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Anomalous Josephson current, incipient time-reversal symmetry breaking, and Majorana bound
states in interacting multilevel dots
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We study the combined effects of spin-orbit interaction, magnetic field, and Coulomb charging on the
Josephson current-phase relation, I (ϕ), for a multilevel quantum dot tunnel contacted by two conventional s-wave
superconductors with phase difference ϕ. A general model is formulated and analyzed in the cotunneling regime
(weak tunnel coupling) and in the deep subgap limit, fully taking into account interaction effects. We determine
the conditions for observing a finite anomalous supercurrent Ia = I (ϕ = 0). For a two-level dot with spin-orbit
coupling and arbitrarily weak Zeeman field B, we find the onset behavior Ia ∝ sgn(B) in the presence of inter-
actions, suggesting the incipient spontaneous breakdown of time-reversal symmetry. We also provide conditions
for realizing spatially separated (but topologically unprotected) Majorana bound states in a double dot variant of
this system. Here, Majoranas are predicted to leave a clear signature in the 2π -periodic current-phase relation.
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I. INTRODUCTION

Studies of the current-phase relation (CPR) in a Josephson
junction, where a weak link connects two superconductors
with phase difference ϕ, have provided ever new surprises over
the past fifty years.1 Nowadays, Josephson junctions showing
novel and rich behavior can be formed by sandwiching a
nanoscale conductor—collectively referred to as “quantum
dot” below, e.g., a semiconductor dot or nanowire, or a single
molecule—between two superconductors.2,3 The interest in
such nanoscale hybrid devices has sharply increased recently
due to technological advances, allowing to fabricate and
manipulate well-characterized setups and raising the hope
for new applications, as well as by the prospect of realizing
Majorana fermions. To mention just a few key experiments,
gate-tunable supercurrents through the two-dimensional elec-
tron gas in semiconductors have been demonstrated,4–8 the
CPR of superconducting atomic point contacts has been
measured using a loop geometry,9 and the direct spectroscopy
of Andreev bound states in carbon nanotube devices was
reported.10 The phenomena studied below will be particularly
pronounced for strong spin-orbit coupling (SOC) in the
nanoscale conductor. Note that strong SOC is naturally present
in InAs or InSb,11–20 and in self-assembled SiGe quantum
dots.21 SOC is often responsible for nontrivial topological
properties and the emergence of Majorana fermions in very
similar settings.22–28 Majoranas have attracted wide attention
after recent experiments reported first transport signatures such
as those expected for Majorana fermions.29–32

In this paper, we study a general model for the equilibrium
Josephson current through a multilevel quantum dot tunnel-
contacted by two conventional s-wave BCS superconductors
with phase difference ϕ and superconducting gap �. Our
dot Hamiltonian Hd , see Eq. (2.1) below, takes into account
arbitrary SOC terms, magnetic (orbital and Zeeman) field
effects, and Coulomb charging interactions. Moreover, the
tunnel contacts are described by a general tunneling Hamilto-
nian Ht , see Eq. (2.7) below, allowing for interorbital phase
shifts and asymmetric contacts. Our analysis is mostly devoted

to two complementary regimes where analytical progress is
possible, namely the cotunneling regime, realized for weak
tunneling, and the deep subgap regime (“atomic limit”), where
� represents the largest energy scale. We explore in detail
the ground-state Josephson CPR, I (ϕ), which can reveal two
particularly interesting phenomena in such a setting, namely,
the anomalous Josephson effect and Majorana bound states
(MBSs).

The anomalous Josephson effect is characterized by a finite
supercurrent flowing at zero phase difference, Ia ≡ I (ϕ =
0) �= 0. Comparing to the conventional Josephson relation,
I (ϕ) = Ic sin ϕ with critical current Ic, this is equivalent to a
ϕ0 phase shift, i.e., Ia = Ic sin ϕ0. Junctions with Ia �= 0 are
thus commonly referred to as “ϕ0 junctions,” where SOC is
typically a crucial ingredient. The Josephson CPR for quantum
dots with SOC has been studied in many theoretical works,33–44

and the conditions for ϕ0 junction behavior have been clarified
in the noninteracting case.34,35,39–41 In contrast to the widely
known 0 and π junctions,1 where ϕ0 = 0 and ϕπ , respectively,
a general ϕ0 junction can have direction-dependent critical
currents,39,43 i.e., Ic1 = max[I (ϕ)] and Ic2 = max[−I (ϕ)] are
different. The ϕ0 junction can thus act as a phase battery45

or as a superconducting rectifier,39,43 promising novel de-
vice applications. While it is well established45–49 and also
experimentally observed50 that spin-active interfaces, e.g.,
for a ferromagnetic “dot” region, allow one to realize a
ϕ0 junction, we here focus on semiconducting or molecular
systems with spin-conserving and spin-independent interfaces,
where ϕ0-junction behavior is quite nontrivial. ϕ0 junctions
were also predicted but never observe in unconventional
superconductors.51–55

So far, the necessary conditions for anomalous supercur-
rents have only been determined for noninteracting dots, where
one needs finite SOC and a suitably oriented magnetic field. In
addition, asymmetric tunnel contacts with noncommuting hy-
bridization matrices, �(L) �= �(R), are required. This imposes a
chirality condition that is necessary to have Ia �= 0, see Ref. 41
and Sec. III below. We find that the Coulomb charging energy
Ec does not change these necessary conditions, but it can
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be responsible for a dramatic enhancement of the anomalous
supercurrent. The most interesting enhancement is related to an
interaction-induced behavior with Ia ∝ sgn(B) for arbitrarily
weak time-reversal symmetry (TRS) breaking field B. Such a
behavior suggests that TRS is spontaneously broken. However,
thermal fluctuations can suppress Ia , and we therefore interpret
this enhancement of Ia compared to the usual noninteracting
behavior,41 Ia(B → 0) ∝ B, as “incipient” spontaneously
broken TRS. This effect generally happens whenever two
B = 0 Kramer’s partner states contribute with opposite sign to
Ia . A small magnetic field then lifts the degeneracy, while the
Coulomb interactions create a gap and effectively project away
the higher energy state. As a consequence, interaction-induced
enhancement is especially pronounced for small B and if Ec

exceeds all other energy scales of interest. Concrete parameter
regimes where this effect occurs will be discussed in Sec. IV.
We mention in passing that spontaneously broken TRS was
also reported in a recent mean-field study55 for a single-level
Anderson dot between a two-band (s±) and a single-band
(s-wave) superconductor. However, this effect can be traced
back to phase frustration55 and strongly differs from our
scenario. Technically related works have also studied the
supercurrent in the cotunneling regime for dots coupled to
a local phonon mode56 and to a two-level system.57 Other
studies of the Josephson effect for interacting double dots have
either disregarded SOC58–60 or did not address the phenomena
investigated here.61

Besides analyzing the anomalous supercurrent, in Sec. V,
we also address the possibility of MBS formation in an
interacting double dot with SOC and Zeeman field. The double
dot is contained as special case in our general multilevel
Hamiltonian, and our theory is directly applicable to such
a two-orbital case with well separated orbitals. Majorana
fermions are emergent quasiparticles that equal their own
antiparticle. They are of much interest in the context of
topological quantum computation.22–26 When our dot region
corresponds to a semiconductor nanowire, one effectively can
realize Kitaev’s chain model, which (in the right parameter
regime) allows for a pair of topologically protected MBSs
localized near the nanowire ends.27,28 (“Topological protec-
tion” implies that small parameter changes not closing a bulk
gap cannot remove the MBSs.) As discussed by Lejinse and
Flensberg,62 see also Refs. 63 and 64, a simpler variant,
albeit with topologically unprotected Majorana fermions, can
be realized for two Coulomb-blockaded single-level dots
coupled to a superconductor. Similarly, in our setting, a pair
of spatially separated MBSs can also be realized. Remarkably,
these Majoranas could be detected through the highly unusual
features in the 2π -periodic CPR described below.

