
PHYSICAL REVIEW B 88, 155131 (2013)

Schwinger-Dyson renormalization group

Kambis Veschgini1,* and Manfred Salmhofer1,2,†
1Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany

2Mathematics Department, University of British Columbia, Vancouver, B.C., Canada V6T 1Z2
(Received 21 June 2013; published 25 October 2013)

We use the Schwinger-Dyson equations as a starting point to derive renormalization flow equations. We show
that Katanin’s scheme arises as a simple truncation of these equations. We then give the full renormalization
group equations up to third order in the irreducible vertex. Furthermore, we show that to the fifth order, there
exists a functional of the self-energy and the irreducible four-point vertex whose saddle point is the solution of
Schwinger-Dyson equations.
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I. INTRODUCTION

Renormalization group (RG) and Schwinger-Dyson equa-
tion (SDE) hierarchies are widely used methods to study the
correlation functions of quantum field theories. The SDEs are
a hierarchy of integral equations1,2 for the Green functions
obtained, e.g., by integration by parts in the functional integral
representation. The simplest truncation of this hierarchy
corresponds to the Hartree-Fock equations and the next level
also includes loop corrections to the two-fermion scatter-
ing. Depending on the model, these equations may require
renormalization subtractions to be well-defined. Even after
that, the equations are typically singular integral equations,
allowing for solutions that exhibit symmetry breaking or
other drastic changes compared to the bare system. The
functional RG approach (for reviews, see, e.g., Refs. 3–5)
starts by introducing a scale parameter and a modification of
the theory that regularizes, i.e., smoothes out singularities, in
the propagator. The RG flow is obtained when the regulator
is gradually removed by taking a limit of the scale parameter
� (in this paper we use the standard Wilsonian convention
that the � corresponds to an infrared regulator which is
decreased to generate the flow, and eventually sent to zero,
� → 0). The resulting RG equation is a functional differential
equation which becomes a hierarchy of equations in the usual
expansion in the fields. Instead of a self-consistency, as in the
SDE, it describes a flow. This regularizing effect in the above
procedure (often corresponding to a localization in position
space) is the main reason for the good mathematical properties
of the RG equations. Terms that lead to symmetry breaking or
other singular behavior develop early on in the flow, without
any need for assumptions on their type, and gradually grow,
so that their effect can be taken into account scale by scale.

It is useful to make the relation between the two approaches
as explicit as possible. In the first part of this paper, we
formulate RG equations based on the SDE hierarchy, and then
relate Katanin’s truncation6 of the RG hierarchy for the one-
particle irreducible vertex functions to a particular truncation
of the RG derived from the SDE. This is important because
Katanin’s truncation scheme has been shown6,7 to generate
a flow that automatically satisfies certain self-consistency
equations exactly, and because this scheme has been used
extensively in RG calculations, both for fermionic and for
spin systems.5 We then also exhibit the higher-order terms in
the SDE-RG.

The full SDE hierarchy encodes all analytic and combi-
natorial properties of the vertex functions, and retains the
symmetries of the original action. Truncations of this hierarchy
usually violate Ward identities and conservation laws. In
the RG approach, the same problem arises, but in addition,
the regularization may violate some symmetries explicitly,
so that the restoration of Ward identities in the limit where
the regulator is removed requires proof. The most important
example of this are theories with local gauge symmetries,
e.g., QED.8,9 A general theory of conserving approximations
was developed by Baym and Kadanoff10,11 in the context of
many-body theory, and later also used in high-energy quantum
field theory.12 An essential object there is the Luttinger-Ward
(LW) functional, which expresses the grand canonical potential
as a function of the bare vertex and the full propagator of
the theory. The field equations are obtained by a stationarity
condition as the propagator is varied. Similar constructions
using the self-energy as the variational parameter instead of
the propagator were introduced by Potthoff.13,14

It is a natural question whether there is a scale-dependent
variant of this functional, in which both the full scale-
dependent propagator and the effective two-particle vertex
(instead of the bare one) appear, and we here define a functional
which has these properties, in terms of an expansion in powers
of the effective two-particle vertex. In principle, the iteration
of the RG equations in their integral form (in a procedure
generalizing the derivations in Ref. 7) automatically generates
such an expansion; however, the so obtained expression for
the functional involves integrals over intermediate scales,
similarly to the Brydges-Kennedy formula,15 which provides
an explicit solution to Polchinski’s equation.

