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Driven electronic states at the surface of a topological insulator
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Motivated by recent photoemission experiments on the surface of topological insulators we compute the
spectrum of driven topological surface excitations in the presence of an external light source. We completely
characterize the spectral function of these nonequilibrium electron excitations for both linear and circular
polarizations of the incident light. We find that in the latter case, the circularly polarized light gaps out the surface
states, whereas linear polarization gives rise to an anisotropic metal with multiple Dirac cones. We compare
the sizes of the gaps with recent pump-probe photoemission measurements and find good agreement. We also
identify theoretically several new features in the time-dependent spectral function, such as shadow Dirac cones.
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I. INTRODUCTION

Topological properties of matter usually manifest in the
appearance of electronic states at the boundary.1 An especially
interesting class of such topological boundary modes arises
in three-dimensional (3D) topological insulators (TI) which
have now been detected experimentally in several material
systems.2–6 The edge states consist of fermions in 2D with
linear dispersion relation and where its spin and momenta
have a fixed relative orientation. Recently, a new possibility
for creating topological band structures in nonequilibrium was
suggested,7–9 where an initially topologically trivial semicon-
ductor is converted into a topological insulator via an external
irradiation. The resulting state was dubbed a Floquet topologi-
cal insulator and an analog to such a state was recently realized
experimentally in a photonic system.10 In the same vein, other
theoretical works11–13 have studied the realization of a lattice
quantum Hall state with time-periodic perturbations.

The focus of these previous studies has been on turning an
electronic system with a topologically trivial band structure
into a topological insulator by subjecting it to a periodic-in-
time perturbation. Here, on the contrary, we study the effect
of an external irradiation on an initially topological state. The
motivation comes from the development of new experimental
probes that make it possible to access the time-resolved
excitation spectrum of driven electrons at the surface of TIs
using time-resolved photoemission spectroscopy.14 Below, we
focus specifically on the properties of driven Dirac electrons
on the surface of existing 3D topological materials such
as BixSb1−x alloy, Bi2Te3, and Bi2Se3 (Ref. 15). We are
particularly interested in describing the modification of the
spectrum of the boundary modes due to the irradiation as a
function of the parameters of the incident light. The spectrum
is composed of Floquet bands of the driven Dirac Hamiltonian,
as discussed in the previous related works Refs. 12 and 16–18.
Besides, proving the existence of new dynamical Dirac cones
which can be engineered, we also unify and extend previous
analysis and apply our results specifically to describe an
experiment which observed an induced energy gap in driven
surface states of Bi2Se3 using time- and- angle-resolved

photoemission spectroscopy (TrARPES), Ref. 19. We find that
our results fit the data well.

II. MODEL OF DRIVEN SURFACE STATES

We consider noninteracting electrons at the surface of a TI
with incident light normal to the surface. The Hamiltonian is

H (k,t) = H0(k) + Hext(t), (1)

H0(k) = v(kxσy − kyσx), (2)

Hext(t) = V �(t − t0)[ax(t)σy − ay(t)σx]. (3)

Hext(t) describes the external radiation source. The electrons
are minimally coupled by the Peierls substitution k → k +
eA(t), where A(t) = A0a(t) is the vector potential. We have
set h̄ = 1, c = 1, the scalar potential to zero, and ignored small
magnetic effects. Two polarizations are considered a(t) =
(± cos �t, sin �t) (circular) and a(t) = (cos �t,0) (linear),
where T = 2π/� is the period of the external perturbation.
The energy scale of the perturbation is given by V = evA0 =
evE0/�, where E0 is the amplitude of the electric field and
v the speed of Dirac fermions. The dimensionless coupling
constant V/� characterizes the strength of the perturbation.
We assume the photon energies are small compared with the
bulk gap of the TI (<300 meV).

