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We present results for the equation of state of the two-dimensional Hubbard model on an isotropic square lattice
as obtained from a controlled and numerically exact large-cluster dynamical mean field simulation. Our results
are obtained for large but finite systems and are extrapolated to infinite system size using a known finite-size
scaling relation, and are supplemented by reliable error bars accounting for all sources of errors. We establish the
importance of examining the decay of spatial spin correlations to determine whether a sufficiently large cluster
has been used and with this in mind we present the energy, entropy, double occupancy, and nearest-neighbor
spin correlations extrapolated to the thermodynamic limit. We discuss the implications of these calculations on
pseudogap physics of the 2D Hubbard model away from half filling, where we find a strong behavioral shift in
energy below a temperature T ∗ which becomes more pronounced for larger clusters. Finally, we provide reference
calculations and tables for the equation of state for values of doping away from half filling which are of interest
to cold-atom experiments.
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I. INTRODUCTION

The single-orbital Hubbard model in two dimensions is
one of the simplest models of correlated electron physics:
It describes electrons on a lattice moving with a hopping
strength t between nearest-neighbor sites and interacting with
an interaction strength U if two electrons are on the same site.
The model is known to have a Fermi liquid phase at weak
interaction strength and low doping, an insulating phase with
a large gap at half filling and large interaction strength, and a d-
wave superconducting phase in at least some part of parameter
space.1,2 A “pseudogapped” phase also exists near half filling
in which the electronic spectrum is strongly suppressed around
the antinode but not along the nodal direction. The model
has been realized in cold fermionic gas systems and some
of these phases, in particular the Mott-insulating state, have
been observed experimentally.3,4 It is also believed that the
essence of the physics responsible for superconductivity in
the high transition temperature (Tc) cuprate superconductors
stems from the strong correlations described in the 2D Hubbard
model for intermediate values of U .5–7 This is particularly
evident in the underdoped region of the hole-doped cuprate
phase diagram where there exists a pseudogap phenomenon
thought to emerge from strong correlation physics as the
system is doped away from the Mott insulator at half filling.8

Pseudogap-like spectra have been observed in a wide range of
approximate analytical6,9–12 and numerical calculations.13–20

However, the cold-gas experiments, which attempt to replicate
the physics of the model with ultracold fermions, are so
far unable to reach temperatures low enough to show subtle
correlation physics.21

Standard analytical techniques applied to correlated elec-
tron systems have not been able to provide reliable and
unbiased results for the equation of state, phases, or phase
boundaries in the correlated intermediate-coupling regime rel-
evant to the interesting cuprate physics. These techniques can
be successful, however, in limits where the Hamiltonian can be
expanded in orders of some small parameter. One example is
the high-temperature series expansion (HTSE) which is based

on an expansion of the Hamiltonian in powers of the inverse
temperature β. Because of this small parameter limitation to
analytic work, insight into the physics of the Hubbard model
must therefore come from numerical simulations22 that are
able to access the correlated regime in a controlled way.23–29

Several candidates which are either exact or very accurate in
some region of the phase diagram exist. One technique that
provides results directly in the thermodynamic limit is the
numerical linked-cluster expansion (NLCE). For this model it
is accurate30 at high T and large U but the results diverge at
low temperature and weaker U . Data beyond this divergence
can only be obtained with the use of approximate numerical
resummation techniques31 which lack a small parameter and
are therefore uncontrolled. Another technique, variational
Monte Carlo, is based on approximating the true ground-state
wave function at zero temperature by a variationally optimized
trial wave function.32–39 Other Monte Carlo methods, such as
lattice (“determinant”) quantum Monte Carlo (DQMC), are
numerically exact when combined with both a lattice finite
size and a Trotter extrapolation. However, they encounter
a severe sign problem away from half filling. Gaussian,40

diagrammatic,27 and bold-line41 Monte Carlo methods have
been proposed and are currently under investigation.

