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The barrier transmission characteristics of a one-dimensional chain of optically linear split-ring resonators
(SRRs) containing a barrier composed of optically nonlinear split-ring resonators are studied. (This is an analogy
to the quantum mechanical problem of the resonant transmission of a particle through a finite barrier potential.)
The SRRs are idealized as inductor-resistor-capacitor-equivalent resonator circuits where the capacitance is
either from a linear dielectric medium (optically linear SRRs) or from a Kerr-type nonlinear dielectric medium
(optically nonlinear SRRs). The SRRs are arrayed in a one-dimensional chain and interact with one another
through weak nearest-neighbor mutually inductive couplings. The transmission maxima of the SRR barrier
problem are studied as they are located in a two-dimensional parameter space characterizing the linear mutually
inductive coupling and the nonlinear Kerr dielectric of the SRRs of the barrier. The result is a two-dimensional
map giving the conditions for the existence of the resonant-barrier modes that are excited in the transmission
process. The various lines of transmission maxima in the two-dimensional plot are associated with different
types of resonant excitations in the barrier. The map is similar to one recently made in McGurn [Phys. Rev. B
77, 115105 (2008)] for the resonant-transmission modes of a nonlinear barrier in a photonic crystal waveguide.
The SRR problem, however, is quite different from the photonic crystal problem as the nonlinear difference
equations of the two systems are different in the nature of their nonlinear interactions. Consequently, the results
for the two systems are briefly compared. The transmission maxima of the SRR system occur along lines in the
two-dimensional plot, which are associated with modes resonantly excited in the barrier. These lines of resonant
modes either originate as a simple evolution from the resonant modes of the linear barrier limit or as lines of
soliton breather modes of the bright, dark, or gray types. The soliton modes arise either spontaneously at a lower
critical value of the nonlinearity of the barrier media or from the breakup of a barrier mode in the linear media
limit as the barrier media become increasingly nonlinear. The soliton resonances are identified by comparing
the wave functions and energies of the barrier excitations with those of solitons in an infinite chain composed
of barrier material. Results for the infinite chain in Giri, Choudhary, Gupta, Bandyopadhyay, and McGurn
[Phys. Rev. B 84, 155429 (2011)] for bright solitons are used for this identification, and in the Appendix we
present additional solutions for dark and gray solitons that were not included in our previous treatments.
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I. INTRODUCTION

Recently there has been much interest in split-ring-
resonator-(SRR)-based metamaterials.1–16 These are artificial
(engineered) nanomaterials that are capable of exhibiting
optical properties not found in nature. They form the basis
of the design of many types of negative refractive media1–3,17

and cloaking devices.1–3,18,19 Metamaterials are formed by
the periodic repetition of SRRs in a medium exhibiting an
effectively uniform dielectric response. The SRRs are used
to tune the frequency-dependent magnetic response of the
metamaterial1–3 at wavelengths that are much larger than the
lattice constant of the lattice of SRRs. Typically the SRR are
designed to have permeability resonances at THz frequencies
and below, where such frequency resonances do not occur in
natural (nonengineered) materials. These resonances give rise
to the technological important properties of metamaterials.1–16

In addition to their important technological proper-
ties, metamaterials have been studied for their interesting
excitations.4–16 These include simple wavelike excitations
associated with the permeability resonances in optically linear
systems6–9 and, in optically nonlinear systems,4,5,10–14,20 a wide
variety of different types of soliton excitations dependent on
optical nonlinearity for their existence. The excitation modes
in linear SRR-based metamaterials are known as magneto-

inductive waves.6,7 In nonlinear SRR-based metamaterials,
additional bright soliton and dark soliton inductive modes
are found4,5,15,20 and, as we shall show later, a class of gray
solitons.

There have been many designs proposed for SRRs,21 but
a common idealized feature is a ring-shaped structure that is
split so that a gap occurs in the ring. The resulting component
is described theoretically as an equivalent inductor-resistor-
capacitor (IRC) circuit.4,5,15,20 The self-inductance comes from
the ring, the resistance comes from the wire of the ring and
from small radiation losses, and the ring gap containing a
dielectric medium provides a capacitance. If the material in
the ring gap is linear dielectric medium, the SRR gives a
linear response, but if the gap material is Kerr nonlinear
medium,4,5,10,11,20 the SRR gives a nonlinear response. In
this paper, we will follow Refs. 4,15, and 20 in studying a
one-dimensional array of simple SRRs. These are formed as
rings that are split by a simple gap. The SSRs are then coupled
to one another by a weak mutual inductance. This should allow
for a semiquantitative discussion of the phenomena accessible
to many of the more detailed experimental realizations of such
systems as well as to realizations of the simple system itself.4–9

In this paper, we treat a chain of linear media SRR
containing a barrier of nonlinear media SRR.21–24 (Note:
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In the remainder of the paper the “chain of linear media”
means that the capacitor splits or gaps in its SRR are filled
with a linear dielectric media, and the “barrier of nonlinear
media” means that the capacitor splits or the gaps in its
SRR are filled with a Kerr nonlinear dielectric medium. The
nonlinearity comes from the material in the split or gap of
the SRR and, as mentioned in past studies, it has little effect
on the mutually inductive couplings, which are linear.) The
scattering transmission through the barrier is studied, and
the transmission maxima through the nonlinear barrier are
mapped out in a two-dimensional space of the linear mutually
inductive coupling between nearest-neighbor barrier sites and
a parameter characterizing the Kerr nonlinearity of the SRR of
the barrier. These maxima arise from the resonant excitations
in the barrier of modified modes of the linear system and
soliton modes of the bright, dark, and gray type. A focus of
the paper is on the lines in this two-dimensional plot that arise
from the resonant excitation of bright, dark, and gray solitons
in the barrier. The identification of these lines of resonances
is made using the solutions for the soliton types in a uniform
infinite chain composed only of barrier material.

A similar map was studied by us for a photonic crystal
waveguide containing a barrier composed of Kerr non-
linear media, and the soliton solutions in this map were
identified.22–24 It is interesting to compare the results of the
photonic crystal systems with that studied in this paper. The
photonic crystal system contains both onsite nonlinearity and
nonlinearity in the coupling between the sites. The SRR system
contains only onsite nonlinearity, and this gives qualitative
differences between the two systems.

A second focus of the paper is the presentation of soliton
solutions for the dark and gray soliton modes of a uniform
infinite nonlinear chain and a discussion of their continuum
limit forms. These were not treated in our recent publication
on solitons in these systems.20

The order of the paper is as follows. In Sec. II, the theory
of the SRR chain and barrier is presented, and the results and
discussions are presented in Sec. III. An Appendix section
presents solutions of the bright, dark, and gray solitons and
their continuum limit forms, which are quoted in the body of
the text. Section IV presents conclusions.