The structure of the remainder of this article is as follows. In
Sec. II, a general model for the S-dot-S hybrid structure is in-
troduced. We allow for arbitrary single-particle Hamiltonians
in the dot region, and take into account Coulomb charging
effects. Integrating out the noninteracting fermions in the
superconducting electrodes, we arrive at an effective partition
function expressed in terms of dot variables only, which then
allows to extract the Josephson CPR by a phase derivative.
For concrete results, we employ a generic two-orbital dot
with a Zeeman field and (Rashba or Dresselhaus) SOC. In
Sec. III, we discuss the two approaches used in this work.

First, we study the cotunneling regime by perturbation theory
in the tunnel couplings. The general ground-state CPR is
derived, see Eq. (3.1), with Ia expressed in terms of matrices
J and Q, see Eq. (3.4). J depends only on single-particle
quantities and imposes necessary conditions for Ia �= 0, while
Q encapsulates interaction effects. As second approach, we
study the “atomic limit,” � → ∞, where the proximity effect
of the superconducting leads is contained in an effective dot
Hamiltonian. In Sec. IV, we address the anomalous Josephson
effect for a two-level dot, and in Sec. V, we show that a
pair of spatially separated MBSs emerges for suitably chosen
parameters in a double dot device. Finally, we offer some
concluding remarks in Sec. VI. We often use units with
h̄ = e = kB = 1.

II. MODEL AND EFFECTIVE PARTITION FUNCTION

A. General model

We study a general model describing the Josephson effect
in a large variety of interacting nanostructures, where a central
region (dot) is tunnel-coupled to two conventional s-wave
superconducting leads, H = Hd + Ht + Hl . Following stan-
dard arguments,65 we take into account Coulomb interactions,
SOC, and magnetic field effects only on the dot, but not in
the bulk electrodes nor in the tunnel contact. For M relevant
(spin-degenerate) electronic orbitals in the central dot region,
the dot Hamiltonian is taken in the form

Hd =
∑

nσ,n′σ ′
d†

nσ hnσ,n′σ ′dn′σ ′ + Ec(N̂ − ng)2, (2.1)

where the operator d
†
nσ creates a dot electron in a single-particle

state with orbital quantum number n = 1, . . . ,M and spin
projection σ = ↑,↓. The 2M × 2M Hermitian matrix hnσ,n′σ ′

encapsulates the single-particle content, including SOC and
magnetic field effects. At this stage, we make no assump-
tions about the SOC, allowing for rather general statements
regarding the anomalous Josephson effect. Importantly, the h

matrix can always be diagonalized by a unitary transformation,
U †hU = diag(Eν), with the single-particle energies Eν (ν =
1, . . . ,2M). We then have associated fermionic operators, cν ,
with

dnσ =
2M∑
ν=1

Unσ,ν cν, (2.2)

which correspond to single-particle eigenstates of the isolated
dot. The dnσ operators instead will be taken to represent dot
fermion modes tunnel-coupled to the leads. Both representa-
tions are, of course, equivalent, and the benefits of using the cν

should become clear below. After the unitary transformation,

Hd =
∑

ν

Eνc
†
νcν + Ec(N̂ − ng)2. (2.3)

The capacitive Coulomb charging term is only sensitive to the
total dot fermion number operator,

N̂ =
∑
nσ

d†
nσ dnσ =

∑
ν

c†νcν, (2.4)

where the charging energy, Ec, sets the energy cost for adding
or removing electrons. The real number ng is proportional to a
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backgate voltage and regulates the average number of electrons
on the dot. It is worth mentioning that the above charging term
generically describes the dominant interaction contribution.65

For later use, we also define the Coulomb energy differences
Wk (integer k),

Wk = Ec(N0 + k − ng)2 − Ec(N0 − ng)2, (2.5)

where the integer N0 denotes the ground-state electron number
on the dot.

The left and right (j = L,R) superconducting leads are
described by standard bulk BCS Hamiltonians. For simplicity,
we assume that they have identical gap � and normal-state
dispersion relation ξk, with chemical potential μS = 0.66

Moreover, we use a gauge where the order parameter phases
appear in the tunneling Hamiltonian Ht only, and � � 0 is real-
valued. It is then convenient to switch to particle-hole (Nambu)
space and introduce the spinor 	jk = (cj,k,↑,c

†
j,−k,↓)T , where

c
†
j,k,σ creates an electron in lead j with momentum k and spin

projection σ . The lead Hamiltonian is then given by

Hl =
∑

j=L,R

∑
k

	
†
jk

(
ξk �

� −ξk

)
	jk. (2.6)

Finally, we come to Ht , where a complex-valued tunneling
matrix element tj,k,σ ;n,σ ′ gives the probability amplitude for
transfer of an electron from dot state (n,σ ′) to lead state
(j,k,σ ). To simplify the analysis, we adopt the standard
wide-band approximation for the leads65 and neglect the
k dependence of the tunneling matrix elements. Leaving
aside spin-active interfaces, tunneling is assumed to be spin-
conserving and spin-independent, tj,k,σ ;nσ ′ = δσσ ′ tj,n, and Ht

is determined by 2M complex-valued parameters tj,n. Em-
ploying the Nambu spinor notation also for the dot fermions,
Dn = (dn,↑,d

†
n,↓)T , we obtain

Ht =
∑

j=L,R

∑
k

M∑
n=1

	
†
jkTj,nDn + H.c.,

(2.7)

Tj,n =
(

eiφj /2tj,n 0

0 −e−iφj /2t∗j,n

)
,

where φj is the superconducting phase in lead j .

B. Current-phase relation

In this paper, we study the equilibrium Josephson CPR in
the zero-temperature limit, T → 0. A formally exact expres-
sion for the CPR can be obtained from the partition function,
Z = Tre−βH , with β = 1/T . We start by employing Wick’s
theorem to trace out the noninteracting lead fermions. In the
interaction picture, let H0 = H − Ht govern the imaginary-
time (τ ) evolution. For arbitrary operator O, we use the
notation67

O(τ ) = eH0τOe−H0τ , Ō(τ ) = eH0τO†e−H0τ . (2.8)

The partition function then reads

Z = TrdTrl(e
−βH0T e− ∫ β

0 dτHt (τ ))

= ZlTrd (e−βHdT e−St ), (2.9)

where T denotes time ordering. The traces Trd,l are over
dot and lead Hilbert spaces, respectively, with Zl = Trle−βHl .
In Eq. (2.9), we have averaged over the leads, and using
〈Ht (τ )〉l = Z−1

l Trl[e−βHl Ht (τ )] = 0, Wick’s theorem implies
that St in Eq. (2.9) is completely determined by the Gaussian
correlator

St = −1

2

∫ β

0
dτdτ ′〈T Ht (τ )Ht (τ

′)〉l . (2.10)