Another generalization of the LW functional was given by
the Lund group where the bare interaction is replaced by the
screened interaction using the Bethe-Salpeter equation. The
resulting functional is variational in both parameters.16,17 In
Sec. IV we derive from the SDEs a functional of the self-
energy and the irreducible four-point vertex, which is local
in the RG flow parameter, at least up to the fifth order in the
effective vertex. The stationary points of this functional satisfy
the scale-dependent SDE.

The scope of this paper is theoretical, i.e., we focus
on the question of the precise relation between SDEs and
functional RG equations in general, and on the problem of
generalizing the Luttinger-Ward functional, and we postpone
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the study of specific models to further publications. Since
the RG in Katanin’s truncation has had significant practical
success already and since this truncation appears as a particular
approximation to the hierarchy derived here, the main question
for applications is how the rearrangement of terms affects
practical calculations and how much additional information
can be obtained from the higher-loop terms appearing at
each truncation level. We shall discuss some aspects of this,
as well as the potential use of these equations for solving
self-consistency equations, at the end of the paper.

II. SCHWINGER-DYSON EQUATIONS AND
RENORMALIZATION GROUP

Consider a lattice fermion system described by Grassmann
fields ψ , ψ and the action

S[ψ,ψ] = −(ψ,C−1ψ) − V [ψ,ψ], (1)

where C is the propagator of the noninteracting system and V

is a two-body interaction of the general form

V [ψ,ψ] = 1

4

∑
x1,x2,x

′
1,x

′
2

vx ′
1,x

′
2,x1,x2ψx ′

1
ψx ′

2
ψx2ψx1 . (2)

In applications, the labels x are often composed of several
variables. In momentum space with a single-particle basis,
one has x = (k0,k,σ ), where k0 is the Matsubara frequency,
k is the momentum, and σ denotes the spin orientation.
Depending on the representation, there might be prefactors
such as volume or temperature, which are not shown here. v

is antisymmetric under independent exchange of its first two
and last two arguments. The bilinear form (f,g) is defined as
the sum

∑
x f (x)g(x).

The generating functional of the connected Green functions
is given by

G [η,η] = − ln
∫

dμCeV [ψ,ψ]e(η,ψ)+(ψ,η), (3)

where dμC := N
∏

x dψxdψxe
(ψ,C−1ψ), with a normalization

constant N . The connected m-particle Green function is
obtained from the generator G by differentiating with respect
to the sources η,η and evaluating for vanishing sources:

G
(2m)
x1,...,xm;x ′

1,...,x
′
m

= (−1)m
∂2mG [η,η]

∂ηx1
· · · ∂ηxm

∂ηx ′
m
· · · ∂ηx ′

1

∣∣∣∣
η=η=0

= −〈
ψx1 · · · ψxm

ψx ′
m
· · · ψx ′

1

〉
c
. (4)

Here 〈· · · 〉c stands for the connected average of the expression
between the brackets. The effective action is the Legendre
transform of G [η,η],

�[ψ,ψ] = (η,ψ) + (ψ,η) + G[η,η], (5)

with ψ = − ∂G
∂η

and ψ = ∂G
∂η

. It generates the one-particle

irreducible (1PI) Green functions �
(2m)
x1,...,xm;x ′

1,...,x
′
m
.

By integration by parts,∫
dμCψxF [ψ,ψ] = −

∑
y

Cx,y

∫
dμC

∂

∂ψy

F [ψ,ψ], (6)

every correlation function obeys a Schwinger-Dyson equation∫
dμCψx1 · · ·ψxm

ψx ′
m
· · ·ψx ′

1
eV [ψ,ψ]

= −
∑

y

Cx1,y

∫
dμC

∂

∂ψy

ψx2 · · ·ψxm
ψx ′

m
· · ·ψx ′

1
eV [ψ,ψ].