II. THEORETICAL DEVELOPMENT

A. The chain and its discrete and continuum models

We consider the one-dimensional model of weakly coupled
SRRs treated in Ref. 20 (see Fig. 1). It is similar to that
considered by Eleftheriou et al.4,5,15,25 The system consists

X  X  X  O  O  O  O  O  O  O  O  O  X  X  X
X=Linear Dielectric in Gap

O=Nonlinear Dielectric in Gap

FIG. 1. Schematic of an infinite chain of inductively coupled SRR
containing a barrier. The X represents an SRR with linear dielectric
media in its gap, and the O represents an SRR with nonlinear dielectric
media in its gap. The sites of the chain are labeled consecutively by
integers, and in the figure only a finite portion of the chain containing
the barrier is shown.

of metal rings of self-inductance, L, that are split with a gap
containing a dielectric material, which may be either optically
nonlinear of the form ε(|E|2) = ε0(εl + α

|E|2
E2

c
), where α = ±1

and Ec is a characteristic (large) electric field or optically
linear with α = 0. Each SRR forms an IRC circuit with a
time-varying current and capacitive charge. The metamaterial
array is formed by taking the SRR as basis elements on a one-
dimensional Bravais lattice of lattice constant, d, interacting
by weak nearest-neighbor inductive couplings, and the SRRs
are labeled consecutively along the chain by integers, n. In
Ref. 4, it was found that the mutually inductive couplings,
M , in our system are M > 0 for SRR with a common axis
perpendicular to their planes, and M < 0 for coplanar SRR.
This can be roughly understood by applying Lenz’s law to
two such rings.

The equations of motion for the capacitive charge on the
SRRs of a uniform infinite chain, in the notation of Ref. 20,
are given by

q̈n + λc(q̈n+1 + q̈n−1) + qn −
(

α

εl

)
q3

n = 0. (1)

Here λc = M
L

, qn = Qn

Qc
, and Qn are the charge on the gap of the

nth SRR, and Qc = ClUc, Uc = dgEc, and Cl = ε0εl(A/dg),
where dg and A are the width and area of the SRR gaps,

q̈n = d2qn

dτ 2 , and τ = t0ωl for ωl = 1√
LCl

is the dimensionless
time. (Note: Here the time t0 is the same as that denoted t in
Eq. 6 of Ref. 20.) In the discussions of a chain containing a
barrier, which are the subject of this paper, the chain equation
[i.e., Eq. (1)] is modified to include a finite-length barrier
segment in which λc = λ is changed to a new value λ′. This
is done by changing the mutual induction between the SRR in
the barrier region.

To understand the barrier results, it is also useful to consider
two continuum-limiting forms of Eq. (1). These were obtained
in Ref. 20. The continuum limits are useful for studying
solutions that are slowly varying in space and are obtained by
making the expansion q̈n±1 = [q̈ ± d

∂q̈

∂x
+ 1

2d2 ∂2q̈

∂x2 + · · ·]x=nd ,
where q = q(x) is the generalized continuum variable cor-
responding to ql . A first continuum form, given within the
context of the rotating wave approximation (RWA), for modes
of frequency ω with arbitrary amplitudes and having wave
functions that are separable in space and time coordinates is

ω2λc

∂2q

∂x2
− [1 − (1 + 2λc)ω2]q + 3α

εl

|q|2 q = 0. (2)

Here x is rescaled to be measured in units of the lattice constant
d (i.e., x/d → x). A second continuum form of Eq. (1), again
within the context of the RWA, for modes of frequency ω with
small amplitudes and wave functions that are nonseparable in
space and time coordinates is also obtained. For |λc| � 1, these
modes are described by the nonlinear Klein-Gordon equation20

∂2q

∂τ 2
− ab

∂2q

∂x2
+ b

[
q − α

εl

q3

]
= 0, (3)

where a = λc/(1 + 2λc) and b = 1/(1 + 2λc). Here x is again
rescaled to be expressed in units of d (i.e., x/d → x). In
Ref. 20, the nonlinear Schrodinger formulation, which has
been commonly used in studies of the SRR chain,4,15 was
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shown to be an approximation to Eq. (3). A continuum limit
form of Eq. (1), which does not require that |λc| � 1, was also
obtained in Ref. 20 for modes with wave functions separable in
the space and time coordinates, but this will not be used here.

B. Solitons of the infinite chain

Our focus in the barrier-scattering problem is on the
excitation of soliton modes in the barrier media and their
effect on the transmission through the barrier.22–24 For this, it is
necessary to understand the properties of the soliton solutions
that exist in a uniform infinite chain of nonlinear SRRs. In
Ref. 20, a variety of solitonlike excitations that exist in the
infinite SRR chain were studied using the formulations in
Eqs. (1)–(3). In the case of the solutions of the discrete system
of Eq. (1), bright solitons or pulselike discrete breather modes
were identified. Explicit analytical forms of the solutions and
conditions for their existence were given. For the continuum
limit cases in Eqs. (2) and (3), a variety of stationary and
mobile bright and dark soliton mode solutions were found and
matched to some of the discrete solutions. A brief summary of
these results is presented in the Appendix.

The Appendix also includes new results on solitonlike
solutions of these systems, which were not considered in
our previous work. The results include the following. For the
discrete system in Eq. (1), analytical forms for the solutions
of dark solitonlike discrete breather modes are given, and it is
shown how the dark soliton modes of the continuum Eqs. (2)
and (3) are related to these. Previously unconsidered gray
soliton modes in both the discrete and continuum equations
are also shown to exist.

The results for the solitonlike bright, dark, and gray modes
are used in the primary text to understand the structure of
the resonant-scattering transmissions observed in the barrier-
scattering problem of the discrete system. The discussions of
the resonant scattering are fashioned after those in Ref. 22,
which treated barrier scattering in photonic crystal waveg-
uides and its representation in a two-dimensional space of
parameters describing the linear and nonlinear interactions in
the waveguide barrier. As explained later, the present SRR
system involves a fundamentally different set of differences
equations than those treated in the photonic crystal paper and
give, correspondingly, different types of results from those of
the photonic waveguide systems.

C. The barrier problem

For the discrete system based on Eq. (1), we consider the
scattering modes from a barrier of nonlinear media embedded
in a chain of linear media. The modes are separable in space and
time coordinates with time dependence e−iωτ and are studied
within the context of the RWA. The difference equations for a
system with a barrier of m sites are

−ω2[qn + λ(qn+1 + qn−1)] + qn = 0 (4a)

for n < 0 or n > m + 1 in the regions of the linear media
outside the barrier, and

−ω2[qn + λ′(qn+1 + qn−1)] + qn − 3

(
α

εl

)
|qn|2qn = 0

(4b)

for 1 � n � m within the nonlinear barrier. Here the mutual-
inductance couplings λ and λ′ are different inside and outside
the barrier and α = 0 outside the barrier. The boundary
conditions at the left edge of the barrier are

q̈0 + λ′q̈1 + λq̈−1 + q0 = 0 (4c)

and at the right edge of the barrier

q̈m+1 + λq̈m+2 + λ′q̈m + qm+1 = 0. (4d)

Note that for the constant frequency forms of Eq. (4), a
symmetry is observed that is reminiscent of that between
classical ferro- and antiferromagnet systems. Specifically, the
equations of motion are invariant under the replacements
λ → −λ,λ′ → −λ′ and qn → (−1)nqn.

Solutions of Eq. (4) for the elastic scattering are obtained
using transfer matrix techniques, taking the form

ql = teikl (5a)

to the right of the barrier for l � m + 1 and

ql = ueikl + re−ikl (5b)

for l � 0 to the left of the barrier. The transmission coefficient
is then T = | t

u
|2 and 0 � T � 1. Equation (5) represents a

solution in the form of a plane wave in the linear media
interacting with the nonlinear barrier. As with our treatment
of this solution form in the photonic crystal barrier problem
studied in Ref. 22, it yields to an exact closed form solution.
As in Ref. 22, due to space limitations, the equations of the full
solution are not given here. It is also possible and of interest
to find solutions for the system driven externally at a single
site. This is a problem, however, that is beyond the scope of
the present work and will be treated elsewhere.