Away from weak or strong coupling and away from high-
symmetry points (e.g., half filling), the equation of state of
the Hubbard model is only known at high temperature.30

In this work we change this situation by providing the
numerically exact equation of state, with error bars, for the
two-dimensional Hubbard model for interaction strengths
ranging from weakly to strongly coupled, with an emphasis
on doping near to half filled. Our goals are threefold: first, to
provide a numerically exact equation of state in regions that
were previously inaccessible; second, to provide reference data
for use in experimental systems trying to replicate Hubbard
model physics, e.g., cold atomic gas systems, and third, to
provide reliable comparison and benchmark data to which
new numerical and analytical methods can be compared and
for which their reliability can be tested.
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To accomplish these goals we employ the dynamical cluster
approximation (DCA), one of several cluster extensions42–46

to the dynamical mean field theory (DMFT).47–49 DCA is a
controlled technique based on a finite-size cluster embedded
in a bath, which has the number of cluster sites as a
small parameter. DCA on any finite cluster also provides
the full frequency dependence of the Green’s function and
self-energy, but approximates its momentum dependence.
Using the convergence of the DCA to the thermodynamic
limit (TL) as a function of its small parameter we obtain
converged lattice self-energies and single-particle Green’s
functions for the 2D Hubbard model and compute the equation
of state over a range from high temperature, T ≈ 10t , down
to intermediate temperature, T ≈ 0.3t . We explore U = 4,
8, 12 for weak, intermediate, and strong coupling as well as
a range of doping away from half filling from n = 0.85 to
1.0. Where controlled high-temperature results from NLCE
are available, we compare to these. We also show lower
temperature extrapolated NLCE results at select places.

We present the essential theory and outline the computa-
tional technique used in Sec. II. Section III contains our main
results and discussion while Sec. IV concludes. A database
of numerical results for the equation of state of the Hubbard
model along with a detailed description of these results is
included in the Supplemental Material.50

II. THEORY

The Hubbard model Hamiltonian is given by

H = −
∑
〈i,j〉σ

t(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓, (1)

where c
†
iσ and ciσ create and annihilate (respectively) an

electron with spin σ =↑,↓ on site i, niσ = c
†
iσ ciσ is the number

operator, and 〈i,j 〉 denotes a summation over nearest-neighbor
pairs with nearest-neighbor hopping energy, t , which sets the
scale of all energies presented in this work.

We solve the model in the dynamical cluster approximation
(DCA). Within DMFT,47–49 the self-energy is approximated
as a local, momentum-independent quantity. This allows one
to map the problem to the solution of an auxiliary Anderson
impurity model (AIM) of a local impurity in a self-consistently
adjusted mean field instead of the numerically intractable
infinite-lattice model. Cluster extensions are then used to
systematically reintroduce some momentum and frequency
dependence of the self-energy.55 Within DCA,

�(k,ω) =
N∑

K=1

φK (k)�K (ω), (2)

where k is the momentum, ω is frequency, and K is a label for
each of the N patches in a cluster. φK (k) is taken to have value 1
for a momentum k which lies in momentum patch K , and zero
for any k outside of this patch. Hence, the DCA approximation
to the self-energy is a piecewise constant function, though
other forms have been attempted.56,57 As N → ∞, the DCA
momentum-space patchwork becomes a continuum of states
providing exact momentum and frequency dependencies to
the self-energy and Green’s function. In the following we will
present results for the energy, entropy, and nearest- and further-

neighbor spin correlations, as well as specific heat obtained by
DCA on a finite cluster and then extrapolated to the TL. The
kinetic and potential energies can be obtained from49,58

EK =
∑
kσ

(εk − μ)〈c†kσ ckσ 〉

= 2T
∑
k,n

(εk − μ)Tr[G(k,iωn)], (3)

EV = U
∑

i

〈ni↑ni↓〉

= T
∑
k,n

Tr[�(k,iωn)G(k,iωn)], (4)

which are summed over momentum, k, and fermionic Mat-
subara frequencies, iωn = (2n + 1)π/β, and where εk =
−2t(cos kxa + cos kya) is the tight binding dispersion for the
simple square lattice with lattice constant a.

To solve the impurity problem we use the continuous-time
auxiliary field algorithm,15 a continuous-time method59,60

with submatrix updates61 which allows for numerically exact
solutions of large clusters.62 In 2D, the convergence of an in-
tegral over a discretized periodic function as the discretization
becomes finer goes like (N1/2)−2. We therefore expect a linear
convergence as a function of 1/N of local quantities to the
infinite cluster size, 1/N → 0. In this paper we extrapolate
using clusters of N = 20,32,34, and 50 to determine all TL
quantities unless otherwise noted. We present extrapolated
data except where otherwise noted and provide an example
of convergence in Fig. 1 as well as include the data for
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FIG. 1. (Color online) (a) E = EK + EV in units of t , plotted as a
function of the inverse cluster size, 1/N , for T/t = 1.0 and U/t = 8
at densities, n, near half filling. Horizontal dashed lines are results
from NLCE data (Ref. 51). (b) Double occupancy at half filling for
T/t = 1.0 and U/t = 8. Horizontal dashed curves are NLCE data
(Ref. 51) and colored diamonds are values from determinant quantum
Monte Carlo (DQMC) results at and away from half filling (Refs. 52
and 53), and the dashed-dotted line is the value extracted from DQMC
results of Ref. 54 their Fig. 2(c) at half filling.
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finite cluster sizes in the attached Supplemental Material.50

