. 8(b). The bare
spectra consist of a low-energy intraband continuum due to
particle-hole excitations with momentum q∗, and a high-
energy interband continuum. The width of the low-energy
continuum is q dependent, and vanishes as q → 0; the
interband particle-hole continuum is instead only weakly q
dependent.

The particle-hole continuum is renormalized by the inter-
actions. In particular, the low-frequency charge susceptibility
χρ(q∗,ω) is reduced by an order of magnitude relative to
χ0

ρ (q∗,ω). This originates from the large value of the onsite

Coulomb interaction Ud = 9, which suppresses charge fluctu-
ations on the Cud orbitals. The susceptibilities in Fig. 8(a)
have a number of additional resonances. Just above the
low-frequency continuum, at ω = 0.8, both χCT(q∗,ω) and
χρ(q∗,ω) exhibit a sharp resonance, which was identified
before as a zero-sound mode.50 It is this mode, rather than
the charge-transfer excitation, which becomes soft at the
charge-transfer instability. However, this mode is not relevant
for the nematic transition as it remains at finite frequency
across the transition.

The second pronounced resonance, at ω = 5.58, is the
charge-transfer excitation. This mode corresponds to a transfer
of charge between Cud and Op orbitals without any change
in the total intraunit cell charge density; consequently, the
peak appears in χCT(q∗,ω) but not in χρ(q∗,ω). A third
excitonic resonance appears in both χCT(q∗,ω) and χρ(q∗,ω) at
ω = 3.57, just below the high-frequency interband continuum.
As shown in the inset, this excitonic peak is distinct from a
nearby nematic resonance at ω = 3.63. All three modes (zero
sound, excitonic, and charge transfer) have A1g symmetry as
q → 0. In contrast, resonances in the nematic susceptibility
have B1g symmetry. This is the same symmetry as for the
d-wave Pomeranchuk instability.51,52

Three resonances are visible in the nematic susceptibility.
There are two excitonic resonances at ω = 3.63 and 3.05 and a
low-frequency peak that becomes soft at the nematic transition.
All three excitations involve only Opx and Opy orbitals, such
that there is no peak in χαβ(q∗,ω), if either α = d or β = d.

As shown in Figs. 8(c)–8(e), the low-frequency spectra of
both χρ(q∗,ω) and χCT(q∗,ω) are only weakly T dependent.
The low-frequency nematic mode, on the other hand, depends
strongly on T . In particular, it is damped by the particle-hole
continuum away from the nematic transition, but sharpens
significantly as T is lowered, and the excitation frequency
shifts towards zero. The approach to the nematic transition is
therefore accompanied by the softening of a mode that emerges
from the particle-hole continuum.

D. Fermi surface in the MNO phase

To understand the effects of modulated nematic order on the
single-particle spectrum, we recalculate the band structure of
the three-band model in the presence of nematic order δεx(r) =
−δεy(r) = δε cos(q∗ · r), in the same fashion used to generate
Fig. 4. For the unidirectional modulations, we start from an
approximate perturbed Hamiltonian of the form

H(k) =

⎡
⎢⎣

H0(k) Hq∗ H−q∗

Hq∗ H0(k + q∗) 0

H−q∗ 0 H0(k − q∗)

⎤
⎥⎦ , (26)

where H0(k) is the same 3 × 3 matrix as in Eq. (2).
H±q∗ = (δε/2)diag(0,1,−1) is the matrix representation of
the perturbing potential, which scatters quasiparticles by ±q∗.
H(k) is a 9 × 9 matrix that is diagonalized numerically for
each k. In principle, incommensurate nematic order also mixes
in states with momenta k ± 2q∗, k ± 3q∗, etc.. However,
we find that these states rapidly diminish in importance and
that the spectral function can be understood in terms of the
leading-order terms alone.
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FIG. 9. (Color online) Fermi surface reconstruction for (a)–(c)
diagonal (p = 0.14) and (d)–(f) axial (p = 0.20) modulation vectors
q∗ for tpp = 0.5. Solid black lines in (a) and (d) show Fermi surface
contours, and dotted red lines show the same contours shifted by
±q∗. Intensity plots in (b), (c), (e), (f) show the spectral function
A(k,εF ). Results are for (b), (e) unidirectional and (c), (f) bidirectional
modulations. In (c), the inset shows a zoom of the reconstructed Fermi
surface, centered at (π,0). In all panels, q∗ is taken from Fig. 6 for
the corresponding filling. A Lorentzian broadening of δ = 0.05 was
used to calculate the spectral functions.