III. RESULTS AND DISCUSSIONS

In Fig. 2, the locations of the transmission maxima through
the nonlinear barrier system are plotted as they are found
in the two-dimensional space of α

εl
t2 (characterizing the

barrier nonlinearity) and λ′(characterizing the barrier nearest-
neighbor couplings). For these plots, t in Eq. (5a) is real,
k = 2.9 and λ = −0.02 is taken from Ref. 20, and results
are shown for barriers with m = 5 and m = 9 sites. This
parameterization gives elastic scattering modes of frequency
ω = 0.9811. The transmission maxima are obtained by fixing
the value of the nonlinearity and studying the transmission as
a function of the barrier coupling. The locations of maxima
with transmission coefficients greater than 0.2 are shown in the
figures. The maxima occur as a result of resonant transmission
through the barrier so that the barrier modes excited by the
incident wave facilitate transmission through the barrier.

A. The two-dimensional map of transmission maxima

It is seen in Figs. 2(a) and 2(b) that the systems of m = 5
and m = 9 have similar lines with branching features, and the
number of branches or connecting lines in the plots increases
as the number of barrier sites increases. Many resonant modes
in the nonlinear system evolve as simple modifications of
the resonant modes of the linear (i.e., α

εl
t2 = 0) system,

maintaining the same essential wave-function form but only
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FIG. 2. Plot of the location of the barrier-transmission maxima in the ( α

εl
t2,λ′) plane. In the incident and transmitted linear-dielectric media

λ = −0.02 and the wave number of the incident, reflected, and scattered waves is k = 2.9, where the lattice constant of the SRR chain is
taken as unity. Results are show for (a) a system with m = 5 barrier sites, (b) a system with m = 9 barrier sites, (c) a magnification of a
particular region of the plot in (b), and (d) another magnification of a particular region of the plot in (b). In these plots, the branches of bright
solitons have a P to the left of them, and the branches of dark soltions have a D next to them. In (b) and (c) the branch labeled P2, passing
through ( α

εl
t2,λ′) = (0.00016, −0.0135) and (0.00036, −0.0145) contains solutions with two consecutive bright solitons resonantly excited in

the barrier. In (c) and (d) some of the soliton resonances discussed in the text are emphasized on the map. Notice that in these plots the line
breaks are not artifacts of the numerical methods but come from the T > 0.2 selection condition on the maxima.

with a renormalization of some of its specific features. This
accounts for the similarity in shape of the branching line
structures in systems with different numbers of barrier sites
and their increasing number with increasing barrier sites.

In addition, there are lines involving sets of resonant
modes that only exist in the presence of nonlinearity or that
represent basic soliton modifications of the wave-function
forms occurring in the linear limit. These types of modes
will be our focus. They include bright, dark, and gray-type
soliton modes; resonances involving these modes also display
resonant-transmission maxima along lines in the ( α

εl
t2,λ′)

plane.22–24

B. Branches not containing modes of the linear system:
bright solitons

As an example, in the m = 9 system, resonant trans-
mission involving bright solitons are found to occur in
the branch of modes passing through the points ( α

εl
t2,λ′) =

(0.00012, ± 0.0165) and = (0.00028, ± 0.0175) in Figs. 2(b)
and 2(c) and labeled by a P in Figs. 2(b) and 2(c). This
branch of modes does not include points of the α

εl
t2 = 0 linear

system and only exists in the presence of nonlinearity. That

these resonances originate from bright solitons is shown by
comparing the wave functions and frequencies of the barrier
modes involved in the resonant transmission with the wave
functions and frequencies of the solitons found in the uniform
infinite nonlinear chain characterized by the same system
parameters as those of the finite barrier in the scattering
problem.22–24 This comparison is now addressed.

In Fig. 3(a), barrier-wave functions are presented at α
εl
t2 =

0.00012 and variable λ′ for several barrier modes of the
scattering problem in Fig. 2(b). The primary focus of our
discussion is on the soliton modes occurring at λ′ = ±0.0165.
This is the single large amplitude mode observed in the plot,
with the other smaller amplitude modes being those that evolve
from modes of the linear barrier system. The soliton only
appears in the presence of nonlinearity because the branch
labeled P does not include α

εl
t2 = 0.0. (A similar analysis

can be made of the scattering problem for α
εl
t2 = 0.00028

and variable λ′. This yields a single large amplitude, bright
soliton found at λ′ = ±0.0175 and many smaller amplitude
modes that evolve from those of the linear system.) This mode
and that at ( α

εl
t2,λ′) = (0.00028, ± 0.0175) are now compared

with the bright soliton modes of the infinite chain.
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FIG. 3. Plot of the wave function amplitude of a nine-site barrier
versus barrier-site number for (a) α

εl
t2 = 0.00012 showing the pulse

soliton-type mode at λ′ = ±0.0165, which is the single mode of
largest amplitude and some of the small amplitude modes that evolve
from the modes of the linear system; and (b) α

εl
t2 = 0.00012, λ′ =

±0.0165 (upper solid) and α

εl
t2 = 0.00028, λ′ = ±0.0175 (lower

dashed) barrier soliton-type modes. A comparison is made between
the barrier modes in Fig. 3(b), and results for the uniform infinite
chain-pulse solitons (discussed in Sec. A1 of the Appendix) for
chain solutions with α

εl
= 0.00012, λc = λ′ = ±0.0165, α0 = 5.640

(star points), and α

εl
= 0.00028, λc = λ′ = ±0.0175, α0 = 2.880,

(closed circle points). For the comparison, the uniform infinite chain
result’s α0 is in units of t which are the units of the amplitudes in
the plots. A plot is also presented in (c) for a five-site barrier at
α

εl
t2 = 0.00012, λ′ = ±0.01255 (upper curve), and α

εl
t2 = 0.00068,

λ′ = ±0.01525(lower curve), and the points in the plot are the
corresponding results in the uniform infinite chain. Notice that in
all of the plots, the system is discrete, and the lines are to guide the
eye of the reader.

TABLE I. Bright stationary breather solutions of Eq. (A2) for
transmission maxima points in Fig. 2.