Away from half filling a sign problem occurs.63 This is
most dominant in CT-AUX in a range of n = 0.8 → 1.0.
For these densities, once T/t ≈ 0.6 the sign problem begins
and further reduction in temperature is exponentially more
computationally intensive.

The entropy for a given temperature T and doping n is
obtained from the total energy through

S(T ,n) = S(Tu,n) + E(T ,n)

T
−

∫ Tu

T

E(T ′,n)

T ′2 dT ′, (5)

where S(Tu,n) is the high-temperature, Tu, limit which acts
to offset the entropy such that S(T = 0) = 0. Here we take
Tu/t = 10 and S(Tu,n) from NLCE data.51 The specific heat
can be obtained from the energy without dependence on this
constant offset through the derivative C(T ,n) = ∂E(T )

∂T
.

The DCA construction of Eq. (2) provides momentum-
space variation in the self-energy and Green’s function. By
Fourier transforming to real space we can extract information
on a length scale smaller than the cluster size in addition to
thermodynamic properties. This is done at the cluster level
during the DMFT loop in the QMC impurity solver. We mea-
sure the average occupancy on each lattice site 〈niσ 〉, as well
as the average correlated occupancies 〈niσ njσ ′ 〉. From these
we obtain quantities of interest such as the density per lattice
site, n = 〈ni↑ + ni↓〉, the double occupancy, D = 〈ni↑ni↓〉,
and the spin correlations 〈Sz

i S
z
j 〉 = 〈(ni↑ − ni↓)(nj↑ − nj↓)〉.64

We present such quantities extrapolated to the TL.
We also provide estimates of the uncertainty of our

calculations. For any finite cluster size, the only error is the
stochastic Monte Carlo error of our quantum Monte Carlo
impurity solver, which decreases as the inverse of the square
root of our computational time. For all observables we esti-
mate our uncertainties from the statistical variation between
independent Monte Carlo iterations in a converged DMFT
loop. For functions of observables (e.g., the energy), we apply
a jack-knife procedure. For quantities which are extrapolated
to the thermodynamic limit, we show the error obtained by a
linear regression analysis of the extrapolation to infinite system
size. In this case the errors in extrapolated values represent only
the scatter of the various cluster sizes. This is useful as it gives
a measure of the quality of the extrapolation, and is reasonable
where the statistical fluctuations are much smaller than the
finite-size scatter. This is the case for most of our calculations,
so that we expect that our error is well represented by the linear
regression error.

III. RESULTS AND DISCUSSION

In order to establish the validity of the finite-size extrapo-
lation we first show for a single temperature the calculation of
the total energy, E = EK + EV , where the kinetic (EK ) and
potential (EV ) energies are given by Eqs. (3) and (4). The total
energy is plotted in Fig. 1(a) as a function of inverse cluster
size, 1/N , at a fixed T/t = 1.0 and U/t = 8. Horizontal
lines in Fig. 1 represent NLCE reference data of Ref. 30
which, at these temperatures and fillings, agree precisely
with the extrapolated DCA values. Figure 1(b) shows similar
extrapolation in 1/N for the double occupancy, D = 〈ni↑ni↓〉,
again for fixed T/t = 1.0 and U/t = 8. Dashed horizontal
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FIG. 2. (Color online) The electron density per lattice site, n, as
a function of chemical potential, μ, for the intermediate-coupling
case of U/t = 8 for T/t =0.82, 0.55, 0.25. We choose μ relative to
U/2 so that half filling corresponds to μ = 0. Results from NLCE
and the extrapolated resummations are included for comparison
(Refs. 30 and 51).

lines again represent the NLCE data at U/t = 8, and agree
with the present DCA extrapolation. Our DCA data disagree
with the lattice Monte Carlo calculations of Ref. 54, shown as
the horizontal dashed-dotted line, on the 10% level. However,
our DCA results are in perfect agreement with more recent
DQMC data.52,53 We believe that the discrepancy with Ref. 54
is caused by a finite 
τ Trotter error in the Monte Carlo process
in imaginary time which occurs in that work but which could,
in principle, be controlled.65