Inserting Ht [see Eq. (2.7)], we obtain

St = 1

2

∫ β

0
dτdτ ′ ∑

nn′
D̄n(τ )�nn′(τ − τ ′)Dn′(τ ′), (2.11)

where �nn′ (τ − τ ′) = 2
∑

j T
†
j,nGl(τ − τ ′)Tj,n′ is expressed

in terms of the lead Green’s function,

Gl(τ − τ ′) = −
∑

k

〈T 	jk(τ )	̄jk(τ ′)〉l

= −πν0T
∑
m

e−iωm(τ−τ ′)√
ω2

m + �2

(
iωm �

� iωm

)
,

(2.12)

which is identical for both leads. Here, we have employed
the wide-band approximation, with normal-state lead density
of states ν0 = ∑

k δ(ξk), and fermion Matsubara frequencies
ωm = πT (2m + 1) (integer m). The kernel � in Eq. (2.11),
describing the effects of the traced-out leads on the dot
fermions, thus reads

�nn′ (τ ) =
∑

j=L,R

�
(j )
nn′

(
∂τ �e−iφj

�eiφj ∂τ

)
f (τ ), (2.13)

where the tunnel contacts are described by Hermitian M × M

hybridization matrices,

�
(j )
nn′ = 2πν0t

∗
j,ntj,n′ , (2.14)

and we use the auxiliary function

f (τ ) = T
∑
m

e−iωmτ√
ω2

m + �2
. (2.15)

Notice that � factorizes in orbital and Nambu subspaces.
The Josephson current flowing through contact j to the dot

follows from the ground-state average1

Ij = 2e

h̄
∂φj

F, (2.16)

where F = −T ln Z is the free energy. Current conservation
dictates IL,R = ±I (ϕ), where ϕ = φL − φR is the gauge-
invariant phase difference. Using Eqs. (2.9) and (2.16), the
T = 0 CPR, I (ϕ), will be computed in Sec. III for the
cotunneling regime and in the atomic limit.

C. Two orbital levels

For concrete results, we will consider a generic model with
M = 2 dot orbital levels, which provides a minimal setting
for studying SOC effects, the anomalous supercurrent, and
Majorana fermions. The 4 × 4 matrix h describing the single-
particle spectrum of the dot Hamiltonian Hd [see Eq. (2.1)] is
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taken in the generic form

h = (μτ0 + ετz)σ0 + Bτ0σz + ατy[cos(χ )σz + sin(χ )σy],

(2.17)

where τx,y,z (σx,y,z) are Pauli matrices in orbital (spin) space;
the respective unity matrices are τ0 (σ0). The physics is here
determined by the interplay of a Rashba-type SOC, whose
strength is parameterized by the energy scale α, and the
magnetic Zeeman field, with energy scale B. In Eq. (2.17),
0 � χ � π denotes the angle between the effective spin-orbit
field and the Zeeman field. The bare [α = B = 0] dot levels
are μ ± ε. For the specific 2D dot model studied in Ref. 37, it is
straightforward to explicitly determine the model parameters
entering Eq. (2.17).

Next we express the 2 × 2 (in orbital space) hybridization
matrices [see Eq. (2.14)] in the form

�(j=L,R) = γj

(
eλj eiδj

e−iδj e−λj

)
, (2.18)

where γj � 0 gives the overall hybridization strength of the
respective contact, λj parametrizes the orbital asymmetry (for
λj = 0, both orbitals couple symmetrically to the j th lead),
and δj is an interorbital phase shift. Since δL,R is independent
of spin, these phase shifts have nothing to do with SOC. For
instance, they could be caused by orbital magnetic fields; for
the dot model proposed in Ref. 37, this follows by virtue of a
gauge transformation transferring the orbital field dependence
to the tunneling Hamiltonian. The phases δL,R may also be
influenced by the dot geometry, in particular, by contact
asymmetries. It is worth stressing that for α �= 0 and � �= 0,
one cannot gauge away the resulting phases δL,R . For further
convenience, we define the relative interorbital phase shift as

δ = δL − δR. (2.19)

In the absence of SOC, i.e., for α = 0, the dot Hamiltonian is
diagonal in orbital space, and then only the phase difference δ

cannot be gauged away.
We note that our assumption of k-independent tunneling

matrix elements implies that the phase shifts δj are also
momentum independent. If this assumption is violated, the δj

are best treated as statistical variables. The resulting average
may suppress Ia while leaving critical currents basically
unaffected. Since such generalizations are straightforward to
implement, we here proceed by assuming k-independent phase
shifts δL,R .

III. JOSEPHSON CURRENT

In this work, we compute the Josephson current for the
above model using two complementary vantage points, namely
by perturbation theory in the cotunneling regime and by
employing an effective Hamiltonian valid in the deep subgap
regime.

A. Cotunneling regime

The cotunneling regime is realized when all eigenvalues
of the hybridization matrices �(L,R) are small against �. In
that case, perturbation theory in these Hermitian matrices is
well-defined and allows for progress.68 Since St ∝ �(L,R), see

Eqs. (2.11) and (2.13), the free energy F can be directly
expanded in powers of St . Starting from Eq. (2.9) and using
∂φj

〈St 〉 = 0, the lowest-order contribution to the Josephson
current (2.16) is of order �L�R and reads Ij = −2T 〈St∂φj

St 〉,
where 〈· · ·〉 denotes the ground-state expectation value for
the closed dot Hamiltonian Hd . Inserting Eq. (2.11), we find
IL,R = ±I (ϕ), in accordance with current conservation, where

I (ϕ) = I0 sin ϕ + Ia cos ϕ (3.1)

with the currents(
I0

iIa

)
=

∑
nmn′m′

(
�(L)

nm�
(R)
n′m′ + (L ↔ R)

�(L)
nm�

(R)
n′m′ − (L ↔ R)

)

× �2

2β

∫ β

0
dτ1dτ2dτ ′

1dτ ′
2 f (τ1 − τ2)f (τ ′

1 − τ ′
2)

×〈T dn↓(τ1)dm↑(τ2)d̄n′↑(τ ′
1)d̄m′↓(τ ′

2)〉. (3.2)

The critical current is Ic =
√

I 2
0 + I 2

a , where we find Ic1 =
Ic2 = Ic in the cotunneling regime. It is now crucial to use
the unitary transformation U in Eq. (2.2) to switch from the
dnσ to the cν fermions. The latter represent the eigenstates
of the isolated interacting dot. Using f (τ ) = f (−τ ), we
observe that only the antisymmetric part of the transformed
hybridization matrices enters the expressions for I0,a . In terms
of the antisymmetric 2M × 2M matrices,

�̃(j=L,R)
νμ =

∑
nm

�(j )
nm(Un↓,νUm↑,μ − Un↓,μUm↑,ν), (3.3)

we find from Eq. (3.2) for the anomalous Josephson current

Ia = e�2

h̄

∑
ν>μ

Jνμ Qνμ, (3.4)

with the symmetric 2M × 2M matrices

Jνμ = Im
(
�̃(L)

νμ [�̃(R)]∗νμ

)
, (3.5)

Qνμ = −T

∫ β

0
dτ1dτ2dτ ′

1dτ ′
2 f (τ1 − τ2)f (τ ′

1 − τ ′
2)

×〈T cν(τ1)cμ(τ2)c̄ν(τ ′
1)c̄μ(τ ′

2)〉. (3.6)

The current I0 follows in similar form,

I0 = e�2

h̄

∑
ν>μ

Re
(
�̃(L)

νμ

[
�̃(R)

νμ

]∗)
Qνμ. (3.7)

We can now use Eq. (3.4) to infer general conditions for the
anomalous Josephson effect to exist within the cotunneling
regime. As necessary condition for Ia �= 0, we observe that
Jνμ �= 0 must be satisfied for at least one index pair ν > μ.
Note that Jνμ depends only on single-particle quantities, such
as tunneling matrix elements, SOC, and Zeeman fields. The
role of interactions is encoded in the Q matrix and can
be crucial in breaking the balance between time-reversed
processes, which may then induce the anomalous Josephson
effect. Note that this condition is very general and holds for
arbitrary matrices h determining the single-particle spectrum.