λc α/εl α0 ω q0 q1 q2

0.0165 0.00012 5.640 0.9816 5.640 4.451 2.594
−0.0165 0.00012 5.460 0.9816 5.640 −4.451 2.594

0.0175 0.00028 2.880 0.9817 2.880 2.497 1.706
−0.0175 0.00028 2.880 0.9817 2.880 −2.497 1.706

In Fig. 3(b), the barrier-wave functions and the wave
functions of bright solitons in the uniform infinite non-
linear chain at α

εl
= 0.00012 (with frequency ω = 0.9816)

and α
εl
t2 = 0.00028 (with frequency ω = 0.9817) are pre-

sented. For the comparison, the amplitudes of the uniform
infinite chain results were chosen to match the barrier
resonances and to be measured in units of t . The agreement
between the barrier and infinite-chain modes in frequency
and wave functions is good and indicates that the resonant
transmission arises from the excitation of soliton pulses in the
barrier. Both barrier modes have much larger amplitudes than
the modes that evolve from those of the linear system, and, as
α
εl
t2 increases, the bright soliton modes are found to decrease

in amplitude. For this comparison, the uniform infinite chain
results are obtained using Eqs. (A1)–(A2), which are explained
in Sec. A1 of the Appendix. Equations (A1) and (A2) were
evaluated for ( α

εl
,λ′) = (0.00012, ± 0.0165) and α0 = 5.64

(the amplitude of the resonant-barrier-wave function) and for
( α
εl
,λ′) = (0.00028, ± 0.0175) and α0 = 2.88 (the amplitude

of the resonant-barrier-wave function), where α0 is taken in
units of t for comparison with the resonant-scattering results.
For convenience, some of the results from Eqs (A1)–(A2) are
also listed in Table I.

An additional related branch of transmission resonances
involving bright solitons is labeled P2 in Fig. 2(b). This
branch, like the P branch, also arises only in the presence
of nonlinearity, but now the resonant transmission involves
the excitation of two bright solitons in the barrier. More about
this will be presented in a future publication.

For comparison with the results of the barrier of nine sites,
Fig. 2(a) presents a plot of the transmission resonances for a
barrier of five sites that is similar to that presented for the nine-
site barrier. There is also a branch of bright solitons labeled P
in Fig. 2(a), which does not include a α

εl
t2 = 0.0 point of the

linear system. Figure 3(c) gives a plot of the wave functions of
two barrier modes of this P branch. The agreement between the
barrier-wave functions and the wave functions of the uniform
infinite chain are quite good. A P2 branch similar to that in
Fig. 2(b), however, is absent. The five-site barrier is not long
enough to support more than a single bright soliton. With this in
mind, it is expected that the number of multiple bright solitons
and their branches increase with increasing barrier sites. This
will be discussed in a future publication.

C. Branches of solitons originating from linear system modes:
dark, gray solitons

Another source of solitons in the barrier involves the
breakup of a resonant mode of the linear system as nonlinearity
is introduced into the barrier. In the linear limit of the barrier,
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in both m = 5 and m = 9 systems, there is a uniform mode at
( α
εl
t2,λ′) = (0.0, ± 0.020) having |ql| = 1.0 at each site of the

barrier. As nonlinearity is introduced into the barrier media,
the uniform linear barrier mode is found to evolve into dark
or gray-type solitons. Behavior of this type is well known in
the uniform infinite chain system, occurring as the chain goes
from a linear to a nonlinear system, and should be expected
in the barrier-scattering problem. We now turn to discuss the
resonant scattering involving these modes.

To determine the nature of resonant-soliton scattering in the
barrier, it is necessary to compare the barrier-wave functions
and frequencies at resonant scattering with the wave functions
and frequencies of the soliton solutions of the uniform infinite
chain. An important point of comparison for these modes is the
width of the mode-wave functions. While the bright solitons
that we have treated earlier consist of a single intensity peak,
dark and gray solitons consist of intensity dips. Both of these
features are characterized by the width of the peak or dip
regions.

To determine the presence of dark soliton resonances
in the barrier scattering, the dark soliton solutions of the
uniform infinite chain are determined in the Appendix.
From these solutions, the widths of the dark solitons in the
uniform infinite chain are determined as functions of αα2

0
λcεl

, and
the results are presented in Fig. 4. Here α0, as discussed in
the Appendix, is the magnitude of the asymptotic limits of
the dark soliton amplitude along the chain length at infinity,
and λc is the coupling in the uniform infinite chain. In
Fig. 4, α0 = t has been taken to make a comparison with the
resonances of the barrier scattering. Taking λc = λ′ = 0.02
from the value of the linear-barrier-transmission maxima at
( α
εl
t2,λ′) = (0.0, ± 0.020) in Fig. 2(b) and applying this to

the uniform infinite chain results in Fig. 4, we find that for
αα2

0
εl

> 0.0033, the dark soliton modes have a half-width of

two lattice constants or less and for αα2
0

εl
< 0.0033 the dark

soliton half-width rapidly increases from two lattice constants.
Considering Fig. 2, this limits the regions of ( α

εl
t2,λ′) in which

dark solitons in the barrier are expected as a resonant-scattering

FIG. 4. Plot of the half-width in units of the lattice constant of
the dark soliton versus

αα2
0

λcεl
. Results from the solution in Eq. (A7) are

the solid (short dashed) lines for the upper (lower) signs in Eq. (A7),
and the longer dashed lines are from the continuum limit form in
Eq. (A16).

FIG. 5. Plot of |ql | versus the barrier site number for
(a) barrier of nine sites at ( α

εl
t2,λ′) = (0.0, −0.020),

(−0.001, −0.0215), (−0.0026, −0.023), (−0.0026, −0.0255), and
(−0.00332, −0.0270) going in the plot from top to bottom at site num-
ber 8. For comparison with the ( −0.00332, −0.0270) transmission
results, points for the infinite chain dark soliton evaluated at ( α

εl
,λc) =

(−0.00332,0.0270) and α0 = 1.19 (in units of t which are the units of
the amplitudes in the plots) are presented on the plot. Notice that the
points of the infinite chain results have been shifted along the lattice
in order to make a comparison. (b) Barrier of nine sites at ( α

εl
t2,λ′) =

(0.0, −0.024), (−0.004, −0.0295), and (−0.005, −0.0315) going in
the plot from bottom to top at site number 5. Notice that in all of the
plots, the system is discrete, and the lines passing though the discrete
points in the plot are only meant as a visual aid to the reader.

mechanism. In particular, only modes for which αα2
0

εl
> 0.0033

effectively fit within barriers for which m = 5 or m = 9 and
can be observed as dark soliton resonances.

1. Breakup into dark solitons

We now consider the nature of the dark soliton excitations,
which evolve from the ( α

εl
t2,λ′) = (0.0,−0.020) uniform

mode of the linear barrier system. For this, the wave functions
of dark solitons in the infinite chain and their widths (presented
in Table II and Fig. 4, respectively) are necessary. In making
the comparison of the two results, unless otherwise stated,
we take the wave functions of the uniform infinite chain at
infinity to approach the amplitude of the wave transmitted by
the barrier, i.e., α0

t
= 1.

Dark soliton resonances in the barrier of nine sites are
observed in a line of modes that connects the two lines arising
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TABLE II. Dark stationary breather solutions of Eq. (A7) for
transmission maxima points in Fig. 2.