(7)

The correlation function on the right-hand side is in general
disconnected, but can be expressed by standard cumulant
formulas in terms of the connected Green functions, which
are in turn given by a standard expansion in trees that have the
full propagator G := G(2) associated with lines and the 1PI
vertex functions to the vertices . For m = 1, Eq. (7) gives an
equation for G,

Gx,x ′ = Cx,x ′ −
∑
z1···z4

Cx,z1Gz4,z2vz1,z2,z3,z4Gz3,x ′

− 1

2

∑
z1 · · · z4
y1 · · · y4

(
Cx,z1vz1,z2,z3,z4Gz3,y1Gz4,y2�

(4)
y1,y2,y3,y4

×Gy4,z2Gy3,x ′
)
, (8)

After rewriting in terms of the self-energy, one obtains � =
C−1 − G−1 is given by

�x,x ′ = −
∑
z2,z4

Gz4,z2vx,z2,x ′,z4

− 1

2

∑
z2···z4

y1···y3

vx,z2,z3,z4Gz3,y1Gz4,y2�
(4)
y1,y2,x ′,y4

Gy4,z2 . (9)

The SD equation for m = 2 gives the four-point vertex (two-
particle vertex) as

�
(4)
x1,x2;x ′

1,x
′
2

= vx1,x2;x ′
1,x

′
2
+ 1

2

∑
z1···z4

vx1,x2;z1,z2Gz1,z3Gz2,z4�
(4)
z3,z4;x ′

1,x
′
2

−
( ∑

z1···z4

vx1,z1;x3,z2Gz4,z1Gz2,z3�
(4)
z3,x2;z4,x

′
2
− (x3 ↔ x4)

)

+ 1

2

∑
z1···z6

vz1,x1;z2,z3Gz3,z5Gz2,z4Gz6,z1Kz4,z5,x2,z6,x
′
1,x

′
2

+ 1

2

∑
z1···z6

vz1,x1;z2,z3Gz3,z5Gz2,z4Gz6,z1�
(6)
z4,z5,x2,z6,x

′
1,x

′
2
,

(10)

where

Kx1,x2,x3;x ′
1,x

′
2,x

′
3

:= 9S3

∑
z1,z2

�
(4)
x2,x3;x ′

1,z1
Gz1,z2�

(4)
x1,z2;x ′

2,x
′
3

+
∑
z1,z2

�
(4)
x1,x2;x ′

1,z1
Gz1,z2�

(4)
z2,x3;x ′

2,x
′
3
, (11)

and the antisymmetrization operator Sm projects functions
fx1,...;x ′

1,...,x
′
m

to their totally antisymmetric part,

Sm fx1,...,xm;x ′
1,··· ,x ′

m
= 1

(m!)2

∑
π,π ′∈Pm

sgn(π )sgn(π ′)

× fxπ(1),...,xπ(m),x
′
π ′ (1)

,...,x ′
π ′ (m)

. (12)
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FIG. 1. The diagrammatic representations of the SD equation (10) is given in (a), (b) represents Eq. (11), and (c) corresponds to Eq. (20).

The second term in Eq. (11) cancels a contribution from the
first term which would otherwise lead to a reducible diagram
in Eq. (10). In a graphical representation where a vertex f is
depicted by

fx1,...,xm;x ′
1,...,x

′
m

� (13)

and where heavy lines represent propagators G,

Gx1;x ′
1
� , (14)

Eq. (10) takes the form shown in Fig. 1.
If C = C� depends on a parameter �, the SD equa-

tions (9) and (10) determine �-dependent self-energies ��

and two-particle vertices �
(4)
� , etc. We assume that C depends

differentiably on � and that the bare interaction V remains
independent of �. Following the standard convention in fRG
studies of condensed-matter systems, we arrange things such
that for some value �0 of � (the “starting scale”), the vertex
functions are given by the bare ones, and the full correlation
functions are recovered as � → 0. Moreover, we assume that
� is introduced in a way that has a regularizing effect, so
that �� and �

(2m)
� are differentiable functions of � as well,

and derivatives with respect to � can be exchanged with
the summations occurring in the SDE. Note that this is an
assumption on the solution of the hierarchy, which will in
general contain singular functions in the limit � → 0, hence
checking it is important and nontrivial. However, for the
standard momentum space cutoff RG, it has been proven,18,19

and this proof extends to any RG flow that imposes a sufficient
regularization on C, in particular the temperature RG flow,20

flows with a frequency cutoff, or the 
 regularization.21 Thus
the assumption is satisfied in a large class of flows, for which
the SDEs hold at every scale �.

We have chosen to make C, but not V , in (1) [(3)] depend
on � because we want to draw a connection between SDE and
standard functional RG flows, and this choice of � dependence

is the same as in the derivation of the functional RG equation
in Refs. 3,5, and 19. One can think of many other useful
ways in which a parameter � could be introduced in the SDE,
and also in the interaction (or only there). A natural way to
check the differentiability assumption is then to truncate the
SDE hierarchy at successive levels, and within each truncation
verify the differentiability conditions by analysis of the right-
hand side of the flow equation.

To avoid overloading the notation, we drop the subscript �

from �
(4)
� , ��, and G�. The derivative of Eq. (10) with respect

to � (denoted here by a dot and written out explicitly only in
the particle-particle channel),

�̇
(4)
x1,x2;x ′

1,x
′
2

= 1

2

∑
z1···z4

vx1,x2;z1,z2

d

d�

(
Gz1,z3Gz2,z4

)
�

(4)
z3,z4;x ′

1,x
′
2

+ 1

2

∑
z1···z4

vx1,x2;z1,z2Gz1,z3Gz2,z4 �̇
(4)
z3,z4;x ′

1,x
′
2
+ · · · , (15)

gives rise to terms on the right-hand side where only propa-
gators are differentiated and ones where �̇(4) appears. At each
order in an expansion in �(4), it is possible to eliminate v and
�̇(4) from the right-hand side of Eq. (15) by substituting v from
Eq. (10) and iterating Eq. (15). This results in

�̇
(4)
x1,x2;x ′

1,x
′
2
= 1

2

∑
z1···z4

�(4)
x1,x2;z1,z2

(
d

d�
Gz1,z3Gz2,z4

)
�

(4)
z3,z4;x ′

1,x
′
2

− (ph. − ex.) + O(�(4))3. (16)

Taking the � derivative of Eq. (9) gives

�̇x1,x
′
1
= −

∑
z2,z4

Ġz4,z2vx,z2,x ′,z4 − 1

2

d

d�

∑
z2 · · · z4
y1 · · · y3

vx,z2,z3,z4

×Gz3,y1Gz4,y2�
(4)
y1,y2,x ′,y4

Gy4,z2 . (17)
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Consider the system of equations obtained by dropping the
second term in this equation, which leaves

�̇x1,x
′
1
= −

∑
z2,z4

Ġz4,z2vx,z2,x ′,z4 , (18)

and combining it with the modification of (16) where all third-
order terms in �(4) are dropped.

In the first term in (18), v could be replaced by �(4) up
to orders (�(4))2, but as it stands, this term can be directly
integrated, hence combined naturally with the resummation of
the four-point function implied by keeping only one of the three
terms in (16). This is at the basis of recovering self-consistent
ladder summations.6,7 Because Ġ = G�̇G + S, where S is
the single-scale propagator appearing in the standard RG
equations for the irreducible vertex functions,3,5 we see that
by substituting for v in (17) by reinserting the SDE for �(4),
the standard 1PI equation for the self-energy,