The Fermi surfaces are obtained from the eigenvalues of
H(k), while the spectral function is taken from the trace over
Cud, Opx , and Opy orbitals, namely,

A(k,ω) = − Im

π

3∑
i=1

[(ω + iδ)1 − H(k)]−1
ii , (27)

where [. . .]−1
ii is the ith diagonal element of the matrix inverse.

The Fermi surfaces and the spectral functions are plotted in
Fig. 9 in the first Brillouin zone. The same two cases are
considered here as in Fig. 4: p = 0.14 < pvH, for which q∗
is diagonal, and p = 0.20 > pvH, for which q∗ is axial; the
values for q∗ are taken from Fig. 6.

In Figs. 9(a) and 9(d), we show contours of the bare Fermi
surface, along with Fermi-surface replicas shifted by ±q∗.
In Fig. 9(a), the bare and shifted Fermi surface segments
coincide near (π,0) and (0,π ) (the antinodes in the language of
d-wave superconductivity), which suggests that the diagonal

nematic modulation is driven by nesting of short Fermi surface
segments in the antinodal regions. Nesting features are not
obvious in Fig. 9(d), but there is a short segment of the Fermi
surface near (0,π ) that coincides with (and is tangential to)
one of the shifted Fermi surfaces.

In Figs. 9(b) and 9(e), we map A(k,ω) at the respective
Fermi energies εF for the same modulation vectors as in
Figs. 9(a) and 9(b). The spectral functions both exhibit
a depletion of spectral weight near the antinodes and the
residual spectral weight lies mostly along Fermi surface
arcs, in broad agreement with angle-resolved photoemission
spectroscopy (ARPES) experiments.53 ARPES has shown
that the pseudogap in underdoped cuprates is generically
characterized by a gap on the antinodal portion of the Fermi
surface.

One widely studied scenario for the gap invokes the
proximity of the underdoped cuprates to an antiferromagnetic
insulating phase, and assumes either static or dynamical SDW
correlations with a modulation wave vector near (π,π ). These
kinds of scenarios generically lead to a spectral function
with four holelike Fermi surface pockets54 centered near
(±π/2,±π/2), but such pockets have yet to be observed
experimentally. In contrast, scenarios in which q∗ nests antin-
odal Fermi surface sections do not generate nodal pockets;
consistent with this the spectral functions in Figs. 9(b) and 9(e)
have no backfolding around (±π/2,±π/2).

It is obvious from Figs. 9(b) and 9(e) that unidirectional
MNO leads to an orthorhombic distortion of the Fermi surface.
Fourfold-rotational symmetry is restored when the MNO is
bidirectional, as illustrated by Figs. 9(c) and 9(f). The spectral
functions for bidirectional MNO are qualitatively similar to
the unidirectional cases, with one notable exception: the
reconstructed Fermi surface in Fig. 9(c) has small electronlike
pockets that close around (π,0) and (0,π ). These pockets have
low spectral weight, and therefore do not show up strongly in
the spectral function. One of the pockets is shown in the inset
to Fig. 9(c), where a portion of the reconstructed Fermi surface
is plotted. We discuss these pockets further in Sec. IV B.