λc α/εl ω q0 q1 q2 q3

0.0255 −0.00260 0.9792 0.0000 0.3677 0.6382 0.7929
0.0270 −0.00332 0.9789 0.0000 0.4068 0.6883 0.8362
0.0295 −0.00400 0.9776 0.0000 0.4277 0.7133 0.8564
0.0315 −0.00500 0.9772 0.0000 0.4624 0.7515 0.8853

from the ( α
εl
t2,λ′) = (−0.00,−0.02) and (−0.00,−0.024)

linear-barrier modes. This branching is labeled D in Fig. 2(b),
and it only exists in the presence of nonlinearity. It con-
nects between two lines arising from the linear-barrier
limit. In Fig. 5(a), the wave-function amplitudes of two
dark soliton modes, ( α

εl
t2,λ′) = (−0.0026,−0.0255) and

(−0.00332,−0.0270), along this connecting branch are
shown. The position of these modes in the two-dimensional
plot of transmission maxima is indicated in the enlargement
presented in Fig. 2(d). The widths of these modes agree with
the results 2.56 and 2.32 from Fig. 4, and the wave functions
listed in Table II are in reasonable agreement with those
in Fig. 5(a) when an account is made for the shift of the
modes along the barrier sites. For a comparison, results for the
infinite-chain dark soliton corresponding to the ( −0.00332,
−0.0270) transmission resonance are shown as points on the
plot. Taking into account the resonant nature of the barrier
mode, there is a reasonable agreement between the two modes.

Results for some modes on the line arising from ( α
εl
t2,λ′) =

(−0.00,−0.02), but not on the connecting branch, are
presented for comparison. These are modes at ( α

εl
t2,λ′) =

(−0.001,−0.0215) and (−0.0026,−0.023) and indicate the
beginnings of a breakup of the uniform mode, which is only
accomplished in the line of modes that branches off from
them. This shows that the branch of dark soliton modes arises
from the breakup of the uniform amplitude linear mode as the
nonlinearity enters and increases in the system.

In Fig. 5(b), we look at the wave-function amplitudes
of the resonances at the linkage point of the dark soliton
resonant branch with the line of modes that evolve from
the ( α

εl
t2,λ′) = (−0.00,−0.024) linear mode. The ( α

εl
t2,λ′) =

FIG. 6. Gray soliton half-width, HW , versus
αα2

0
λcεl

for δ = 0.1

(
αα2

0
λcεl

< 0) and δ = 0.1 + π (
αα2

0
λcεl

> 0).

TABLE III. Gray soliton solutions for some points in Fig. 6.

δ
αα2

0
λcεl

A0 A1 e−r HW 3
2

αα2
0

λcεl

d

α0

1
sin δ

0.1 −0.0186 0.9991 0.0988 0.8311 8.26 0.0874
0.1 −0.0074 0.9996 0.0683 0.8797 11.69 0.0606
0.1 −0.0025 1.000 0.0332 0.9332 21.23 0.0356
0.1 + π 0.0186 0.9991 0.0988 0.8311 8.26 0.0874
0.1 + π 0.0074 0.9996 0.0683 0.8797 11.69 0.0606
0.1 + π 0.0025 1.000 0.0332 0.9332 21.23 0.0356

(−0.00,−0.024) linear mode is seen to have two minima in the
barrier, which evolve into the two-dip wave function observed
at ( α

εl
t2,λ′) = (−0.004,−0.0295). The point ( α

εl
t2,λ′) =

(−0.004,−0.0295) is the linkage point of the branch of soliton
modes that have just been discussed with the line of modes
arising from ( α

εl
t2,λ′) = (−0.00,−0.024). At this point, the

dark soliton modes along the linkage have been compressed
to the extent that the barrier fits two dark soliton modes,
and ( α

εl
t2,λ′) = (−0.004,−0.0295) is such a two dark soliton

resonance. The widths of the two solitons are consistent with
the results, 2.22, for the soliton widths found in Fig. 4. Con-
tinuing along the ( α

εl
t2,λ′) = (−0.00,−0.024) branch with

increasing nonlinearity, amplitude results are presented for
( α
εl
t2,λ′) = (−0.005,−0.0315), which are consistent with the

two-soliton nature of the barrier resonances along this branch.

2. Gray solitons

The solutions for gray solitons in the uniform infinite chain
are given in the Appendix. Figure 6 presents results from these
solutions for the width of the gray soliton dip region versus
αα2

0
λcεl

for δ = 0.1 and δ = 0.1 + π . Here, for a comparison
with the barrier-scattering results, we take α0 = t . Table III
also presents some of the wave functions and half-widths
characterizing the gray soliton system in Fig. 6.

In general, it is seen that for a given αα2
0

λcεl
, the half-width of

the gray soliton is larger than that of the dark soliton solutions
and large on the scale of the barriers we have considered. As a
consequence of this, for the cases of the barrier of five and nine
sites, the gray solitons cannot be found in the regions plotted
in Fig. 2, and the intensity dips arise solely from dark soliton
resonances in the barrier. Larger barriers are needed for their
observation. These will be a future consideration.

IV. CONCLUSIONS

The solitonlike excitations in a nonlinear difference equa-
tion of an SRR chain4,15,20,26 are investigated for barrier
scattering. A mapping of the occurrence of the resonant-
scattering maxima is presented in a two-dimensional space
involving the barrier mutually inductive coupling and the
barrier nonlinearity. The plot gives a rapid and effective
demonstration of the properties of the barrier materials and
the nature of the scattering expected as a function of position
in the two-dimensional space.

This is an interesting problem as many systems exhibit
equations of motion that are difference equations, e.g., lattice
vibrations, magnetic systems, electron systems, photonic
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crystals, etc. Systems that are described by difference
equations of the same form (i.e., isomorphic) can exhibit
similar types of solutions. These solutions may or may not
be applicable to the system being described by the set of
difference equations, depending on physical considerations.
For example, the Maxwell Equations allow for both left- and
right-handed wave solutions, but physical considerations of the
parameters in the systems (i.e., the signs of the permittivity and
permeability) are restricted in naturally occurring materials so
that only right-handed waves are found. One must introduce
artificial or engineered materials to make the left-handed wave
solutions physically possible. Consequently, even though a set
of equations are of the same abstract form, the parameters in
the equations can restrict the set of solutions that are correct to
the physical situation. If two physical systems are described
by difference equations that are not of the same form (i.e., are
not isomorphic), the set of solutions and their general forms
can be different from one another. One set of equations can
display solutions that the other cannot. For example, the linear
media SRR difference equations considered in this paper do
not exhibit the soliton solutions of the nonlinear media SRR
difference equations considered in this paper. Consequently,
the general form of difference equations can be used as a
classification of the systems they describe. For example, the
study presented here is similar to one we presented in Ref. 22
for a photonic-crystal waveguide of coupled resonators
containing a barrier composed of Kerr nonlinear optical
media and described by the one-dimensional difference
equation22–24

El = α[1 + λ|El|2]El + β|1 + λ|El+1|2|El+1

+β[1 + λ|El−1|2]El−1. (6)

Here, El is the electric field at the lth site of the chain
waveguide and the Greek characters are various parameters
characterizing the waveguide. In that paper, the transmission
resonances of a barrier of nonlinear optical media in
a photonic-crystal waveguide were mapped out in a
two-dimensional space involving parameters characterizing
the linear and nonlinear parts of the dielectric interactions in
the barrier media. Plots reminiscent to but different from those
found in Fig. 2 were obtained and shown to exhibit lines of
bright, dark, and multiple-pulse solitons. In this regard, notice
that the dynamical difference equations in Eqs. (4b) and (6)
are fundamentally different from one another (i.e., they are not
isomorphic) and may be said to represent two general classes
of distinct nonlinear difference equations. Equation (6) has
nonlinearity on both the onsite and between-site couplings,
while Eq. (4b) has nonlinearity only on the onsite coupling.
These differences in the two sets of equations lead to
fundamentally different behaviors in the two systems. This
is an example of how the behaviors of different nonlinear
systems can be characterized and classified by the nature of the
nonlinearity present in their difference equations of motions.