In Fig. 2 we show the density n per lattice site for a
fixed U/t = 8. The solid lines are the DCA extrapolations in
1/N of cluster sizes N = 20,32,34,50 to the thermodynamic
limit. At high temperature, T/t = 0.82, we see that the DCA
results agree within error with the extrapolated results of the
numerical linked-cluster expansion calculations30,51 shown as
triangular black points, validating the extrapolation that has
been used at high T . At high temperature the NLCE agrees
with our DCA results. As temperature is reduced, there is an
intermediate regime where the NLCE begins to diverge but
through numerical resummation can be extrapolated to the
correct value which agrees with our numerically exact DCA
calculations. At low temperature this extrapolation of NLCE
data fails while DCA remains accurate. Shown for T/t = 0.55
and more clearly at T/t = 0.25, there is a large range of
n which is not consistently accessible by NLCE. This is in
contrast to the DCA technique which can consistently access
a broad chemical potential range at these temperature.

For large U as temperature is reduced one can see the
formation of an incompressible region near half filling which
occurs in a range of μ around μ = −1 → 0 in the T/t = 0.25
case of U = 8 shown in Fig. 2.30,54 This behavior characterizes
the Mott state at half filling which has previously been
examined in DQMC54 and in cluster DMFT on smaller
clusters.17,66,67 In Ref. 54 the authors traced the range of μ

over which the density was incompressible. This range was
then interpreted as a measure of the size of a gap in the
density of states. In DCA we find a momentum-dependent
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FIG. 3. (Color online) The magnitude of the spin-spin correlation
function |〈Sz

i S
z
j 〉| at half filling as a function of distance, d/a, for

T/t = 0.2 (circles) and 1.0 (squares), for a 16-site (black online) and
50-site (red online) cluster. For T = 1.0 the extrapolation to the TL
is shown, with exponential fit |〈Sz

i S
z
j 〉| = Ae−d/ξ with ξ ≈ 0.43 and

A = 〈Sz
i

2〉 ≈ 0.78.

pseudogap where this incompressibility occurs only in the
antinodal regions of the Brillouin zone in addition to the
interesting Mott physics at low temperature.18 The onset of
this momentum selective incompressibility with temperature
is also signified by a peak in the spin susceptibility at T ∗, which
has previously been interpreted as the pseudogap onset54 and
shown to coincide with the formation of a pseudogap in the
density of states.14

One expects that as temperature is lowered the length scale
of correlations in the system should grow. To ensure that our
clusters have sufficient size to account for this increasing
correlation length, we increase the cluster size until we see
convergence in a quantity of interest. The spin-correlation
function, 〈Sz

i S
z
j 〉, as a function of distance, d = |xi − xj |,

is such a quantity. Since the system is antiferromagnetic we
remove the alternating sign and instead plot the magnitude
for each neighbor distance, |〈Sz

i S
z
j 〉|, in Fig. 3. As can be

seen at high temperature, T/t = 1.0, there is little variation
between a 16-site and 50-site calculation of spin correlations,
shown as black and red squares. One can see that all relevant
correlations are accounted for, as the amplitude of |〈Sz

i S
z
j 〉|

decays to zero within the linear cluster size of the small
cluster. Also shown is the extrapolation of |〈Sz

i S
z
j 〉| to the

thermodynamic limit for T/t = 1.0, which can be reasonably
fit by an exponential decay |〈Sz

i S
z
j 〉| = 〈Sz

i
2〉e−d/ξ as expected

from analytic work on the 2D Hubbard model.68 The spin-spin
correlation length fitting results in ξ ≈ 0.43 which is smaller
than half the linear cluster size for both the 16- and 50-site
cases. Thus there is no new physics in the 50-site case which
is not in the 16-site case at T/t = 1.0. Any difference in results
for thermodynamic properties for increasing cluster size must
be perfectly accounted for by the 1/N DCA scaling. The
utility of this analysis becomes apparent at low temperatures,
illustrated here at T/t = 0.2, again for the N = 16 and
N = 50 cases. While the d = 0 on-site correlations remain
unchanged, the nonlocal correlations differ drastically between
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FIG. 4. (Color online) Double occupancy, D(T ), energy, E(T ),
and nearest-neighbor spin correlations at half filling are shown in
panels (a), (b), and (c), respectively, as functions of T/t at half filling
for U/t = 8. Results are shown for 20 (black) and 50 (red) site cases
as well as extrapolations to the TL (green) as described in the text.
Insets of (a) and (b) are enlargements of the low-temperature regions
of their respective figures. The inset of (b) includes extrapolated
NLCE data (Ref. 30 and 51).