IV. DISCUSSION

A. Comparison to one-band models

In this section, we address the doping dependence of the
modulation wave vector q∗. We have noted that for tpp = 0.5,
axial MNO is preferred for p > pvH and diagonal MNO is
preferred for p < pvH as was also obtained by Holder and
Metzner.39 In their one-band model, the nematic instabilities
involve a spontaneous symmetry breaking between the x-
and y-axis bond order parameters 〈c†i+x σ ci σ 〉 and 〈c†i+y σ ci σ 〉,
while in the three-band model, the instability involves a
transfer of charge between Opx and Opy orbitals.

As emphasized in Ref. 39, the nematic instability in the
one-band model is understood from the peak structure of the
d-wave polarization function

χ0
1B(q) = − 1

N

∑
k

f (εk−q/2) − f (εk+q/2)

εk−q/2 − εk+q/2
d2

k, (28)

where εk is the band dispersion and dk = cos(kx) − cos(ky) is a
d-wave form factor. χ0

1B(q) is illustrated in Fig. 10 for electron
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FIG. 10. (Color online) Bare nematic susceptibility χ0
1B(q) for

the conduction band of the three-band model. The susceptibility is
calculated from Eq. (28), with εk set equal to the largest eigenvalue
E3

k of the Hamiltonian H0(k). Results are shown for hole dopings (a)
p = 0.14 < pvH and (b) p = 0.20 > pvH, with tpp = 0.5.

densities below and above the van Hove filling. For this
figure, we have set εk = E3

k, where E3
k is the conduction band

dispersion for the three-band model, obtained by diagonalizing
H0(k).

The q-space arcs along which χ0
1B(q) is peaked in Fig. 10

correspond to the Fermi surface nesting condition E3
k =

E3
k+q = εF , with εF the Fermi energy. For holelike Fermi

surfaces, these arcs cross [Fig. 10(a)] so that a single peak
on the Brillouin zone diagonal emerges at the crossing point
q∗. For electronlike Fermi surfaces instead, the arcs do not
cross [Fig. 10(b)] and two maxima lie on the x and the y axis,
respectively. While this simple analysis explains the doping
dependence of q∗ in the one-band model, its applicability to
the three-band model is not at all obvious.

The bare susceptibility in the three-band model is a 3 × 3
matrix

χ0
θγ (q) = − 1

N

∑
k

3∑
μ,ν=1

∣∣∣Sγν

(
k − q

2

)
Sθμ

(
k + q

2

)∣∣∣
2

× f
(
Eν

k−q/2

) − f
(
E

μ

k+q/2

)

Eν
k−q/2 − E

μ

k+q/2

, (29)

where S(k) is the unitary matrix defined by Eq. (3) that diago-
nalizes H0(k). Empirically, the most important contributions to
the nematic susceptibility [Eq. (9)] are from χ0

xx(q) and χ0
yy(q),

which are at least an order of magnitude larger than χ0
xy(q)

and χ0
yx(q). These two dominant contributions are illustrated

in Figs. 11(a)–11(d) for fillings below and above the van Hove
filling.

The most important contribution to χ0
θγ (q) in Eq. (29)

comes from intraband transitions in the conduction band
(μ = ν = 3). Focusing on this contribution alone, the main
distinction between Eqs. (29) and (28) is the weighting factor,
which in the one-band case is d2

k and in the three-band
case consists of a product of matrix elements of S(k). As
is apparent from the plots of χ0

xx(q) and χ0
yy(q) in Fig. 11,

these matrix elements break the fourfold-rotational symmetry
of the underlying band structure. Rotational symmetry is
restored, however, for the bare nematic susceptibility, which
is approximately determined by χ0

N (q) ≈ χ0
xx(q) + χ0

yy(q).

FIG. 11. (Color online) Plots of (a), (d) χ 0
xx(q), (b), (e) χ 0

yy(q), and
(c), (f) χ0(q) [Eq. (32)] for T = 0.0005 and fillings (a)–(c) p = 0.14
and (d)–(f) p = 0.20.