While Eq. (6) has many branches of bright, multiple bright,
and dark solitons in a two-dimensional plot of the scattering
resonances arising from both large and small nonlinearities,
Eq. (4b) shows only soliton and multiple soliton excitations
near the small nonlinearity side of the two-dimensional plots
in Fig. 2. For the small between-site couplings in our Eq. (4b)

system, the dark soliton quickly breaks up into dips with small
widths on the lattice and are not interesting. The reason for the
limited range of solitons in the system of Eq. (4b) is that as
the nonlinear interaction increases, the system in Eq. (4b) is
overwhelmed by the onsite nonlinearity. The system in Eq. (6),
however, maintains an increase in both the onsite and between-
site interactions. This facilitates a variety of soliton behaviors
in Eq. (6) throughout its plot in the two-dimensional space of
transmission resonances. These behaviors are not observed in
Eq. (4b).

In addition, we have presented in the Appendix various
new results for the soliton modes in the infinite chain of SRR
that were not treated in our previous work.20 These include
the dark and gray soliton solutions of the discrete uniform
infinite chain and some of their continuum limiting forms. The
discrete and continuum forms were compared and matched to
one another. The half-widths of the bright, dark, and gray
solitons were computed, and some analytic forms for them are
given.

As a final point, it should be noted that we have chosen
to study a model which has been the focus of a number of
past studies of magneto-inductive and soliton modes, and we
have taken parameters used in those past studies.4,5,15,20,25 For
this model, discussions have been given in the literature of
the dissipative losses and of further than nearest-neighbor
mutually inductive couplings. The problem of dissipation in
these systems has in the past been addressed,15 and it can be
shown that the radiative and resistive losses are low enough
for the easy observation of the various magneto-inductive and
soliton modes that have been and are now studied. For instance,
in Ref. 15, an experimentally realizable system is treated and
found to have a rate of decay γ = 0.0016, yielding a time-
dependent decay of the wave-function amplitude (computed
in our paper; Ref. 20 on the model treated here) of e−γ τ/2. The
transmission resonances of the barrier model we are studying
are analogous to those found in the quantum mechanical
problem of the transmission of a particle through a finite
barrier. In our system, as with the quantum mechanics problem,
the resonances come from the difference in barrier material,
and they are not from resonances of the dielectric constants,
which would require the development of an imaginary part of
the dielectric. As a consequence, the wave-function losses in
the linear chain and in the nonlinear barrier can both be limited
by the discussions given above in this paragraph, referencing
the work in Ref. 15. In regard to further than nearest-neighbor
couplings, Eleftheriou, Lazarides, and Tsironis discussed these
in Ref. 4, and discussions are found in the references given in
Ref. 4. In Ref. 4, a treatment is given of the soliton excitations
of the one-dimensional model we have taken in our studies. The
authors of Ref. 4 found that for the weak couplings of interest
to us, nearest-neighbor interactions give a good description of
the system properties.

As mentioned earlier, it is hoped that the results pre-
sented for the two general forms of dynamical difference
equations4,20,22–24,27–31 in Eqs. (4b) and (6) will be extended
to magnons, phonons, and electrons systems described by
equations that are of isomorphic forms. In this regard, there
has been some recent work on solitons in nanosystems36–38

of a different type than ours, which can be similarly
studied.
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APPENDIX

1. Discrete uniform infinite chain

For a uniform infinite chain described by Eq. (1), within
the RWA, there are three important types of solitonlike modes,
including stationary breathers of the bright, dark, and gray
types. Stationary breathers have wave functions separable in
space and time coordinates, with e−iωτ time dependence. For
these modes, Eq. (1) in the RWA becomes

−ω2[qn + λc(qn+1 + qn−1)] + qn −
(

3α

εl

)
|qn|2qn = 0

(A1)

a. Bright-type modes

Two types of stationary bright discrete breathers are
encountered. These were treated in Ref. 20 and are summarized
here. One is a pulse centered at n = 0 of the form q0 = α0 and
qn = α0Ae−(|n|−1)r for n �= 0. The other is a pulse centered
at n = 0 of the form q0 = α0 and qn = α0(−1)nAe−(|n|−1)r

for n �= 0. Following the method of Sievers et al.,30–33 the
parameters A, r , and ω are determined as functions of the pulse
height, α0, by choosing them to satisfy Eq. (A1) for n = 0, 1,
and n → ∞. The three nonlinear equations for A,r , and ω are

3α

εl

α2
0 ± 2λcA ∓ 2λc

[
1 − 3α

εl

α2
0

]
cosh(r) = 0,

(A2a)

λc(1 + Ae−r ) ± 3α

εl

α2
0A

3 − 2λc

[
A − 3α

εl

α2
0A

3

]
cosh(r) = 0,

(A2b)

and

ω2 = [1 ± 2λc cosh(r)]−1, (A2c)

where the upper (lower) signs are for the first (second) type of
pulse forms given above. Notice that the linearly independent
set {nm−1Ame−(|n|−1)r}, where m ranges over the integers, can
be used to obtain a pulse solution that satisfies Eq. (A1) at all
sites along the chain.32 Here, only the first,m = 1, term of the
series is needed in our discussions, and in this approximation
the half-width of the pulse, HW , is given by HW = 1 + ln[2A]

r
.

Some of the general solutions of Eq. (A2) were discussed
in Ref. 20. For the purposes of this paper, in Table I and
Figs. 3(b) and 3(c), additional results are presented for bright
soliton modes treated in the discussions of the barrier problem
in the text. Table I presents the mode frequency, ω, and qn for
n = 0, 1, 2 as functions of λc, α

εl
, and α0. Figures 3(b) and

3(c) continue this comparison to the wave functions of some
of the modes of the barrier resonances. The wave functions are
seen to be sharply peaked along the chain, in accord with the
assumptions of Eq. (A2).

b. Dark and gray-type modes

Dark and gray-type soliton modes are investigated in the
discrete model by assuming trial solutions of the form33–35

q0 = id, (A3a)

qn = {α0(1 − A0e
−nr − nA1e

−nr ) + id}einδ, (A3b)

and

q−n = −{α0(1 − A0e
−nr − nA1e

−nr ) − id}e−inδ, (A3c)

for n > 0. These are based on the continuum limits discussed
later and on forms proposed in Refs. 20, 34, and 35. Here
{nmAme−nr} for integers, m > 0, is a linearly independent set
with appropriate soliton boundary conditions that can be used
to express the complete solution.29 Only the first two members
in this set are needed in the later discussions. Substituting
Eq. (A3) into Eq. (A1) for n = 0, 1, 2, and n → ∞, we find

−ω2[1 + 2λc cos δ] + 1 − 3α

εl

(
d2 + α2

0

) = 0, (A4a)[
−ω2 (1 + 2λc cos δ) + 1 − 3α

εl

d2

]
d − 2λcω

2α0 sin δ[1 − (A0 + A1)e−r ] = 0, (A4b)

−ω2{(1 + 2λc cos δ)d + λcα0 sin δ[A0 + A1 − (A0 + 3A1)e−2r ]e−r} +
{

1 − 3α

εl

[
α2

0(1 − (A0 + 2A1)e−2r )2 + d2
]}

d = 0,

(A4c)