�̇x1,x
′
1
= −

∑
z2,z4

Sz4,z2�
(4)
x,z2,x ′,z4

, (19)

is obtained when terms of third and higher order in �(4) are
dropped. At first glance, this may be surprising, because the
error terms seem to be of second order in �(4). However,

the calculation shows that the second-order terms cancel.
This must be so by a more general argument: because the
two hierarchies are equivalent, their expansions in �(4) must
coincide at every order in �(4). Thus, provided the right-hand
side equation for �̇(4) contains all second-order terms in �(4),
the error made in �̇ is at least of third order. The combination
of (16) (with terms of third and higher order in �

(4)
� omitted)

and (19) is Katanin’s truncation of the RG hierarchy. Within
the 1PI RG hierarchy, (19) has no additional terms of higher
order in �(4). Equation (17) contains no approximations, hence
it can be used as a replacement of (19) in the 1PI hierarchy,
without introducing any additional approximation.

III. HIGHER-ORDER CONTRIBUTIONS TO THE
SELF-CONSISTENT FLOW EQUATIONS

Higher-order contributions can be computed in a similar
way by taking into account the higher-order terms in the SD
equations.

The six-point vertex in Eq. (10) can itself be expressed in
terms of the interaction v, the four-point, the six-point, and the
eight-point vertices. At lowest order one obtains from Eq. (7)
for m = 3,

�
(6)
x1,x2,x3;x ′

1,x
′
2,x

′
3
≈ S

(
−6

∑
z1···z6

vx1,x2;z1,z2�
(4)
z3,x3;z4,x

′
3
�

(4)
z5,z6;x ′

1,x
′
2
Gz1,z5Gz2,z3Gz4,z6

− 3
∑
z1···z6

�(4)
x1,x2;z1,z2

vz3,x3;z4,x
′
3
�

(4)
z5,z6;x ′

1,x
′
2
Gz1,z5Gz2,z3Gz4,z6

)

≈ −9S
∑
z1···z6

�(4)
x1,x2;z1,z2

�
(4)
z3,x3;z4,x

′
3
�

(4)
z5,z6;x ′

1,x
′
2
Gz1,z5Gz2,z3Gz4,z6 . (20)

In the last step we have replaced v by �(4) + O(�(4))2

according to Eq. (10). Following this procedure, we obtain an
equation �(4) − v = · · · , where the right-hand side consists
of diagrams involving both the vertex �(4) and v. In this
case, v can be eliminated from the right-hand side by
means of iteration. This leads to a self-consistent equation
�(4) − v = �, as follows. Denote the particle-particle bubble
propagator by �,

(�G)x1,x2;x ′
1,x

′
2

:= Gx1,x
′
1
Gx2,x

′
2
, (21)

and the particle-hole bubble propagator by ϒ ,

(ϒG)x1,x2;x ′
1,x

′
2

:= Gx1,x
′
2
Gx ′

1,x2 , (22)

and define

(f ◦ g)x1,x2;x3,x4 :=
∑
z1,z2

fx1,x2,z1,z2gz1,z2,x3,x4 (23)

and

(f ∗ g)x1,x2;x3,x4 :=
∑
z1,z2

fz1,x2,z2,x4gx1,z1,x3,z2 . (24)

In this notation,

�(4) − v = � := S
{

1
2�(4) ◦ �G ◦ �(4) − 2�(4) ∗ ϒG ∗ �(4)

− 1
4�(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4)

− 2�(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4)

+ 1
8�(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4)

− 2�(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4)

− 4Q(G,�(4))
} + O(�(4))5. (25)

At this order, up to the last term, � consist of particle-particle
and particle-hole ladder diagrams. The last term Q(G,�(4)) is
given by

[Q(G,�(4))]x1,x2;x3,x4

:=
∑

z1···z12

�(4)
x1,z1;z2,z3

�(4)
z4,x2;z5,z6

�(4)
x7,z8;x3,z9

�(4)
z10,z11;z12,x4

×Gz5,z1Gz3,z10Gz2,z7Gz9,z4Gz6,z11Gz12,z8 . (26)