The evolution operator, which is a 2 × 2 matrix,
obeys the time-dependent Schrödinger equation i∂tUk(t,t ′) =
H (k,t)Uk(t,t ′), with initial condition Uk(t,t) = 1. Once the
evolution operator is known, all other correlators can be calcu-
lated in terms of the initial state of the system. We first compute
the retarded Green’s function in terms of the evolution operator
using the equations of motion for the ck,α fields yielding
the expression gr

αβ(k,t,t ′) ≡ −i�(t − t ′)〈{ckα(t),c†kβ(t ′)}〉 =
−i�(t − t ′)Ukαβ(t,t ′), where Ukαβ is the (α,β) matrix element
of Uk. We can similarly compute the nonequilibrium electron
distribution from the two-time lesser Green’s function which
in terms of the evolution operator would read as g<

αβ(k,t,t ′) ≡
i〈c†kβ (t ′)ckα(t)〉 = iU

†
kγβ(t ′,t0)〈c†kγ (t0)ckδ(t0)〉Ukαδ(t,t0) (sum-

mation over repeated indices is implied and Greek indices
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take values {1,2}). We now make the simplifying assumption
that a quasi-steady-state has been reached, or equivalently
that all correlations due to the initial state of the system
had been washed away (mathematically we set t0 = −∞).
Then the form of the evolution operator can be obtained
analytically. Indeed, the evolution operator is T -periodic
Uk(t + T ,t ′ + T ) = Uk(t,t ′) and hence the retarded Green’s
function also becomes T -periodic in the average time variable
t̄ = (t + t ′)/2. This periodic structure allows for a simple ana-
lytical expression of the Wigner representation20 of the
retarded Green’s function. Here we focus on the pole structure
of the nonequilibrium retarded Green’s function in the Wigner
representation which in a sense is similar to the Lehmann
representation of equilibrium correlators.

III. SPECTRAL FUNCTION

It can be shown that the evolution operator21

Uαβ(t,t ′) = ∑
nmγ 〈αn|φm

γ 〉〈φm
γ |β0〉e−iεγm(t−t ′)+in�t , satisfies

the Schrödinger equation where 〈αn|φm
γ 〉 represents the (α,n)

component of the eigenvector |φm
γ 〉 of the Floquet Hamiltonian.

Hence Fourier transforming in t̄ and relative time t − t ′ the
Wigner representation of the retarded Green’s function is,

gr
αβ(k,n,ω) =

∑
γm

〈
αn

∣∣φm
kγ

〉 〈
φm

kγ

∣∣β0
〉

ω − εkγm + n�/2 + i0+ . (4)

One can similarly obtain simple expressions for the inverse
of the retarded Green’s function by noting that Uk(t,t ′)−1 =
Uk(t ′,t). Driven systems on a lattice with one band have been
studied before.22 The important point is that single-particle
excitations, which occur at the poles of the imaginary part of
the retarded Green’s function, are given by the quasienergies
of the driven Dirac Hamiltonian, Eq. (1). The index n in Eq. (4)
represents the number of photons interacting with the Dirac
electron. For example, a one-photon resonant transition creates
exited states shifted by ±�/2 with respect to the original Dirac
bands ±vk (see Appendix D). This dependence on n was not
considered in Ref. 11.

We are interested in the single-particle excited states which
are given by the singularities of the nonequilibrium spectral
function. In the Wigner representation it is given by

A(k,n,ω) = −2ImTr[gr (k,n,ω)]

= −2Im

[ ∑
γm

〈
αn

∣∣φm
kγ

〉 〈
φm

kγ

∣∣α0
〉

ω − εkγm + n�/2 + i0+

]
. (5)

Of particular interest is the average over a period T of the
driving force which is just the n = 0 term,

A(k,0,ω) = 2π
∑
αγm

∣∣〈α0
∣∣φm

kγ

〉∣∣2
δ(ω − εkγm). (6)

Using the completeness of the |φm
kγ 〉 states we can verify that it

satisfies the sum rule
∫

(dω/2π )A(k,0,ω) = 2. Such property
is not shared by any other moment of the nonequilibrium
spectral function. In equilibrium, the spectral function does
satisfy this sum rule which, in that case, derives from fermion
conservation and the factor of two comes from the spin. In this
sense, the average calculated above is more physical than the
nonequilibrium spectral function by itself.