It is interesting to see what happens for a single-level
dot, M = 1, where �(L) and �(R) are just real numbers.
The antisymmetric �̃(L,R) matrices in Eq. (3.3) are then
fully determined by �̃

(j )
21 = �(j )(U↓,2U↑,1 − U↓,1U↑,2), which
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immediately yields J = 0 in Eq. (3.5). Hence no anomalous
Josephson current is possible in a single-orbital dot, even when
interactions are included. A minimal model for this effect has
to start from M = 2 orbital dot levels, see Sec. IV, where we
study the conditions for the anomalous Josephson effect in a
concrete and experimentally relevant setting.

General conditions (beyond the cotunneling regime) for
the anomalous Josephson effect can also be deduced directly
from symmetry considerations. We exemplify this here by
analyzing the supercurrent through an inversion-symmetric
two-dimensional dot with in-plane (purely Zeeman) magnetic
field B and SOC strength α. A spatial inversion operation,
(x,y) → (−x, − y), is implemented by (i) exchanging the
lead indices, L ↔ R, (ii) inverting the phase difference,
ϕ → −ϕ, (iii) changing the sign of the SOC, α → −α, and
(iv) also changing the sign of the (in-plane) Zeeman field,
B → −B. Since I (ϕ) → −I (−ϕ) under spatial inversion,
Eq. (3.1) implies that the anomalous supercurrent must satisfy
the symmetry relation

Ia(�(L),�(R),B,α) = −Ia(�(R),�(L), − B, − α). (3.8)

Similarly, we deduce an additional condition from the super-
current behavior under a time reversal operation,

Ia(�(L),�(R),B,α) = −Ia(�(L),�(R), − B,α), (3.9)

which implies that Ia is always odd in B.
Let us next address the Q matrix in Eq. (3.6), which only

depends on properties of the closed dot. In the cotunneling
regime, interactions can affect the CPR only through this
matrix. In general, 4! = 24 terms involving all possible
permutations of time-ordered fermion operators will be gen-
erated from Eq. (3.6). However, if the closed dot has a
nondegenerate interacting ground state |G〉, Eq. (3.6) allows
for simplifications in the β → ∞ limit of interest here.
Excluding “accidental” degeneracies, this step assumes that
a TRS-breaking magnetic field is present. Effectively, only
three permutations in Eq. (3.6) are relevant and Qνμ can be
expressed in terms of the three real-valued functions

Qi(εa,εb,εc) = 1

β

∫ β

0
dτa

∫ τa

0
dτb

∫ τb

0
dτc

∫ τc

0
dτd

× e−εa (τa−τb)−εb(τb−τc)−εc(τc−τd )

×

⎧⎪⎨
⎪⎩

f (τa − τb)f (τc − τd ), i = 1,

f (τa − τd )f (τb − τc), i = 2,

f (τa − τc)f (τb − τd ), i = 3,

(3.10)

where εa,b,c � 0 are possible excitation energies. Switching to
the frequency domain and using Eq. (2.15), we obtain69

Qi =
∫

dω1dω2

(2π )2

1√(
ω2

1 + �2
)(

ω2
2 + �2

)

×

⎧⎪⎨
⎪⎩

(1 − δεb,0)/[(iω1 + εa)(iω2 + εc)εb], i = 1,

1/[(iω1 + εa)(iω1 + εc)(iω1 + iω2 + εb)], i = 2,

1/[(iω1 + εa)(iω2 + εc)(iω1 + iω2 + εb)], i = 3.

(3.11)

Notice that the Qi are invariant under the exchange εa ↔
εc. Consider now the ground state |G〉 of the closed dot
Hamiltonian Hd in Eq. (2.3), with N0 electrons on the dot,
N̂ |G〉 = N0|G〉. Assuming that |G〉 is nondegenerate, the
filling factor nν for each single-particle state ν = 1, . . . ,2M

is known. Arranging the Eν as ordered sequence, E1 � E2 �
· · · � E2M , the result is

nν = 〈G|c†νcν |G〉 =
{

1, ν � N0,

0, ν > N0.
(3.12)

For given index pair ν > μ, three possibilities arise, namely
(nν,nμ) = (0,0), (1,1), and (0,1). It is then straightforward
to determine the excitation energies εa,b,c by comparing
Eqs. (3.6) and (3.10) in those three cases. To state the final
result for Q, it is useful to introduce the positive energies

Ẽν = (1 − 2nν)Eν + W1−2nν
,

(3.13)
Ẽνμ = (1 − 2nν)Eν + (1 − 2nμ)Eμ + W2−2nν−2nμ

,

with the Coulomb energy differences Wk in Eq. (2.5). (Note
that for Ec = 0, we have 1 − 2nν = sgn(Eν) and hence Ẽν =
|Eν |.) We then obtain the symmetric Q matrix

Qνμ = (1 − 2nν)(1 − 2nμ)
[
2Qi1 (Ẽν,Ẽνμ,Ẽμ)

+Qi2 (Ẽν,Ẽνμ,Ẽν) + Qi2 (Ẽμ,Ẽνμ,Ẽμ)

+ 2Qi3 (Ẽν,0,Ẽμ)
]
, (3.14)

where the indices are i1 = i2 = 1 and i3 = 3 for nν = nμ. For
nν �= nμ, we instead have i1 = i3 = 2 and i2 = 3.

We proceed by discussing the limit of strong Coulomb
blockade. For Ec → ∞, the cotunneling supercurrent is
generally strongly suppressed. Technically, this suppression
can be seen from Eq. (3.11): all excitation energies scale as
εa,b,c ∝ Ec → ∞, which implies Qνμ → 0 and thus I0,a → 0.
This argument only breaks down for half-integer values of ng ,
where the strong charging term in Hd allows for two degenerate
charge states with particle numbers N0 = N0,± ≡ ng ± 1/2.
Let us therefore now focus on half-integer values of ng , where
the single-particle spectrum, {Eν}, ultimately determines the
ground state and, in particular, which particle number N0

is realized (either N0,+ or N0,−). Using that for N0 = N0,±,
we have the Coulomb energy difference W∓1 = 0, Eq. (3.14)
simplifies to

Q(N0,+)
νμ

= 2nνnμQ3(−Eν,0, − Eμ)

− [(1 − nν)nμQ3(−Eμ,Eν − Eμ, − Eμ) + (ν ↔ μ)],

Q(N0,−)
νμ

= 2(1 − nν)(1 − nμ)Q3(Eν,0,Eμ)

− [(1 − nν)nμQ3(Eν,Eν − Eμ,Eν) + (ν ↔ μ)].