−ω2{(1 + 2λc cos δ)d + λcα0 sin δ[1 − (A0 + 2A1)e−2r ]} +
{

1 − 3α

εl

[
α2

0(1 − (A0 + A1)e−r )2 + d2
]}

d = 0, (A4d)

−ω2{1− (A0 + A1)e−r + λc cos δ[1− (A0 + 2A1)e−2r ]} +
{
1 − 3α

εl

[
α2

0(1− (A0 + A1)e−r )2 + d2
]}

[1 − (A0 + A1)e−r ] = 0,

(A4e)

and

−ω2{1 − (A0 + 2A1)e−2r + λc cos δ[2 − (A0 + A1)e−r − (A0 + 3A1)e−3r ]}
+

{
1 − 3α

εl

[
α2

0(1 − (A0 + 2A1)e−2r )2 + d2
]}

[1 − (A0 + 2A1)e−2r ] = 0, (A4f)
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giving A0, A1, e−r , α, and ω2 as functions of α0, δ, and λc. For |λc|,| 3αα2
0

εl
| � 1 and retaining only terms linear in λc and 3αα2

0
εl

,
these simplify to the following six nonlinear equations:

ω2 = 1 − λc

[
2 cos δ + 3αα2

0

λcεl

(
1 + d2

α2
0

)]
, (A5a)

3αα2
0

λcεl

d

α0
− 2 sin δ[1 − (A0 + A1)e−r ] = 0, (A5b)

3αα2
0

λcεl

d

α0
e−r [−2 + (A0 + 2A1)e−2r ](A0 + 2A1) + sin δ[A0 + A1 − (A0 + 3A1)e−2r ] = 0, (A5c)

3αα2
0

λcεl

d

α0
e−r [−2(A0 + A1) + (A0 + A1)2e−r ] + sin δ[1 − (A0 + 2A1)e−2r ] = 0, (A5d)

3αα2
0

λcεl

e−r [−2 + 3(A0 + A1)e−r − (A0 + A1)2e−2r ](A0 + A1) + cos δ[−1 + 2(A0 + A1)e−r − (A0 + 2A1)e−2r ] = 0, (A5e)

and

3αα2
0

λcεl

e−r [−2 + 3(A0 + 2A1)e−2r − (A0 + 2A1)2e−4r ](A0 + 2A1)

+ cos δ[−(A0 + A1) + 2(A0 + 2A1)e−r − (A0 + 3A1)e−2r ] = 0, (A5f)

giving Ao, A1, e−r , d
α0

, 3αα2
0

λcεl
, and ω2 as functions of α0, sin δ,

and λc. We first consider the easier case of the dark soliton
solutions of Eq. (A5), followed by a treatment of gray soliton
solutions.

For dark solitons (i.e., d = 0, sin δ = 0), we take d = 0,
A1 = 0, and δ = 0 in Eq. (A3). Proceeding as in the derivation
of Eq. (A4), we find

−ω2[1 ± 2λ] + 1 − 3α

εl

α2
0 = 0, (A6a)

−ω2{1 − A0e
−r ± λc[1 − A0e

−2r ]}
+

{
1 − 3α

εl

α2
0(1 − A0e

−r )2

}
(1 − A0e

−r ) = 0, (A6b)

and

−ω2{1 − A0e
−2r ± λc[2 − A0(e−r + e−3r )]}

+
{

1 − 3α

εl

α2
0(1 − A0e

−2r )2

}
(1 − A0e

−2r ) = 0, (A6c)

giving A0, e−r , and ω2 as functions of εl , α2
0, and λc.

Here the upper signs are for the wave-function form
q0 = 0, qn = α0(1 − A0e

−r ) = −q−n, where n > 0, and the
lower signs are for the wave-function form q0 = 0, qn =
(−1)nα0(1 − A0e

−r ) = −q−n, where n > 0. In the limit of
| 3α

εl
α2

0 |, |λc| � 1, retaining only terms linear in 3α
εl

α2
0 and λc,

these three nonlinear equations become

ω2 = 1 ∓ λc

[
2 ± 3αα2

0

λcεl

]
, (A7a)

±3αα2
0

λcεl

(−2 + A0e
−r )(1 − A0e

−r )A0e
−r

− 1 + 2A0e
−r − A0e

−2r = 0, (A7b)

and

±3αα2
0

λcεl

(−2 + A0e
−2r )(1 − A0e

−2r )A0e
−2r

−A0e
−r + 2A0e

−2r − A0e
−3r = 0, (A7c)

giving A0, e−r , and ω2 as functions of 3αα2
0

λcεl
. In the case that

|e−r | � 1 and 3αα2
0

λcεl
e−r is of order 1, limiting forms for the

solution of Eq. (A7) are

A0
∼= 1, (A8a)

e−r ∼= ∓ 1

2 3αα2
0

λcεl

, (A8b)

and

ω2 ∼= 1 ∓ λc

[
2 ± 3αα2

0

λcεl

]
. (A8c)

In Fig. 7, general results for |λc| � 1 dark solitons are
presented from the numerical solution of Eq. (A7). Figure 7(a)

shows a plot of A0 versus αα2
0

λcεl
. The limiting form A0 ≈ 1 in

Eq. (A8a) is found to be a good approximation over most of the
plotted region. In Fig. 7(b), x = e−r is presented, giving the
rate at which the kink approaches its asymptotic limiting values
at the ends of the infinite chain. Again the approximation
(dashed lines in the plot) in Eq. (A8b) is found to give a
good representation of the solutions for most of the shown
data. Figure 7(c) presents the dispersion using the full form

ω2 = (1 − 3αα2
0

εl
)/[1 + 2λc].

The half-width of the wave function envelopes as a

function of αα2
0

λcεl
is given in Fig. 4 for both the results from

Eq. (A7) and the continuum limits discussed later. In our
definition of the half-width for the results from Eq. (A7),
we consider the general dark soliton envelope to be given
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FIG. 7. Dark soliton results for the infinite chain from Eq. (A7).

Plots as functions of
αα2

0
λcεl

are made for (a) A0 where the solid (dashed)
lines are the upper (lower) signs in Eq. (A7) and the asymptotic
form A0 ≈ 1 is given in Eq. (A8a); and (b) x = e−r [solid line for
the upper sign in Eq. (A7) and small dashed line for the lower sign

in Eq. (A7)] with an asymptotic form x ≈ ∓1/(6
αα2

0
λcεl

) (dashed and
dotted lines ending near the center of the plot) given in Eq. (A8b);

and (c) ω± =
√

1− 3α
εl

α2
0

1+2λc
. The upper (lower) dashed (solid) curve is for

negative (positive) λc. Notice that in Fig. 7(c), the break in the plot

around
αα2

0
λcεl

= 0 comes because we only considered solutions of our
system in the regions above and below the region of break.

by qn = α0(1 − A0e
−nr ) and allow n to be extended to the real

numbers. A definition of the half-width of the dark region of
the wave function can then be given as the solution of n from

the equation 1 − A0e
−nr = tanh(1). Here tanh(1) arises from

the wave-function envelope of the continuum limit solution of
the dark soliton, discussed below in Appendix Sec. B.