FIG. 1. Spectrum calculated using an effective Floquet Hamil-
tonian truncated to six modes for circular [(a), (b)] and linear [(c),
(d)] polarization, with momentum along kx [(a), (c)] and along ky

[(b), (d)]. The gap structure is clearly visible. Dashed (solid) lines
are periodic (static) bands with photon index n odd (even). Here we
take V/� = 0.52, which can be achieved experimentally. Note the
Bloch-Siegert shifts in (a), (b), and (d).

We now consider the general structure of εkαn. See
Appendix A and similar spectra obtained for irradiated
graphene.12,16,17 One can usually find an approximate form
of the quasienergies from a truncated Floquet Hamiltonian,
〈αn|HF |βm〉 = Hn−m

αβ + n�δαβδnm. For example, in Fig. 1
we show the quasienergies for circular and linear polarizations
with six modes as a function of momentum along kx and ky

(see also Fig. 3). We verified that higher modes do not change
the spectrum significantly in the range of energies we consider.
One can understand the structure of the spectrum as composed
of copies of the original Dirac bands shifted by multiples
of �, i.e., ε0

k1n = vk + n�, ε0
k2m = −vk + m�, and treating

the effects of nonzero V perturbatively at the crossings.21 If
there is a nonzero coupling, the bands exhibit an anticrossing
(avoided crossing). For V = 0 note that HF has time-reversal
invariance and obviously time-translation invariance. We will
see how these symmetries will be explicitly broken by the
perturbation. In general, band crossings are associated with
symmetries of the system. If there are no symmetries, any
crossings/degeneracies are accidental. An early result of Von
Neumann and Wigner for time-independent Hamiltonians es-
tablished that two (three) parameters are necessary to produce
an accidental degeneracy for real (complex) Hamiltonians.
Hence by varying only one parameter, such as kx or ky , we
expect to produce only avoided crossings.

Consider the case of circularly polarized photons. In this
case time-reversal symmetry is broken, and since no other
symmetries remain we expect only avoided crossings in the
spectrum [Figs. 1(a) and 1(b)]. If the perturbation is small,
V/� � 1, we can restrict the analysis to the two crossing
bands in question. For concreteness, consider the crossing at
vkx ≈ �/2 and ky = 0. The effective Hamiltonian is

H2vkx=� =
(

H0 + � iV σ−
−iV σ+ H0

)
, (7)
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FIG. 2. (Color online) Average of the spectral function, A(k,n = 0,ω), from numerically evolving the evolution operator in time, Fourier
transforming and taking the imaginary part of the retarded Green function. We consider circular [(a), (b)] and linear [(c), (d)] polarization,
with momentum along the kx axis [(a), (c)] and ky axis [(b), (d)]. In all panels, the horizontal lines correspond to different values of kx (ky)
from kx = 0 (ky = 0) to vkx = � (vky = �) in steps of 0.05. We see the photoinduced gaps at the Dirac point and finite momentum. An
exact crossing occurs at k∗

y with linear polarization, panel (d), giving rise to a shadow Dirac point. For V/� = 0.52, the spectral weight is
concentrated near the original Dirac bands but significant weight is still observed at shadow bands which are displaced by multiples of �. From
the graphs we can read �circ

0 = 0.43�, �circ
1 = 0.31� and �lin

0 = 0, �lin
1 = 0.52�.

where we used Hext(t) = iV σ−ei�t + h.c. and σ± = (σx ±
iσy)/2. In the absence of the external perturbation, the four
eigenvalues of the above matrix are vkx, − vkx,vkx + �, and
−vkx + � corresponding to the eigenvalues of the diagonal
terms. Note that for V = 0 two of these bands cross at
vkx = �/2. The effect of a small nonzero V/� is to open a gap
in the spectrum at vkx = (�/2)