(3.15)

It is instructive to examine Eq. (3.15) for a spin-degenerate
single-level (M = 1) dot without SOC and without magnetic
field. Both single-particle states (ν = ↑, ↓) then have identical
energy, say Eν = x� with some dimensionless parameter x,
and Eq. (3.15) yields70

Q↑↓ = Q3(|x|�,0,|x|�) ×
{

2, N0 = 0,2,

−1, N0 = 1,
(3.16)
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where Eq. (3.11) gives (x > 0)

Q3(x�,0,x�) = 1

π2�3

(π/2)2(1 − x) − arccos2x

x(1 − x2)
. (3.17)

Noting that Ia = 0 for M = 1, the critical current Ic directly
follows from Eq. (3.7), where Eq. (3.16) predicts π junction
[0 junction] behavior, with I (ϕ) = −Ic sin ϕ [I (ϕ) = Ic sin ϕ],
for N0 = 1 [N0 = 0,2]. We have thereby reproduced well-
known results.1,3 In general, in the strong Coulomb blockade
limit Ec → ∞, we find π -junction behavior for odd N0 and
half-integer ng .

B. Superconducting atomic limit

We now turn to the atomic limit, where � represents
the largest relevant energy scale and we can effectively
put � → ∞. This allows us to go beyond the perturbative
cotunneling regime and to compute the free energy F without
further approximations. Using f (τ ) → �−1δ(τ ) in Eq. (2.13),
the partition function reads Z = Trde−βHeff . The effective dot
Hamiltonian is

Heff = Hd + 1

2

∑
j=L,R

∑
nm

(
�(j )

nmeiφj dn↓dm↑ + H.c.
)
, (3.18)

with Hd in Eq. (2.1) and a proximity-induced s-wave pairing
term due to the traced-out superconducting leads.3 The CPR
then follows from Eq. (2.16). Notice that the Hilbert space of
the dot can now be decomposed into two independent sectors
with even and odd fermion parity, respectively.

Equation (3.18) can be used to demonstrate that already in
the cotunneling regime the limits Ec → ∞ and � → ∞ do
not commute. For � → ∞, one needs to retain only those
contributions in Eq. (3.6) where two fermions forming a
Cooper pair are tunneling as a whole, with the correlator of the
form 〈T cν(τ + 0+)cμ(τ )c̄ν(τ ′ + 0+)c̄μ(τ ′)〉. Using Ẽνμ � 0
in Eq. (3.13), some algebra gives

Qνμ = δnν,nμ

2�2

1 − δẼνμ,0

Ẽνμ

. (3.19)

Since now Qνμ � 0 for arbitrary N0, π -junction behavior is
never possible in the atomic limit, in contrast to what we found
for � < Ec → ∞ above. This statement always applies within
the atomic limit, i.e., also beyond the cotunneling regime.
Moreover, in the atomic limit, Ec < � → ∞, current flows
only in the vicinity of the 2e-charge degenerate points, where
W±2 = 0 in Eq. (2.5), corresponding to integer values of ng .
This again differs from the strong-blockade result in Eq. (3.15),
where current flows only for half-integer ng . We thus conclude
that the limits Ec → ∞ and � → ∞ do not commute.

IV. ANOMALOUS JOSEPHSON CURRENT

In this section, we address the CPR and, in particular, the
anomalous supercurrent, Ia = I (ϕ = 0), for the two-level dot
in Sec. II C.

A. Cotunneling regime

In the cotunneling regime, the currents I0 and Ia de-
termining the Josephson CPR [see Eq. (3.1)] follow from

Eqs. (3.7) and (3.4), respectively. The anomalous supercurrent
is expressed in terms of the 4 × 4 matrices J and Q, see
Eqs. (3.5) and (3.14), respectively, where a necessary condition
for the anomalous Josephson effect is given by Jνμ �= 0 for at
least one index pair ν > μ. In order to evaluate the J matrix,
we need the unitary matrix U diagonalizing h. While U is
easily found, the lengthy result is not illuminating; we use it
only to obtain the data shown in the figures below. Instead,
we will provide analytical results in several complementary
limits, where the algebra is simpler and allows for an intuitive
picture.

Let us first observe that when the spin-orbit field is
perpendicular to the Zeeman field (χ = π/2), h is a symmetric
matrix. Hence the diagonalizing matrix U can always be
chosen to have only real-valued entries, and for δL,R = 0, we
obtain J = 0 from Eq. (3.5). We conclude that for χ = π/2,
the anomalous Josephson effect is only possible when at least
one of the phase shifts δL,R is nonzero. This conclusion is in
accordance with previous work.41

1. Collinear spin-orbit and Zeeman fields

From Ref. 41, we then expect that the anomalous super-
current is maximal for χ = 0, where spin-orbit and Zeeman
fields point along the same direction. We thus consider h in
Eq. (2.17) for χ = 0, where the diagonalization matrix is

U = eiτxσzθ/2, sin θ = α

Ed

, Ed =
√

ε2 + α2, (4.1)

and the spectrum (E1, . . . ,E4) is given by μ + (Ed + B,Ed −
B, − Ed + B, − Ed − B). Using Eq. (3.3), the antisymmetric
hybridization matrices �̃(L,R) have the nonvanishing entries

�̃
(j )
23 = −[�̃(j )]∗14 = γj

(
cos δj + i

α sinh λj + ε sin δj

Ed

)
,

�̃
(j )
21 = �̃

(j )
43

∣∣
θ→θ+π

= γj

(
cosh λj + ε sinh λj − α sin δj

Ed

)
.

The symmetric J matrix in Eq. (3.5) thus has the nonzero
elements

J32 = γLγR

Ed

[ε sin δ + α(cos δR sinh λL − cos δL sinh λR)]

(4.2)

and J41 = −J32. Remarkably, this result does not depend on
the Zeeman field B. In the end, the anomalous supercurrent is

Ia = �2J32(Q32 − Q41). (4.3)

Several observations can be drawn from the above equations.
First, note that J32 = 0 for �(L) = �(R) (where δL = δR

and λL = λR). Therefore, asymmetric tunnel contacts with
matrices �(L) �= �(R) are necessary for Ia �= 0, see Ref. 41.
The resulting typical “phase diagram” for Ia,0 in the B-α plane
is depicted in Fig. 1. The standard Josephson effect, where
one has either 0- or π -junction behavior with |Ia/I0| � 1,
is recovered when either α or B are small. In contrast, the
anomalous supercurrent is most pronounced when |α| ≈ |B|.
The lower panel (for I0) indicates that within the Zeeman-
dominated regime |B| >

√
α2 + ε2, we have I0 < 0, implying

that π -junction behavior can be realized. Furthermore, we
observe that for the chosen parameter set, Ia is odd in the
product αB.
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FIG. 1. (Color online) Anomalous supercurrent (Ia , top panel)
and “normal” supercurrent (I0, bottom) determining the cotunneling
CPR (3.1) in the B-α plane. The results are for the two-level dot with
ε = 0.3�, Ec = 2�, ng = 2, and χ = δL,R = μ = λL = 0. For the
right contact, only the orbital level n = 1 is assumed to couple to the
superconductor, i.e., λR → ∞ with γReλR → γR . Note that Ia,0 are
normalized to the respective critical current Ic = √

I 2
0 + I 2

a .