Similarly, the full nematic susceptibility has a fourfold-
rotational symmetry, although the structure is somewhat
different from that of χ0

N (q). To show this, following Bang
et al.,50 we evaluate Eq. (20) for a reduced basis set comprising
the most important basis functions g9

αβ , g10
αβ , and g11

αβ . To
obtain a qualitative picture of the transition, we keep only
the contribution of Vpp, which drives the charge instability,
and set Ud = Vpd = Up = 0. The interaction in the charge
channel is thus reduced to

Ṽρ = 2ṼD − ṼX =

⎡
⎢⎣

0 0 0

0 0 V̄pp

0 V̄pp 0

⎤
⎥⎦ , (30)

where V̄pp = 8Vpp cos(qx/2) cos(qy/2). The transition to a
charge-ordered state occurs when the smallest eigenvalue of
the matrix D = 1 + Ṽρ χ̃0, the inverse of which enters into
Eq. (17), vanishes. For the reduced basis and the simplified
interaction, this matrix is

D =

⎡
⎢⎣

1 0 0

V̄ppχ0
dy 1 V̄ppχ0

yy

V̄ppχ0
dx V̄ppχ0

xx 1

⎤
⎥⎦ . (31)
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It is straightforward to show that the smallest eigenvalue of D
is 1 − V ppχ0(q), where

χ0(q) =
√

χ0
xx(q)χ0

yy(q) (32)

is the geometric average of χ0
xx(q) and χ0

yy(q). The quantity
χ0(q) can be interpreted as the bare susceptibility for the
charge mode associated with the leading nematic instability.
As one can see from a comparison of Figs. 10(a) and 10(b)
and Figs. 11(e) and 11(f), χ0(q) and χ0

1B(q) are qualitatively
similar. In particular, χ0(q) has the same arc structure as in
the one-band model: q∗ lies along the Brillouin zone diagonal
when the arcs cross (holelike Fermi surface) and it lies on the
Brillouin zone axes when the arcs do not cross (electronlike
Fermi surface). The connection between the direction of q∗
and the Fermi surface topology thus appears to be a robust
feature.

B. Comparison to experiments

Our calculations lead to an incommensurate modulation
with a doping dependent q∗. Experimentally, there has been
some debate about the value and the doping dependence of
the modulation wave vector. NMR studies of ortho-II YBCO
(YBa2Cu3O6.54) found that the planar Cu NMR line is split
into two distinct peaks corresponding to Cu sites below empty
(E) and filled (F) CuO chains (in ortho-II YBCO, every second
chain has no oxygen), and that the NMR line corresponding
to Cu-E sites develops a double peak at the onset of charge
order.11 This was interpreted in terms of commensurate period-
4 order, with q∗ = 0.25 in units of 2π/a0, where a0 is the lattice
constant. Subsequent x-ray scattering experiments15,16 found
incommensurate modulations with q∗ ≈ 0.32. This appears
at first sight to be inconsistent with the NMR experiments
because an incommensurate modulation should produce a
continuous, rather than bimodal, distribution of Cud charge
densities. However, it was recently pointed out55 that the distri-
bution for an incommensurate charge modulation has a double-
peak structure provided the modulations are unidirectional. To
illustrate this, we plot in Fig. 12 the normalized histograms of
both the Cud and the Op charge-density modulations shown
in Figs. 4(a) and 4(c). For the unidirectional MNO [Fig. 12(a)],
the distribution has the double-peak structure described above.
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FIG. 12. (Color online) Normalized histograms of the charge
modulations in Fig. 4 for p = 0.14 (diagonal MNO) with (a)
unidirectional and (b) bidirectional modulations. Histograms are
shown for both Cud and Op orbitals. The distributions for axial
MNO are similar.