√
(2V 2 + �2)/(V 2 + �2) of

magnitude �circ
1 /� = V/

√
V 2 + �2 = V/� + O(V 3). The

magnitude of this gap agrees with previous perturbative
calculations using the rotating wave approximation.16 For
larger V/�, where the above approximation of retaining just
two modes is not valid, the resonance occurs at momenta
vkx < �/2 [see Figs. 1(a) and 1(b)]. An exact numerical
solution of the time-dependent Schrödinger equation confirms
this result as shown in Figs. 2(a) and 2(b). The Bloch-Siegert
shift23 observed is an effect beyond the scope of the rotating
wave approximation.

Next we consider the Dirac point where a gap is
photoinduced12 due to the absorption and subsequent emission
of a photon by an electron near the Dirac point. The effective
Hamiltonian is

Hk=0 =
⎛
⎝H0 + � iV σ− 0

−iV σ+ H0 iV σ−
0 −iV σ+ H0 − �

⎞
⎠ . (8)

In the limit of V/� � 1 the gap is �circ
0 ≈ 2(V 2/�) (see

Appendix C). Here we provide an alternative derivation,
valid to all orders in perturbation theory, by noting that
at the Dirac point, the Hamiltonian in Eq. (1) is one of
the few analytically solvable driven two-level models,24

formally equivalent to a spin-1/2 in a circularly polarized
magnetic field. Explicitly, the evolution operator at k = 0
is given by Uk=0(t,t ′) = e−iσz�t/2e−iH (t−t ′)eiσz�t ′/2, where
H = V σy − �σz/2. Hence the gap at the Dirac point is12

�circ
0 =

√
�2 + 4V 2 mod �. (9)

IV. SHADOW DIRAC POINTS

In Figs. 1(c) and 1(d), we see band crossings at k = 0 and at
finite momentum. In this section we show that these crossings
are protected by a dynamical symmetry of the system in the
presence of light with linear polarization. The Floquet operator
for polarization along x, in the basis of eigenvectors of H0, is

H̃lin
F = v|k|σz + V cos ϕk cos(�t)σz

−V sin ϕk cos(�t)σy − i∂t , (10)

where ϕk denotes the angle between the momenta and the
x-axis. If the momentum is along kx , the external perturbation
commutes with H0 and produces the trivial spectrum shown
in Fig. 1(c) with Dirac points at vkx = n�. If the momen-
tum is perpendicular to the polarization the Hamiltonian is
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H̃lin
F = v|ky |σz − V cos �tσy − i∂t and satisfies

P̂ H̃lin
F P̂ −1 = H̃lin

F , (11)

where P̂ = σze
(T/2)∂t is the “parity” operator.25 This operator

shifts time by t → t + T/2 and flips the spin operator
σy → −σy . This means that eigenstates φαn can be defined
with good parity quantum number according to whether α + n

is even or odd. In other words, the external perturbation
does not have matrix elements between states of different
symmetries and hence crossings of these bands cannot be
gapped; they are symmetry protected. This can be explicitly
shown by writing H̃lin

F in frequency space, in the basis of
eigenvectors of H0, and noting that it splits into disjoint blocks
H̃lin

F = H̃even ⊕ H̃odd (see Appendix B). One implication is
that the k = 0 point remains gapless,

�lin
0 = 0, (12)

to all orders in perturbation theory, as the bands εk1,0,εk2,0 have
different parities. Indeed, at this point the Floquet operator
vanishes for linear polarization.