Gray soliton (i.e.,d �= 0, sin δ �= 0) solutions are obtained

from Eq. (A5), which yields A0, A1, e−r , 3αα2
0

λcεl

d
α0

1
2 sin δ

=
[1 − (A0 + A1)e−r ], the half-width of the soliton in units of
the lattice constant as HW = ln[(A0+A1)/(1−tanh(1))]

− ln[e−r ] , and the

dispersion ω2 = 1 − λc[2 cos δ + 3αα2
0

λcεl
(1 + d2

α0
)] in terms of

αα2
0

λcεl
. For the definition of the half-width of the gray soliton,

we have applied the same reasoning as that for the dark
soliton half-widths, taking 1 − [A0 + A1]e−nr = tanh(1) as
the defining condition of the half-width of the amplitude dip.
Of particular interest to us is the half-width that is presented
in Fig. 6 for the case in which δ = 0.1. It is seen that for fixed
αα2

0
λcεl

, the widths of the gray solitons are much larger than those
of the dark solitons. In Table III, results for the wave functions
and their characteristics are plotted for some representative
cases from Fig. 6.

2. Continuum limits of the infinite chain

The soliton solutions of the discrete system presented
above can be matched up with their corresponding solutions
in the continuum limits of Eqs. (1) and (A1), given by
Eqs. (2) and (3). The continuum limits provide good qualitative
descriptions of many of the soliton properties even in cases
where the assumptions of the continuum limit do not apply.

a. Pulse-breather modes

A continuum limit solution of Eq. (2) for a stationary bright
breather mode is given by20

q(x,τ ) =
√

2εl[1 − (1 + 2λc)ω2]

3α

× sech

{[
1 − (1 + 2λc)ω2

λcω2

]1/2

x

}
exp[−iωτ ].

(A9)

Expressing the sech-function argument in Eq. (A9) in

terms of the pulse amplitude q0 =
√

2εl [1−(1+2λ)ω2]
3α

, we find

[ 1−(1+2λ)ω2

λω2 ]1/2 = [ 3
2

αq2
0

λεl

1
ω2 ]1/2. Treating q0 as a variable and

taking the q0, λ, α
εl

, and ω2 values in Table I then gives a
reasonable agreement between Eq. (A9) and the discrete model
data in Table I for q1 and q2.

For the stationary pulse-breather modes, the continuum
limit Eq. (3) was shown to have a solution of the form:

q(x,τ ) =
√∣∣∣εl

α

∣∣∣a0sech {βx} exp [−iωτ ] , (A10)

where β2 = 3
2

αα2
0

aεl
and the pulse amplitude is α0 =

√
| εl

α
|a0.

Using the values for α0, λc, α
εl

, and ω2 in Table I, we find
that Eq. (A10) gives a reasonable fit to the discrete model data
in Table I for q0, q1, and q2. This again is well outside the
region of validity of the continuum limit. Both Eqs. (A9) and
(A10), which are based on different limiting processes, yield
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similar forms for the dependence of the pulse width on α
λcεl

and the pulse amplitude. This is most likely indicative of the
dependence on these variables in general.

b. Gray and dark solitons

For the continuum limit given by Eq. (2),
gray solitons exist and are of the form q(x,τ ) =
[A tanh(Bx − Cτ ) + iD]ei(kx−ωτ ) + cc for D �= 0. This
yields at C = 0 a stationary breather solution with

B2 = −3

2

α

εl

1

λcω2
A2, (A11a)

D = 2

3

εl

α
λcω

2k
B

A
, (A11b)

and

ω2 =
1 − 3αA2

εl

1 + 2λc − 3λck2
. (A11c)

In addition, results for the dark soliton solutions (i.e.,
D = 0) of Eq. (2) are found in Ref. 20 and agree with the
k = 0 limit of Eq. (A11). Combining Eqs. (A11a) and (A11b),
we find

3

2

αA2

λcεl

D

A

1

k
= ω2B = ω2

HW
, (A11d)

where HW is the half-width of the gray soliton. Taking ω2 ≈ 1
and using the HW values in Table III, we find that 3

2
αA2

λcεl

D
A

1
k

=
0.122, 0.086, and 0.047 for αα2

0
λcεl

= 0.0186, 0.0074, and 0.0025,
respectively. Even though the results of the discrete model
are outside the range of validity of the continuum limit, the
continuum limit form is in reasonable agreement with the
results for the discrete mode in the last column of Table III.

In Ref. 20, only the bright and dark envelope and pulse-
soliton solutions of the nonlinear Klein-Gordon equation in
Eq. (3) were discussed. These are extended here to include
gray soliton solutions of the nonlinear Klein-Gordon equation.
The gray solitons of Eq. (3) are of the form

q(x,τ ) =
√∣∣∣εl

α

∣∣∣a0 [tanh (Bx − Cτ ) + iD] ei(kx−ωτ ) + cc,

(A12)

where a0, B, C, and D are real coefficient, and we use the
notation of Ref. 20. This mode differs from the dark soliton
by the iD term. Substituting Eq. (A12) into Eq. (3) and using
the RWA to retain only terms in e−iωτ , we find

ω2 = b

[
1 − 3

α

εl

∣∣∣∣εl

α

∣∣∣∣a2
0(1 + D2) + ak2

]
, (A13a)

B = −β ±
√

β2 + 4αγ

2α
, (A13b)

and

C = 1

ω

[
abkB − 3

2

α

εl

∣∣∣∣εl

α

∣∣∣∣ba2
0D

]
, (A13c)

where

α = a

[
ab

(
k

ω

)2

− 1

]
, β = −3

α

εl

∣∣∣∣εl

α

∣∣∣∣a2
0D

(
abk

ω2

)
,

and

γ = 3

2

α

εl

∣∣∣∣εl

α

∣∣∣∣a2
0

[
1 − 3

2

α

εl

∣∣∣∣εl

α

∣∣∣∣ba2
0
D2

ω2

]
.

In the D → 0 limit, Eqs. (A12) through (A13) recover the
dark soliton solution of Ref. 20. Taking soliton amplitude α0 =√

| εl

α
|a0, we find for the C = 0 gray soliton,

D = 2

3

εl

α
ak

B

α2
0

. (A14)

Once the difference in the definitions D in Eqs. (A11b)
and (A14) are accounted for, these two formulations are
in reasonable agreement for the dependence of D on B

and the amplitude of the tanh envelope. In the limit in
Eqs. (A12) and (A13) in which C = 0 and D = 0, the solutions
become those of dark solition modes. For the dark soliton
modes,

B2 = 3

2

α

εl

α2
0

a
[
ab

(
k
ω

)2 − 1
] (A15a)

and

ω2 = b

[
1 − 3

α

εl

α2
0 + ak2

]
, (A15b)

which are in reasonable agreement with the general forms
of the dark soliton limit of Eq. (A11). In the limit that

|λc|,| αα2
0

λεl
| � 1, Eq. (A15a) becomes

B2 = −3

2

αα2
0

λcεl

, (A16)

in agreement with the k = 0 dark soliton limit of Eq. (A11a).
The half-width of the continuum soliton solutions are then
defined from the tanh(Bx) form of the wave-function en-
velopes as 1

B
. This is seen in Fig. 4 to be in good agreement

with the half-width computed from the theory in Eq. (A7).
In making this comparison, the λc ↔ −λc symmetry is
invoked.
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