the two cluster sizes. Regardless of the physical or computation
source of this cluster size discrepancy the examination of the
spin-spin correlations gives an excellent metric to determine
whether sufficiently large clusters have been included and
allows us to overcome this issue at low temperature by
extrapolating only with clusters large enough to include all
relevant correlations. For the data presented in this work, this
will manifest as a natural minimum accessible temperature
based on our maximum cluster size of 50 sites. This minima
can be overcome by extrapolating with larger cluster sizes, but
the precise clusters required become a detail of the observed
spin correlations as in Fig. 3. More importantly, from this, one
can see to what level spin-spin correlations are maintained in
various cluster sizes.

In the infinite-U limit a system should contain no double
occupancy at half filling but for any finite U this is not the
case. In Fig. 4(a) we show the double occupancy obtained
from clusters of size N = 20 and 50 and in the extrapolation
to the TL. At very low temperature we see in the case of
N = 20 that the expected reduction in double occupancy
for reduced temperature begins to reverse below T ≈ 0.5.54

We also note (see inset) that as we push towards N = 50
and the TL that the double occupancy at low temperature
increases further. The rise in double occupancy, which is
related to the potential energy, coincides with a continually
decreasing total energy shown in the inset of Fig. 4(b).
This indicates a reduction in kinetic energy which allows
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us to understand the rise in double occupancy as a physical
consequence of the electrons becoming localized. This same
effect has been phrased previously as a consequence of a
low-temperature increase in the local spin moment, 〈Sz

i
2〉 for

reduced temperatures caused by a rise in double occupancy.64

Examining higher temperature there is a behavioral shift in
the double occupancy. This occurs in the range T/t = 1.0 →
2.0 where the double occupancy changes from the roughly
constant value of D = 0.05 to having a continued increase
with temperature. With this in mind we can examine the
low-temperature behavior of the energy in Fig. 4(b). At high
temperatures we see a rise in energy which mimics the rise
in D above T/t = 2.0. At low temperatures we see the need
for large cluster sizes. For the smaller cluster of N = 20 the
energy is nearly smooth to temperatures as low as 0.1t . We
see however a shift which occurs only at low temperatures
in the large clusters. This shift occurs at a temperature which
reasonably agrees with the previously identified pseudogap
temperature scale, T ∗ ≈ 0.3t ,54 the temperature below which
a reduction of the density of states is observed to occur in the
antinodal direction but not in the nodal direction.14,64 While
this feature is present in the 20-site case it is only extremely
weak and, with the exception of Ref. 69, has been mostly
unmentioned in previous works which considered only smaller
clusters.

We note the agreement of our results with extrapolated
NLCE data51 shown for intermediate temperatures in the inset
of Fig. 4. We also examine the spin correlations, 〈Sz

i S
z
j 〉nn, over

the set of nearest neighbors (nn) with variation in temperature
plotted in Fig. 4(c). However, in this case we have omitted
the data points at the lowest temperatures since there the
uncertainties in this quantity become too large for a reliable
extrapolation.
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FIG. 5. (Color online) Energy, E(T ), and entropy, S(T ), as
functions of T/t at half filling extrapolated from DCA data to the
TL for U/t = 4, 8, and 12.

In Fig. 5 we present results of the energies from DCA
extrapolated to the TL for varied interaction strength at half
filling. As is apparent in other works,17,30,66,67 the U = 4 case
does not show an incompressible phase at these temperatures.
It is expected that the incompressible regime will have some
impact on the intermediate and strongly coupled energies.
While the effect is subtle in the energy, the cumulative effect
on the entropy, shown in Fig. 5(b), results in a decrease in
S(T ) below T ∗. On physical grounds this represents the loss
of available thermal configurations at finite temperature as
the electronic density of states becomes gapped and enters a
partially gapped pseudogap state. This momentum-selective
Mott transition is the same physics which explains the
partially incompressible region of densities near half filling
at, for example, T = 0.25 in Fig. 2 and may may have
consequences for the interplay between superconductivity and
the pseudogap.16–18,58 Though such a depression exists in
the strong coupling case for N = 50 we cannot accurately
extrapolate to the TL below this temperature with our current
range of cluster sizes and limit our present work to T > 0.3t