Similarly, there are symmetry-protected band crossings at
finite momentum between the bands εk1,odd and εk2,odd. This
is made explicit in Fig. 1(d), where the bands εk1,−1 and
εk2,1 cross at ±k∗

y . Including n = 0,±1,±2 Fourier modes we
obtain zero-energy eigenvalues of Hlin

F at momenta vk∗
y/� =

[10 − 2(V/�)2 −
√

(V/�)4 + 8(V/�)2 + 36]1/2/2. This ex-
pression is accurate to O(V 2), i.e.,

vk∗
y

�
= 1 − V 2

3�2
+ O(V 4). (13)

For V/� = 0.52 we have vk∗
y/� ≈ 0.91. As momentum

increases, with fixed V/� < 1, the crossings asymptotically
move25 towards vk∗

y = n�. On the other hand, the crossing of
the εk1,0 and εk2,1 bands can be gapped because they belong
to the same symmetry class. The magnitude of this gap is
�lin

1 = V for V/� � 1. For arbitrary direction in momentum
space, other than kx and ky , the states have no well-defined
parity, degeneracies are not symmetry-protected, and gaps
develop in the spectrum (see Fig. 3). The above considerations
show that band touchings occur only at these special points
in momentum space and that the existence and position
of these points can be engineered with a properly chosen
frequency.

V. DISCUSSION AND CONCLUSION

In a TrARPES experiment, the measured photocurrent is
proportional to the two-time (nonequilibrium) lesser Green’s
function,26 which in turn is proportional to the distribution
function (generally unknown) and the spectral function.
Furthermore, for a system were there is no phase coher-
ence between the pump and probe pulses, we expect the
photocurrent to time-average over the period of the driving
force. These arguments suggest that the measured spectrum
would be characterized qualitatively by the average of the
spectral function, Eq. (6) (calculated numerically in Fig. 2). For
concreteness, if the electric field is E0 ≈ 2.2 × 107 V/m and
the photon energies are 120 meV then using v = 5 × 105 m/s
as the speed of Dirac electrons on the surface of Bi2Se3, we

FIG. 3. (Color online) The lowest branch of the quasienergies
±εk1,0 for linear polarization. The original Dirac cone and the
anisotropic shadow Dirac cones are clearly visible. Other Dirac points
can be seen in higher branches. The parameters are the same as those
used in Figs. 1(c) and 1(d).

obtain a coupling V/� = 0.52. Using Eq. (9), we obtain
a gap �circ

0 = 51 meV, in agreement with our simulation
in Fig. 2(a) and the experiment,19 �circ

0 = 53 ± 4 meV. At
finite momentum and circular polarization, we obtain �circ

1 =
37 meV along kx and ky , and so the spectrum is isotropic [see
Figs. 2(a) and 2(b). For linear light, we obtain �lin

0 = 0 along
kx and ky [Figs. 2(c) and 2(d)]. At finite momenta, �lin

1 = 0
along kx but �lin

1 = 62 meV at vky ≈ �/2, in agreement with
the experiment19 �lin

1 = 62 ± 5 meV. The position of the first
shadow Dirac point is vk∗

y = 109 meV.
In conclusion, we have calculated the nonequilibrium spec-

tral function of electrons at the surface of TIs in the presence of
an incident light with circular and linear polarization. Depend-
ing on the polarization, the system is an anisotropic metal with
multiple Dirac cones or an insulator. This theory along with the
experimental technique would allows for optical engineering
of nonequilibrium spectra in topological materials.

Note added. After completion of this work we learned about
Ref. 27 which contains partial overlap with our work.
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APPENDIX A: PERIODICALLY DRIVEN TWO-LEVEL
HAMILTONIANS

Here we provide a brief review of periodically driven two-
level systems.21 If the Hamiltonian is periodic in time H (k,t +
T ) = H (k,t), with period T , the solution of the Schrödinger
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equation

i∂tψk(t) = H (k,t)ψk(t) (A1)

can always be written as

ψk(t) = φk(t)e−iεkt , (A2)

where φk(t) = φk(t + T ) is periodic and the phase εk
is the quasienergy, which is defined modulo � = 2π/T .
Substituting into the Schrödinger equation gives the eigenvalue
problem