Equation (25) is interesting by itself and will be used in the
next section to construct a functional whose stationary points
are solutions of the SDEs.
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The flow equation for the vertex �(4) is now given by �̇(4) =
d

d�
�. Derivatives of �(4) which appear on the right-hand side

can be eliminated by iterating the result. The interaction v

does not appear in the flow equation, since it was assumed
to be independent of �. It serves as the initial condition
for the integration of �̇(4). In the limit � → ∞ where all

fluctuations are suppressed, �(4) = v. Although Eq. (25) has
a rather simple structure, the process of resubstituting �̇(4)

when it appears on the right-hand side mixes and proliferates
the terms. The fourth-order corrections are too long to be
presented here. Up to third order, the flow equation is
given by

�̇x1,x2;x3,x4 = Sx1,x2;x3,x4

( ∑
z1···z4

�x1,x2;z1,z2�z3,z4;x3,x4Ġz1,z3Gz2,z4 − 4
∑
z1···z4

�z1,x1;x3,z2�x2,z3;z4,x4Ġz4,z1Gz2,z3

+ 4
∑
z1···z8

�z1,x1;x3,z2�z3,x2;z4,z5�z6,z7;z8,x4Gz8,z1Gz2,z3Gz4,z6Ġz5,z7

+ 8
∑
z1···z8

�z1,x1;x3,z2�z3,x2;z4,z5�z6,z7;z8,x4Gz4,z1Gz2,z6Gz8,z3Ġz5,z7

+ 8
∑
z1···z8

�z1,x1;x3,z2�z3,x2;z4,z5�z6,z7;z8,x4Gz4,z1Gz2,z6Ġz8,z3Gz5,z7

+ 2
∑
z1···z8

�x1,z1;z2,z3�z4,x2;z5,z6�z7,z8;x3,x4Ġz6,z1Gz2,z4Gz3,z8Gz5,z7

− 4
∑
z1···z8

�x1,z1;z2,x3�x2,z3;z4,x4�z5,z6;z7,z8Gz7,z1Ġz2,z5Gz8,z3Gz4,z6

− 4
∑
z1···z8

�x1,z1;z2,x3�x2,z3;z4,x4�z5,z6;z7,z8Ġz7,z1Gz2,z5Gz8,z3Gz4,z6

+ 2
∑
z1···z8

�x2,x1;z1,z2�z3,z4;x3,z5�z6,z7;z8,x4Gz1,z4Gz2,z6Gz8,z3Ġz5,z7

)
. (27)

The first term remains unaffected by the antisymmetrization
operator and is the same as in Eq. (16). The result can in
principle be extended to any order, but the computational effort
grows rapidly. This RG scheme can also be derived from the
1PI scheme by replacing the single scale propagator by the Ġ,
and taking care of the difference up to the desired order in the
irreducible vertex.7

IV. A STATIONARY POINT FORMULATION OF
THE SCHWINGER-DYSON EQUATIONS

We return to Eq. (25), set �(4) − v = �, and study � :=
�(G,�(4)) as a functional depending on �(4) and G. For the
solution of the SDE, G itself depends on C and �, so that
the equations for G and �(4) are really coupled, but we now
consider �(4) and G as two independent variables. To avoid
confusion, the solutions of the SDE will be hatted from now
on, i.e., denoted as Ĝ and �̂(4). The functional � can be
written as a gradient with respect to �(4). The integrability
of � is a nontrivial property and rather interesting. It allows
us to formulate the Schwinger-Dyson equations in term of a
stationary point problem, as will be shown below.