The α dependence for fixed B = 0.5� is shown in the
upper panel of Fig. 2. The steps in I0,a versus α (and in all
figures below) can be traced back to level degeneracies, where
higher-order perturbative terms become important and will
smear out the steps. For the chosen parameters and ng = 2, we
have N0 = 2 for all shown SOCs, but for ng = 1 (upper left
panel), N0 = 1 for certain α. The anomalous supercurrent is
generally enhanced for odd N0 compared to the even-N0 case.

The lower-row panels in Fig. 2 show the χ dependence
of Ia,0 for SOC α = 1.2�, confirming that the anomalous
supercurrent is maximized for χ = 0 mod π but vanishes for
χ = π/2. In addition, by comparing to the respective Ec = 0
plots (not shown), we observe that Ia is not drastically affected
by interactions while I0 becomes suppressed. This suggests
that interactions tend to enhance the relative importance of the
anomalous supercurrent.

Next we observe that, in general, Q32 �= Q41. As long
as J32 �= 0, an anomalous supercurrent may then flow. This
could happen for arbitrary (including zero) SOC α. However,
we always need a finite Zeeman field. Indeed, for B = 0,
we find that Q32 = Q41 due to level degeneracies (E1 = E2

and E3 = E4), and hence Ia = 0 for B = 0, cf. also Fig. 1.
Nonetheless, anomalous supercurrents can survive even for
arbitrarily weak B, in particular when interactions are present.
We will address this issue in more detail below for the resonant
case (ε = 0), but Fig. 3 already illustrates the phenomenon
for ε = 0.3�. The left panel in Fig. 3 shows that even for
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FIG. 2. (Color online) Parameter dependence of Ia,0 (main
panels) and of the particle number N0 (inset) for B = 0.5�, with
other parameters as in Fig. 1. Blue solid curves show Ia , and black
dashed curves I0, both in units of eγLγR/h̄�. Top row: SOC α is
varied for fixed field angle χ = 0, with ng = 1 (left) and 2 (right).
Bottom row: χ is varied for fixed α = 1.2�, with ng = 1 (left) and 2
(right).

B = 0.001�, in the presence of interactions and with odd N0,
the anomalous supercurrent is finite and sizable. Similarly,
the right panel shows that for B → 0, we obtain an unusual
Ia(B) dependence instead of the standard linear B dependence
discussed in Ref. 41. We expect that higher-order perturbative
corrections smear out the cusps near B = 0, see also Sec. IV B,
and eventually lead to Ia ∝ sgn(B).

Let us now analyze the case without SOC: putting α = 0
in Eq. (4.2), we observe that Ia �= 0 is possible for relative
interorbital phase shift δ �= 0, cf. Eq. (2.19). The possibility
of an anomalous Josephson effect induced by the magnetic
field alone (without SOC) in a noninteracting multilevel dot
was overlooked in Ref. 41, where only the case δL,R = 0 has
been studied. This effect is shown in Fig. 4 for phase shifts
δR = 0 and δL = π/2 (otherwise the tunnel contacts are here
assumed identical, λL = λR). The left panel, where N0 = 2 for
the chosen parameters, illustrates the counterintuitive increase
in |Ia| as the SOC is decreased. In fact, here we find the
largest possible anomalous supercurrent for α = 0. Note that,
as a consequence of the interorbital phase shift δ = π/2, the
anomalous supercurrent is now an even function of the SOC
parameter α. The right panel presents the μ dependence of
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FIG. 3. (Color online) Same as Fig. 2 but showing Ia,0 vs μ

for B = 0.001� (left), and Ia,0 vs B for μ = 3� (right). Other
parameters are as in Fig. 1 except for Ec = 1.5�.

144515-7



BRUNETTI, ZAZUNOV, KUNDU, AND EGGER PHYSICAL REVIEW B 88, 144515 (2013)

-2 -1 0 1 2
α / Δ

-0.5

0

0.5

1

I (
γ L

γ R
 / 

Δ)

-10 -5 0 5 10
μ / Δ

-0.2

0

0.2

0.4
           N 0

= 2
0

2

4

FIG. 4. (Color online) Same as Fig. 2 but showing Ia,0 vs α for
μ = Ec = 0 (left), and Ia,0 vs μ for α = 0 and Ec = 2� (right). We
use the parameters ε = 0.5�, B = 0.7�, ng = 2, χ = λL,R = δR =
0, and δL = π/2.

Ia , where we see again that the anomalous supercurrent is
enhanced whenever N0 is odd.

Finally, let us note that for δ = 0, the condition J32 �= 0,
with Eq. (4.2) for J32, is equivalent to α �= 0 and nonvanishing
commutator [�(L),�(R)] �= 0, which corresponds to the chiral-
ity condition in Sec. I. These two necessary conditions for
anomalous supercurrents were specified in Ref. 41.

2. Resonant level

Another interesting and nontrivial situation emerges when
the two bare levels are resonantly aligned. Then ε = 0
(with arbitrary χ ) in Eq. (2.17), and the unitary matrix U

diagonalizing h is

U = eiτxπ/4eiθ̂σx/2, (4.4)

where θ̂ = diag(θ+,θ−) is a diagonal matrix in orbital space.
The angles θ± follow from

eiθ± = B ± eiχα

E±
, E± =

√
α2 + B2 ± 2αB cos χ, (4.5)

and (E1, . . . ,E4) = μ + (E+, − E+,E−, − E−). Some alge-
bra shows that the symmetric J matrix has the nonvanishing
elements71

J21 = γLγR(cos δL sinh λR − cos δR sinh λL) (4.6)

and J43 = −J21. For the anomalous Josephson current, we
thus find

Ia = �2J21(Q21 − Q43). (4.7)

Quite remarkably, J21 in Eq. (4.6) neither depends on the
Zeeman field B nor on the SOC α. In principle, we may then
expect Ia �= 0 even for very small α and/or B. In addition,
J21 does not depend on χ either, and it is not obvious why
Ia = 0 for χ = π/2 as discussed above. However, we also
need to examine the contribution of the Q matrix. In fact,
when αB cos χ = 0, the level degeneracy E+ = E− implies
from Eq. (3.14) that Q21 = Q43, which in turn gives Ia = 0
for ε = 0 and arbitrary Ec.

Nonetheless, we again encounter the possibility that Ia �= 0
even for very small Zeeman field B and temperatures T <

|B|, suggesting the incipient spontaneous breakdown of TRS
(note that TRS is restored for B = 0). Remarkably, this onset
behavior can be triggered by Coulomb interactions even for
very small SOC α. Before going through the detailed argument,
we first illustrate this behavior for B = 0.001� in Fig. 5.
The left panel indeed reveals a finite and sizable anomalous

-5 0 5
μ / Δ

-0.1

0

0.1

0.2

0.3

0.4

I (
γ L

γ R
 / 

Δ)

-4 -2 0 2 4
α / Δ

-0.1

0

0.1

0.2

0
2

4

1

2

FIG. 5. (Color online) Same as Fig. 2 but for the resonant orbital
(ε = 0) case with tiny Zeeman field, B = 0.001�. The left panel
shows Ia,0 vs μ for α = 0.001�, while the right panel displays Ia,0

vs α for μ = 5�. The remaining parameters are as in Fig. 1.

supercurrent for α = B = 0.001� if interactions are present,
Ec �= 0, and N0 is odd. The right panel suggests that Ia ∝
sgn(αB) for arbitrarily small (but finite) α. For α = 0.5�,
the interaction effects in this interesting parameter regime are
displayed in Fig. 6. While Ia = 0 for small Ec, we find Ia �=
0 for Ec � |α|, with |Ia| weakly decreasing in the limit of
strong Coulomb blockade. For the resonant case of half-integer
ng , Ia saturates at a finite value for Ec → ∞, cf. inset of
Fig. 6.