HF φkγ (t) ≡ [H (k,t) − i∂t ] φkγ (t) = εkγ φkγ (t), (A3)

where the γ = {1,2} distinguishes distinct eigenstates of the
Floquet Hamiltonian HF . Defining φkγ (t) = ∑

n φn
kγ ein�t

and H (k,t) = ∑
n Hn(k)ein�t we obtain the frequency

representation of Eq. (A3),∑
mβ

〈αn|HF |βm〉 〈
βm

∣∣φ�
γ

〉 = εγ �

〈
αn

∣∣φ�
γ

〉
, (A4)

where 〈αn|HF |βm〉 = Hn−m
αβ + n�δαβδnm. We omit

the momentum label to simplify expressions when
there is no danger of confusion. The quasienergies
are εαn = εα + n�, where n is an integer. For circular
polarization, the external driving can be written as Hext(t) =
iV σ−ei�t − iV σ+e−i�t , where σ± = (σx ± iσy)/2. Hence
the Floquet matrix corresponding to circular polarization is
[HF ]nm = δn,mH0 + iV σ−δn,m−1 − iV σ+δn,m+1 − δnmn� or
explicitly,

Hcirc
F =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
H0 + � iV σ− 0
−iV σ+ H0 iV σ−

0 −iV σ+ H0 − �

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A5)

where H0 is the unperturbed Dirac Hamiltonian. For
linear drive A(t) = A0(cos �t,0) and the external drive is

Hext(t) = V σy cos �t which leads to

Hlin
F =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
H0 + � V σy/2 0
V σy/2 H0 V σy/2

0 V σy/2 H0 − �

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A6)

In Fig. 1 we have truncated the Floquet matrix to six Fourier
modes and obtained the spectrum of the driven system for
circular and linear polarization.

APPENDIX B: DYNAMICAL SYMMETRY OF THE SYSTEM

In the basis of the vectors {(1 ieiϕk )T /
√

2,(−1 ieiϕk )T /
√

2}
the unperturbed Hamiltonian is diagonal H̃0 = v|k|σz and for
linear polarization the perturbation takes the form H̃ext(t) =
V cos ϕk cos �tσz − V sin ϕk cos �tσy , where ϕk is the angle
of the electron momentum with respect to the polariza-
tion which is taken to define the x-axis. For the case
of momenta perpendicular to the polarization the Floquet
operator is H̃lin

F = v|ky |σz − V cos �tσy − i∂t and its fre-

quency representation is [H̃lin
F ]nm = v|ky |δnmσz − V (δn,m−1 +

δn,m+1)σy/2 + n�δnm or explicitly shown in Eq. (B1). Note
that H̃lin

F can be divided into two disconnected blocks
(symmetry classes). For example, the states v|ky | − � and
−v|ky | + � belong to distinct blocks with no matrix element
connecting them to any order in perturbation theory and
hence they cross. Similarly, the branches v|ky | and −v|ky |
do not mix to any order in perturbation theory and hence the
crossing at k = 0 is also symmetry-protected as concluded
in the main text. Finally we note that an electron in the
state ±v|ky | always changes chirality upon interacting with
a linearly polarized photon leaving it in the state ∓v|ky |.
This is in contrast to circular polarized photons where there
is a finite probability of leaving the electron with the same
chirality.

H̃lin
F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
v|ky | + � 0 0 iV /2 0 0

0 −v|ky | + � −iV /2 0 0 0
0 −iV /2 v|ky | 0 0 iV /2

−iV /2 0 0 −v|ky | −iV /2 0
0 0 0 iV /2 v|ky | − � 0
0 0 −iV /2 0 0 −v|ky | − �

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

In Fig. 3 we have calculated numerically the lowest branch of quasienergies with a truncated Floquet Hamiltonian to six modes
as a function of k for linear polarization. Note that only one branch is independent due to the constraint εk1,0 + εk2,0 = 0. We
have verified numerically the linearity of the dispersion near the band touchings.
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APPENDIX C: GAP AT THE DIRAC POINT FROM
PERTURBATION THEORY