For a four-point function f , define C as the operations

C(f ) =
∑
x,y

fx,y;y,x, (28)

which consists of closing the diagram and results in a scalar.
Then the SD equation (25) is equivalent to d

d�(4) F1(G,�(4)) = 0

with

F1(G,�(4))

= −1
4 C

{
1
2 (�(4) ◦ �G ◦ �(4)) − (�(4) ◦ �G ◦ v)

− 1
6 (�(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4))

− 2
3 (�(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4))

+ 1
16 (�(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4))

− 1
2 (�(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4))

− 1
40 (�(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4) ◦ �G ◦ �(4)

× ◦ �G ◦ �(4))

− 2
5 (�(4) ∗ ϒG ∗ �(4) ∗ ϒG ∗ �(4) ∗ ϒG

× ∗ �(4) ∗ ϒG ∗ �(4))

+ 4
5 (Q(G,�(4)) ◦ �G ◦ �(4))

} + O(�(4))6. (29)

Note that the components of the gradient with respect to �(4)

are already antisymmetric. More precisely, we restrict �(4) to
have the desired antisymmetry, meaning that the components
of �(4) are not independent. The total derivative of a functional
F (�(4)) with respect to �(4)

x1,x2;x3,x4
is then given by

dF (�(4))

d�
(4)
x1,x2;x3,x4

= ∂F (�(4))

∂�
(4)
x1,x2;x3,x4

− ∂F (�(4))

∂�
(4)
x2,x1;x3,x4

− ∂F (�(4))

∂�
(4)
x1,x2;x4,x3

+ ∂F (�(4))

∂�
(4)
x2,x1;x4,x3

. (30)
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The factor 1/4 in Eq. (29) is the same as the 1/4 hidden in
the definition of the antisymmetrization operator in Eq. (25).
The stationary point of F1(Ĝ,�(4)) is already a solution of the
Schwinger-Dyson equation (25). In the next step we want to
use F1 to define a new functional F(�,�(4)) whose stationary
point is a solution of both Eqs. (25) and (9). Consider G as a
function of the self-energy � [since G = (C−1 − �)−1], and
let �̃(4)(G) denote a solution of the equation d

d�(4) F1(G,�(4)) =
0 for a given G. We take the derivative of F1(G(�),�̃(4)(G))
with respect to � and make the following helpful observation:(

d

d�x ′
1,x1

F1

)
(G(�),�̃(4)[G(�)])

= −1

2

∑
z1 · · · z4
y1 · · · y4

(
Gx1,z1vz1,z2,z3,z4Gz3,y1Gz4,y2 �̃

(4)

× [G(�)]y1,y2,y3,y4Gy4,z2Gy3,x
′
1

) + O(�(4))6. (31)

The right-hand side looks very similar to the last term of
Eq. (8). If we define F2 as

F2[G(�)] = −
∑
z1,z2

Gz2,z1 (C−1)z1,z2 − 1

2

∑
z1,...,z4

vz1,z2;z3,z4

×Gz3,z1Gz4,z2 + ln (det G) , (32)

and add this �(4)-independent term to F1, the stationary
point of

F(�,�(4)) := F1(G(�),�(4)) + F2[G(�)] (33)

with respect to � at �(4) = �̃(4) is a solution of Eq. (9). Since
F2 is independent of �(4), we conclude that the solution of the
Schwinger-Dyson equations (9) and (25) is a stationary point
of F ,

d

d�
F(�,�(4)) = 0,

d

d�(4)
F(�,�(4)) = 0. (34)

The diagrammatic representation of F is shown in Fig. 2.
The solution of Eq. (34) satisfies

�x1;x ′
1
= d�

dGx ′
1;x1

(35)

with � = − 1
2vG2 + F1, hence the self-energy is �-derivable.

The stationarity of F at the true solution opens up—in
principle—variational methods for the search of solutions for
G, which, as mentioned in Ref. 14, need not start close to
the free fermion propagator G0 = C. Indeed, the functional F
is a polynomial in G and �(4), hence it can be studied on a
rather general domain of definition for G and �(4). One should
keep in mind, however, that the derivation of F does assume
that an expansion in �(4) makes sense and that G−1 − G−1

0
is regular enough for a Dyson self-energy to be defined. This
is not special to our derivation; the same remark applies in
general to derivations of Luttinger-Ward-type functionals by
diagrammatic methods.