Next, we aim at understanding the above Ia ∝ sgn(αB)
onset behavior. To simplify the algebra as much as possible, we
put χ = 0 and consider the limiting case of very small but finite
(B,α), where interactions play a crucial role. [For |α| � |B|,
the arguments below show that the onset behavior Ia ∝ sgn(B)
is possible even when Ec = 0.] Equation (4.5) then gives
eiθ± = ±sgn(α) for |α| > |B|, and thus the complex-valued
unitary matrix in Eq. (4.4) has different limits for positive and
negative SOC, limα→0+ U �= limα→−0+ U . This corresponds
to different residual “magnetizations” of the τ ⊗ σ isospin
near the SU(4) symmetric point in parameter space defined
by B = α = 0. [Note that in the absence of hysteresis, Ia = 0
directly at the symmetric point, since then U = diag(1) is real-
valued and thus implies J = 0.] Recall next that the columns
of U are eigenvectors of h, forming four linearly independent
isospin projections. The corresponding single-particle energy
levels are μ + {|α| + η, − |α| − η,|α| − η, − |α| + η} with
η = sgn(α)B. When μ is chosen such that N0 = 1, assuming
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FIG. 6. (Color online) Same as Fig. 2 but showing Ia,0 vs Ec for
ng = 2 (main panel) and ng = 3/2 (large right inset), with α = 0.5�,
B = 0.01�, and ε = 0.01�.
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B > 0, one spin-↓ electron will occupy the single-particle
level E2 (E4) for α > 0 (α < 0). For N0 = 1, we observe
that sgn(Q21) = −sgn(Q43) = −sgn(α), see Eq. (3.14) with
Qi > 0, and therefore Eq. (4.7) suggests that we may have
a finite anomalous supercurrent. However, for very small
(B,α) and Ec = 0, the energy separation between states
with different N0 is also tiny. This eventually results in the
complete cancellation of all time-reversed contributions, and
Ia = 0 in the noninteracting case for very small B and α.
For finite charging energy, however, the energy gap to states
with different N0 grows with Ec, which renders the N0 = 1
ground-state more robust. Taking the small-(B,α) limit for
finite Ec should then leave ground-state properties such as N0

or the spin polarization unaffected, and Ia ∝ sgn(αB) remains
finite. However, the above arguments also show that Ia will be
suppressed by thermal fluctuations once the temperature scale
exceeds the Zeeman field scale. Therefore the Ia ∝ sgn(αB)
onset behavior just found for the ground state can “only” be
interpreted as incipient breakdown of TRS, i.e., TRS is restored
by thermal fluctuations for T > |B|.

Analytical results for the ground-state anomalous super-
current are possible in the strong Coulomb blockade limit.
For instance, at the charge degeneracy point ng = 3/2 with
N0 = 1, Eq. (4.7) yields for small (B,α) the result

Ia = −3 sgn(αB)�2J21Q3(μ,0,μ), (4.8)

where J21 and Q3(μ,0,μ) are given in Eqs. (4.6) and (3.17),
respectively. This confirms explicitly the Ia ∝ sgn(αB) onset
behavior discussed above.

B. Superconducting atomic limit

Next, we briefly turn to a discussion of the anomalous
Josephson effect in the superconducting atomic limit, see
Sec. III B, where the � → ∞ effective dot Hamiltonian,
Heff in Eq. (3.18), allows us to go beyond the perturbative
cotunneling regime. Evaluating the anomalous Josephson
current at the, say, left contact, we obtain

Ia = −2e

h̄
Im

∑
ν<μ

�̃(L)
νμ 〈cνcμ〉, (4.9)

where the brackets indicate a ground-state average using
Heff(ϕ = 0). We consider the two-orbital dot in Sec. II C,
where the 4 × 4 hybridization matrices �̃(L,R) follow from
Eq. (2.18) after transformation to the cν fermion representa-
tion. As detailed in Sec. III B, the ϕ-dependent ground-state
energies should be computed separately for the (decoupled)
odd and even fermion parity subspaces. We then expect
Ia �= 0 only when the ground state (for ϕ = 0) has odd
parity.

The dependence of Ia on the SOC α is illustrated in
Fig. 7, where we use parameters as in the right panel of
Fig. 5. This allows us to study how the Ia ∝ sgn(αB) onset
behavior (the signature of incipient TRS breaking) emerges
from the cusp features encountered in perturbation theory.
First, we note from Fig. 7 that the cotunneling result (taking
� → ∞ in the above expressions) matches the predictions of
Eq. (4.9) for γL,R → 0. This matching has also been confirmed
analytically by perturbative expansion of the general � →
∞ cotunneling result [see Eqs. (3.4) and (3.19)] to lowest
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FIG. 7. (Color online) Anomalous supercurrent Ia for the two-
orbital dot vs SOC α in the atomic limit (� → ∞) for several γ =
γL = γR . The shown results follow from Eq. (4.9) and the effective
dot Hamiltonian (3.18). The other parameters are as in the right panel
of Fig. 5: ε = 0, B/Ec = 0.0005, μ/Ec = 2.5, ng = 2, χ = δL,R =
λL = 0, and λR → ∞. The solid blue curve gives the respective
cotunneling result [Eq. (4.7) with � → ∞] for γ /Ec = 0.05.

nontrivial order in the hybridization matrices. We conclude that
the limits γL,R → 0 and � → ∞ commute. Second, cusplike
features as seen in the right panel of Fig. 5 emerging under
a perturbative theory will be smeared out by higher-order
corrections, and indeed imply Ia ∝ sgn(αB) onset behaviors
associated with time-reversal symmetry breaking. Third, for
large hybridizations γL,R , it is also possible that the fermion
parity of the resulting ϕ = 0 ground state is changed. This
is apparent in Fig. 7, where we find Ia = 0 for small |α|
and γ /Ec = 1.1 as a consequence of such a transition. The
anomalous supercurrent can here be tuned to zero either by
raising γ or by lowering Ec.

V. MAJORANA FERMIONS

We proceed by noting that all ingredients needed for the
realization of Majorana fermions24,25 are, in principle, present
in our model, namely, proximity-induced superconductivity,
SOC, and a TRS-breaking magnetic field. As discussed below,
the Majorana regime can be reached in the superconducting
atomic limit of the two-level dot in Sec. II C, where the two
orbitals here correspond to two spatially separated single-level
dots (i.e., a double dot). The resulting MBSs are topologically
unprotected, i.e., their realization requires the fine-tuning of
gate voltages, Zeeman field B, and/or phase difference ϕ.
Gate voltages here affect the orbital asymmetry ε through
confinement potentials, the average energy μ, and/or the SOC
α. For a spatially separated MBS pair—such that both MBSs
correspond to different orbital states, allowing to distinguish
them—we find characteristic signatures in the 2π -periodic
CPR. This is in marked contrast to the “fractional” 4π -periodic
CPR for topologically protected Majoranas,25 which has not
been observed so far due to difficulties in ensuring fermion
parity conservation in practice.