at the value of U/t = 12.
In Figs. 6(a) and 6(b) we present for U/t = 8 the energy

and entropy respectively for doping values near to but away
from half-filling. In addition, the energies also provide direct
access to the electronic specific heat shown in Fig. 6(c). Our
C(T ) data are obtained by taking finite differences in the
spline interpolation of neighboring energy values and therefore
amplifies the numerical noise of Fig. 6(a). For C(T ) we omit
error bars as the value and uncertainty are somewhat dependent
upon the method of interpolation and differentiation. Despite
this, our results agree with the extrapolated NLCE data at
half filling.70 We have also extended the present work to
include three dopings, of n = 0.85, 0.90, and 0.95, away from
half filling in the region most difficult for DCA calculations
due to the occurrence of a sign problem. Here finite-size
issues in DCA result in deviations from standard DMFT
results. Though not explored here, this present work shows
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FIG. 6. (Color online) Energy, E(T ), entropy, S(T ), and specific-
heat capacity, C(T ), as functions of T/t extrapolated to the TL for
U/t = 8 for filling values of n = 0.85, 0.9, 0.95, and 1.0 (half filled).
The extrapolated NLCE data in (c) can be found in Ref. 70.
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that coarsely gridded and interpolated DCA data can be used
to obtain precise specific-heat data at dopings far away from
half filling, where other techniques cannot converge at low
temperatures. Other Monte Carlo works54,71,72 obtained on
finite systems have identified the two main features of the
specific heat, namely the low-temperature spin and high-
temperature charge peaks. Here we present accurate results of
the high-temperature charge peak (near T/t = 2.0) in the TL.
At low temperatures we simply remark that the impact of the
shift in energy, which is only apparent for large clusters, acts
to create the spin peak in C(T ).70 For cold-atom experiments
both of these peaks in C(T ) will act as a strong barriers to
further cooling of an atomic gas system.

The results presented in Figs. 1 to 6 include only a small part
of the numerical results which we make available in this paper.
For the sake of brevity we organize these additional results
in the Supplemental Material50 which contains a detailed
explanation of the data sets. In addition to the U/t = 8 data
we have presented here, we also include in the Supplemental
Material the extrapolations to the thermodynamic limit for
U/t = 4 and 12 both at and away from half filling. We expect
these results to be a useful reference for comparison with other
techniques in parts of phase space (in particular at low T , away
from half filling) where no previous controlled Monte Carlo
results exist.

IV. SUMMARY AND CONCLUSIONS

We have calculated the full thermodynamics of the 2D
Hubbard model by extrapolating DCA results on large clusters

to the thermodynamic limit. Our results are numerically exact
and, at high temperature, are validated against numerical
linked-cluster expansion results. We have extended our param-
eter range substantially beyond what was previously shown.
We provide results in the thermodynamic limit, for lower
temperatures as well as for a wide range of filling values. We
assert that our results are numerically exact within the errors
we provide, verified by explicitly examining the range of spin
correlations in real space. From this we can observe that our
choice of cluster sizes has included all correlations.

We note the occurrence of low-temperature features in
energy and entropy which seem to correlate with the onset
of pseudogap physics at T ∗ which are not captured directly
in thermodynamic quantities for small clusters. Finally, we
present exact results for nearest-neighbor spin correlations.
Since 〈Sz

i S
z
j 〉nn is measurable in cold-atom experiments, it

may be used for thermometry.73,74 Accurate values and reliable
error bars are essential for this purpose. We have shown that
DCA is an ideal technique for establishing the temperature
dependence of these correlations, and have provided tables
in the Supplemental Material50 which contain reference data
needed for alternate techniques.

ACKNOWLEDGMENTS

We thank Ehsan Khatami for useful discussions and the
extrapolated NLCE reference data we present in this paper, and
Richard Scalettar for investigating the discrepancy with Ref. 54
and providing us with updated DQMC data.53 Our continuous-
time QMC codes are based on the ALPS libraries.75,76

*jpfleblanc@gmail.com
1D. Zanchi and H. J. Schulz, Phys. Rev. B 54, 9509 (1996).
2T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B.
White, Phys. Rev. Lett. 95, 237001 (2005).
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