V. CONCLUSION

We have derived RG equations by making the bare
propagator in the functional integral defining the theory

FIG. 2. The diagrammatic representations of the functional F
defined in Eq. (33).

dependent on a parameter �. (We have discussed � as a
scale parameter, but that specific choice is not needed in
the derivation.) This makes the standard SDE hierarchy of
equations �-dependent, and taking the derivative with respect
to � gives a hierarchy of RG flow equations. An approximation
to second order in the �-dependent vertex �

(4)
� allows us to

rederive Katanin’s truncation of the usual RG hierarchy for the
1PI vertex functions. By solving the hierarchy iteratively in a
systematic expansion in �

(4)
� , we then constructed an analog of

the Luttinger-Ward functional, to a fixed order in an expansion
in graphs with vertices �

(4)
� and full propagators G�.

Because � is introduced in the same way here as in the
derivation of the functional RG (see, e.g., Refs. 3 and 5),
the infinite hierarchy has exactly the same combinatorial and
analytical content as the infinite 1PI hierarchy. However, the
two hierarchies are not identical, an essential difference being

155131-6



SCHWINGER-DYSON RENORMALIZATION GROUP PHYSICAL REVIEW B 88, 155131 (2013)

that the bare vertex v appears in every equation of the hierarchy
based on the SDE. It is only in an iteration of substitutions that
v gets replaced by the scale-dependent vertex �

(4)
� everywhere,

so that the equations take the form of the 1PI RG equations
after expanding in �

(4)
� .

To generalize the LW functional to one for scale-dependent
quantities, one first has to decide upon which vertex functions
this functional is to depend, since at any intermediate scale
�, all the higher irreducible vertex functions are nonzero. We
have constructed an extension that is minimal in that only �

(4)
�

appears as an independent variable besides the full propagator
G� (or the self-energy ��). Obviously, the higher irreducible
vertex functions must be expanded in �

(4)
� to achieve this.

Thus this “minimal” extension is possible only in terms of an
expansion in �

(4)
� ; otherwise, the higher irreducible functions

�
(�6)
� would appear and require separate equations. Compared

to the form of the standard LW functional, the explicit terms
involving det G and Tr(C−1G) are the same, as is the structure
of the higher terms as an expansion in vacuum graphs. The
combinatorial factors differ from those of the LW functional
due to the just mentioned substitution of �

(�6)
� by expressions

involving G and �
(4)
� . However, as a functional of G and �(4),

it is universal, i.e., given by a diagrammatical expansion with
fixed weight factors. The renormalization group flow leads to
the stationary points of F .

That a bare vertex v appears in every equation may be
advantageous in the numerical application to specific models,
e.g., in the two-dimensional models on which the RG has been
extensively used for instability analyses, simply because the
bare vertex is known explicitly and in many cases has better
properties than the effective vertex function �

(4)
� . For instance,

in the Hubbard model, the bare vertex is local in space, which

restricts summations in a position-space implementation of the
RG equations (and equivalently, the bare vertex is independent
of momenta and frequencies in Fourier/Matsubara space). We
expect that (27) (or its analog where v is kept explicitly) is
tractable in one-dimensional models or two-dimensional patch
models, and that it will be useful for understanding deviations
from the lower-order approximations. A significant other
difference from the 1PI flow equations is that the flow equation
obtained from (9) by �-differentiation contains a two-loop
diagram of “sunset” type, so that the self-energy obtained from
this flow contains a nontrivial frequency dependence even if
a frequency-independent approximation is used for �

(4)
� . The

tadpole-like equation in the 1PI hierarchy does not have this
property.

It is a natural idea to use such flow equations also to
solve self-consistency equations, as an alternative to iterative
solutions. While we do not find it likely that using a flow
equation will reduce the numerical cost generically, we
do expect that some issues of convergence of iterations
encountered in the unscaled SDE (due to the singular nature of
the integral equations) may be avoided in an RG flow toward
the solution of these equations, so that the method may be
useful for that purpose.

The same strategy of deriving RG equations from the SDE
can be employed for theories where the interaction between
the fermions is mediated by boson exchange, and where both
the fermionic and the bosonic propagator are made to be �-
dependent.
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