The width of the distribution is larger for the Op orbitals than
for the Cud orbitals because nematic order involves primarily
the oxygen sites. The double-peak structure is not present
when the MNO is bidirectional [Fig. 12(b)], so consistency
with NMR requires that ortho-II charge modulations be
unidirectional. Recent x-ray experiments by Blackburn et al.
did indeed observe that charge modulations in ortho-II YBCO
are predominantly along the b axis.17

The same series of x-ray experiments finds modulation
wave vectors along both the a and b directions at higher dop-
ings. An interesting question, yet to be addressed, is whether
NMR is consistent with these experiments. In particular, NMR
experiments should be able to determine, based on whether the
line shape resembles those in Figs. 12(a) or 12(b), whether the
two q∗ values correspond to spatially separated domains of
unidirectional order or to bidirectional order.

The doping dependence of q∗ also needs to be resolved
experimentally. The MNO described by our calculations
originates from a Fermi surface instability and q∗ therefore
has a strong doping dependence: for a holelike Fermi surface,
the modulation wave vector decreases as the hole density
increases and vanishes at pvH. Ghiringhelli et al.15 did
not find any doping dependence to the modulation wave
vector, but Blackburn et al.17 found a ∼ 10% decrease in
q∗ as the hole doping was increased from 0.104 to 0.132
(a 30% change). Although the variation of q∗ with doping
is slower than predicted by our calculations, the general
trend is qualitatively consistent. The doping dependence of
checkerboard modulations has also been explored by STM
in other materials: the modulation wave vector was found to
be weakly doping dependent in Bi2Sr2CaCu2O8+δ (Bi2212)
(Ref. 56) and in Ca2−xNaxCuO2Cl2 (Ref. 57), but is much
more strongly doping dependent in Bi2−yPbySr2−zLazCuO6+x

(Bi2201).27 In Bi2201, the modulation wave vector decreased
from 2π/4.5a0 to 2π/6.2a0 as the doping was changed from
underdoped (Tc = 25 K) to optimal (Tc = 35 K). These q∗
values are much smaller than what is found in YBCO, and
are quantitatively close to what we have found, though the
ordering is rotated by 45◦.

As we have mentioned above, the two main discrepancies
between our calculations and the experiments on YBCO are
that for holelike Fermi surfaces the calculated orientation of
q∗ is diagonal rather than axial, and that the magnitude of q∗
is too small by a factor of 2 or 3. The magnitude of q∗ in
our calculations is set by the Fermi surface structure, and it
is entirely possible that the discrepancy may be reconciled
by tailoring the model specifically to ortho-II YBCO. Such
a model could include, for example, additional Fermi surface
sheets due to CuO chains, or to the fact that each unit cell
contains two CuO2 planes. With the exception of ortho-
II YBCO, the CuO chains seem unlikely to resolve the
discrepancies because charge order is observed along both a

and b axes in detwinned crystals, where the chains lie along the
b direction. The bilayer structure, however, may be important.
Ghiringhelli et al. noted that the observed q∗ is generally too
large to be due to nesting of a single CuO2 Fermi surface, and
proposed instead that q∗ connects segments of the bonding
Fermi surface of the CuO2 bilayer. To explore this, we have
repeated our calculations for a single CuO2 bilayer, and have
found that (i) it is possible for the susceptibility to be larger on
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the bonding sheet than on the antibonding sheet but that (ii) we
always obtain diagonal MNO for holelike Fermi surfaces. As
discussed in the previous section, the trend for holelike Fermi
surfaces to have a diagonal modulation vector is a remarkably
robust feature of our calculation.

Finally, we return to the discussion of the Fermi surface
in the modulated nematic phase. As we noted in Sec. III D,
the spectral intensity is suppressed in the antinodal re-
gion, and is therefore broadly consistent with photoemission
experiments on underdoped cuprates. We also noted that
for holelike Fermi surfaces (corresponding to underdoped
cuprates) the reconstructed Fermi surface has small elec-
tronlike pockets near (π,0) and (0,π ). This is particularly
interesting because magneto-oscillation experiments,6,7,58–63

along with Hall measurements,8 on YBCO have demonstrated
the existence of small electronlike Fermi surface pockets
occupying ∼2% of the Brillouin zone area. We make a
few observations about a possible correspondence between
the experiments and our calculations. First, while electron
pockets should be observable in ARPES experiments, such
experiments are difficult to perform on YBCO. Second, a
large number of ARPES experiments have been done on
Bi-based cuprates, and these have not seen electron pockets.
However, Bi cuprates are highly inhomogeneous and this
can mask spectral signatures of nonsuperconducting phases.54