In the presence of circularly polarized light a gap at
k = 0 will develop. It can be understood intuitively as
arising from renormalization effects due to virtual interactions
between the branches vk and vk ± �. To see this let us
consider the truncated Hamiltonian shown in Eq. (8) which
contains three branches with Fourier modes n = 0,±1. Direct
diagonalization involves solving an equation of sixth degree.
To reveal the nature of the gap we proceed in a different way.
We are only interested in the renormalization of the n = 0
mode corresponding to the bands ±v|k| near k = 0. The set
of equations to solve is (omitting momentum label)

(H0 + �)φ1
α + iV σ−φ0

α = εαφ1
α, (C1)

−iV σ+φ1
α + H0φ

0
α + iV σ−φ−1

α = εαφ0
α, (C2)

−iV σ+φ0
α + (H0 − �)φ−1

α = εαφ−1
α . (C3)

If we assume that � � εα then from the first and third equa-
tions we solve for φ±1

α as φ±1
α = −i(V/�)σ∓φ0

α . Substituting
back into Eq. (C2) we obtain an effective equation for the
n = 0 state, (H0 − V 2σz/�)φ0

α = εαφ0
α . The eigenvalues of

the renormalized Hamiltonian are ±
√

v2k2 + (V 2/�)2 with
a gap at k = 0 of magnitude �circ

k=0/� ≈ 2(V/�)2, which is
O(V 2) as expected.

APPENDIX D: RETARDED GREEN’S FUNCTION
IN PERTURBATION THEORY

One can write explicitly the form of the retarded Green’s
function to first order in perturbation theory. Proceeding
in the standard way by first expressing the equation of
motion of the evolution operator in the interaction pic-
ture and then expanding to first order in V/� we ob-
tain Uk(t,t ′) ≈ e−iH0(k)(t−t ′)[1 − i

∫ t

t ′ dsHI
ext(s,t

′)] where HI
ext

is the perturbing Hamiltonian in the interaction picture
with respect to H0. Using the expression gr

αβ(k,t,t ′) =
−iθ (t − t ′)Uk,αβ(t,t ′) and expanding the Green’s function
in Pauli matrices, gr = gr

0 + gr
i σi , we obtain for circular

polarization

g
r,(0)
0 (kx,t̄ ,tr ) = −i�(tr ) cos(vkxtr ),

g
r,(1)
0 (kx,t̄ ,tr ) = −2iV

�
�(tr ) sin(vkxtr ) sin

(
tr�

2

)
cos(�t̄),

where tr = t − t ′ and we have retained only the part pro-
portional to the identity as only this part contributes to the
spectral function after taking the trace. We have set ky = 0 for
simplicity to illustrate our point. After Fourier transforming
in tr we note that to zeroth order, we obtain the usual
Dirac-like dispersion ±vkx corresponding to the eigenvalues
of H0 and to first order the Green’s function is explicitly
time periodic in t̄ , with sharply defined excitation bands
at ±vkx ± �/2.
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27P. Delplace, Á. Gómez-León, and G. Platero, arXiv:1304.6272

[cond-mat.mes-hall].

155129-6

http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://arXiv.org/abs/1211.5104
http://dx.doi.org/10.1103/PhysRevX.3.011011
http://dx.doi.org/10.1103/PhysRevX.3.011011
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.109.127401
http://dx.doi.org/10.1103/PhysRevLett.109.127401
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/PhysRevB.78.045407
http://dx.doi.org/10.1103/PhysRevB.78.045407
http://dx.doi.org/10.1103/PhysRevB.83.245436
http://dx.doi.org/10.1103/PhysRevLett.110.200403
http://dx.doi.org/10.1103/PhysRevLett.110.200403
http://dx.doi.org/10.1103/PhysRevB.138.979
http://dx.doi.org/10.1103/PhysRevA.84.012118
http://dx.doi.org/10.1103/PhysRevB.85.174304
http://dx.doi.org/10.1209/0295-5075/18/7/001
http://dx.doi.org/10.1103/PhysRevLett.102.136401
http://dx.doi.org/10.1103/PhysRevLett.102.136401
http://arXiv.org/abs/arXiv:1304.6272