Furthermore, magneto-oscillation experiments are hampered
in the Bi cuprates by high levels of disorder, and have
not provided independent confirmation of the Fermi surface
structure. It is thus possible that charge modulations are
accompanied by well-defined antinodal electron pockets in
YBCO but not in Bi cuprates. Third, the structure and the
existence of the predicted pockets in our calculations depend
on the size and the orientation of q∗. At present it is unclear
whether a model that correctly predicts the orientation of q∗
will also generate an antinodal electron pocket.

V. CONCLUSIONS

We have calculated, within a weak-coupling diagrammatic
perturbation theory, the charge susceptibility matrix χαβ(q,ω),
from which we have identified several nematic charge instabil-
ities in the three-band Emery model. Taking model parameters
appropriate for cuprate superconductors, we find that there is a
broad doping range over which the model is unstable towards
a modulated nematic phase, characterized by a charge transfer
between oxygen px and py orbitals. Such a phase has many
features consistent with experiments. However, in the relevant
doping range, the orientation of the modulation wave vector
is rotated with respect to that measured in x-ray scattering
experiments. At this point, it is not clear whether this
discrepancy is the result of an oversimplification of the cuprate
band structure by the three-band model, or whether it is the
result of still unresolved physics that is missing from the
model.
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APPENDIX: FUNCTION BASIS

The momentum-dependent interaction is separable in the
following basis:

g1
αβ = g12

βα = δαdδβx cos(kx/2), (A1)

g2
αβ = g13

βα = δαdδβx sin(kx/2), (A2)

g3
αβ = g14

βα = δαdδβy cos(ky/2), (A3)

g4
αβ = g15

βα = δαdδβy sin(ky/2), (A4)

g5
αβ = g16

βα = δαxδβy cos(kx/2) cos(ky/2), (A5)

g6
αβ = g17

βα = δαxδβy cos(kx/2) sin(ky/2), (A6)

g7
αβ = g18

βα = δαxδβy sin(kx/2) cos(ky/2), (A7)

g8
αβ = g19

βα = δαxδβy sin(kx/2) sin(ky/2), (A8)

g9
αβ = δαdδβd, (A9)

g10
αβ = δαxδβx, (A10)

g11
αβ = δαyδβy. (A11)

For example, the p-d density-density interaction Vxd (q) =
2Vpd cos(qx/2) is

Vxd (k − k′) = 2Vpd cos(kx/2 − k′
x/2) (A12)

= 2Vpd{cos(kx/2) cos(k′
x/2)

+ sin(kx/2) sin(k′
x/2)} (A13)

=
13∑

i=12

gi
xd (k)Ṽ ii

X gi
xd (k′), (A14)

where

Ṽ
ij

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Vpdδij , i ∈ {1 . . . 4,12 . . . 15}
2Vppδij , i ∈ {5 . . . 8,16 . . . 19}
Udδij , i = 9

Upδij , i = 10,11

(A15)

is the exchange interaction matrix in this basis. The direct in-
teraction Ṽ

ij

D (q) is zero everywhere except for i,j ∈ {9,10,11}.
In this 3 × 3 block,

ṼD(q) =

⎛
⎜⎝

Ud 2Vpdcx(q) 2Vpdcy(q)

2Vpdcx(q) Up 4Vppcx(q)cy(q)

2Vpdcy(q) 4Vppcx(q)cy(q) Up

⎞
⎟⎠ ,

(A16)
where cx(q) = cos(qx/2) and cy(q) = cos(qy/2).
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N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N.
Hardy, and L. Taillefer, Nature (London) 463, 519 (2010).
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