We use the atomic-limit effective Hamiltonian Heff

in Eq. (3.18) for the double dot. Using the basis
{|1,↑〉,|2,↓〉,|1,↓〉,|2,↑〉}, the single-particle matrix h [see
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Eq. (2.17)] has the representation

h =

⎛
⎜⎜⎜⎝

μ + ε + B −α sin χ 0 iα cos χ

−α sin χ μ − (ε + B) iα cos χ 0

0 −iα cos χ μ + ε − B α sin χ

−iα cos χ 0 α sin χ μ − (ε − B)

⎞
⎟⎟⎟⎠ . (5.1)

Without losing generality, α > 0 and B > 0 from now on. We
approach a suitable parameter regime by comparing to the
Kitaev chain23–26 describing 1D (effectively spinless) p-wave
topological superconductors. The Kitaev chain is known to
support MBSs, and based on this analogy we choose χ = π/2,
i.e., Zeeman and spin-orbit fields are perpendicular.25 h is
then block-diagonal with decoupled upper and lower two-state
subspaces. The connection to the Kitaev chain becomes clear
when ε is positive and chosen in the parameter regime

� � ε + B � max(α,|ε − B|,γL,R,μ,Ec). (5.2)

The upper-block state (2,↓) will then always be occupied,
while (1,↑) is always empty. The upper left block in Eq. (5.1)
can thus be projected away, and the resulting truncated
Hamiltonian, H ′

eff , acts only within the lower right block
described by the (effectively spinless) fermion operators d1 ≡
d1↓ and d2 ≡ d2↑,

H ′
eff = (μ + ε − B)d†

1d1 + [μ − (ε − B)]d†
2d2

+Ec(d†
1d1 + d

†
2d2 − ng)2

+ (αd
†
1d2 + �̃(ϕ)eiϑ(ϕ)d

†
2d

†
1 + H.c.), (5.3)

where the occupied (2,↓) state leads to a shift ng → ng + 1.
With the hybridization matrix (2.18), the double dot model
in Eq. (3.18) yields the complex-valued effective pairing
amplitude �̃eiϑ = 1

2

∑
j γj e

−i(φj +δj ). It is now convenient to
introduce γ ≡ (γL + γR)/2, and to gauge away the overall
phase

∑
j (φj + δj )/2. We then obtain

�̃(ϕ) = γ
√

1 − T0 sin2[(ϕ + δ)/2],

T0 = 4γLγR

(γL + γR)2
, (5.4)

ϑ(ϕ) = tan−1

{
γR − γL

γR + γL

tan[(ϕ + δ)/2]

}
,

with the phase shift δ in Eq. (2.19). Note that 0 � T0 � 1
corresponds to the transmission probability of a single-channel
quantum point contact, while �̃(ϕ) gives the Andreev level
energy in the atomic limit.65

We proceed by first discussing the noninteracting case,
Ec = 0, where two spatially resolved MBSs may appear when
the (necessary) conditions

B = ε, μ = 0 (5.5)

are met. H ′
eff can then be diagonalized in terms of fermionic

Bogoliubov-de Gennes (BdG) quasiparticle operators,

η± = 1
2 [d1 + d2 ± eiϑ (d†

1 − d
†
2)], (5.6)

where Eq. (5.3) yields the BdG Hamiltonian

H ′
eff =

∑
±

E±(ϕ)

(
η
†
±η± − 1

2

)
, E± = α ± �̃(ϕ). (5.7)

The four possible single-particle eigenstates are constructed
by applying η

†
± or η± to the vacuum state, with the respective

energies E±/2 and −E±/2. The CPR then follows from
Eq. (5.7),

I (ϕ) = 2
∂�̃

∂ϕ
[�(−E+) − �(−E−)], (5.8)

where � is the Heaviside function. Notice that I = 0 for
�̃(ϕ) < α, since both energies E± = α ± �̃ have the same
sign. We therefore find

I (ϕ) = �(�̃ − α)I0(ϕ),
(5.9)

I0(ϕ) = eγ

2h̄

T0 sin(ϕ + δ)√
1 − T0 sin2[(ϕ + δ)/2]

,

where I0(ϕ) coincides with the CPR of a single-channel
quantum point contact with transparency T0,3 shifted by the
interorbital phase difference δ. The CPR (5.9) is 2π -periodic
in ϕ and vanishes (or reappears) at the boundaries between
ground states with opposite fermion parity. These boundaries
are precisely the formation points of MBSs, as we show next.

Noting that both α and �̃ are non-negative, the zero-energy
condition for MBS formation is satisfied for E−(ϕ) = 0, i.e.,
for

�̃(ϕ) = α. (5.10)

This corresponds to a pair of zero-energy MBSs, generated by
the anticommuting Majorana fermion operators ξ1 = −i(η− −
η
†
−) and ξ2 = η− + η

†
−; note that ξn = ξ

†
n and ξ 2

n = 1. In order
to avoid recombination to a conventional fermion, we need
both MBSs to be spatially separated. This is achieved for

ϑ(ϕ) = 0 mod π, (5.11)

where ξ1 and ξ2 have well defined and different orbital quantum
numbers, and thus correspond to different single-level dots in
this double dot. Taking for instance ϑ = 0, Eq. (5.6) yields
ξ1 = −i(d1 − d

†
1) and ξ2 = d2 + d

†
2, which indeed implies that

the MBS associated with ξn=1 (2) has the orbital wave function
n = 1 (2). We conclude that Eq. (5.11) ensures that both
MBSs are spatially separated. Using Eq. (5.4), there are two
possibilities to satisfy this condition: (1) we may choose equal
hybridization strengths, γL = γR = γ . Then T0 = 1, which
implies �̃ = γ | cos[(ϕ + δ)/2]| = α, with two solutions (for
ϕ) when γ > α. For these two phase values, MBSs will be
present. (2) Alternatively, for γL �= γR , another possibility
emerges by adjusting ϕ = −δ (mod 2π ), where Eq. (5.10)
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allows for an MBS pair when γ = α. Realizing either of
those conditions amounts to reaching the “sweet spot” for a
Kitaev chain with two fermion sites, see also Refs. 62–64. The
MBS solutions are here quadratically protected against small
deviations in the effective dot levels, see Eq. (5.5). While there
is no such protection against deviations from the condition
(5.10), this lack of protection also offers the advantage of
MBS tunability by variation of the superconducting phase
difference. Noting that already for a three-site chain, robust
protection of unpaired MBSs can be achieved,63 we expect
that a reasonable compromise between well protected MBSs
and good tunability is possible using our double dot proposal.

Let us now see how the above scenario will be affected
by weak electron-electron interactions. We here continue to
use the “global charging energy” in Eq. (2.1), since for a
double dot in the large-B limit of interest here, see Eq. (5.2),
both dots are effectively occupied by one fermion at most.
In that case, the global charging energy is equivalent to a
capacitive interdot interaction. For finite Ec, the system can
be tuned to the MBS regime by replacing the condition μ = 0
in Eq. (5.5) by μ = −2Ec(1 − ng), i.e., by putting μ at the
charge degeneracy point. (B = ε is still required.) In terms
of the η± operators in Eq. (5.6), the Hamiltonian (5.3) then
reads

H =
∑
±

E±(ϕ)

(
η
†
±η± − 1

2

)
+ Ec(η†

+η+ − η
†
−η−)2,

(5.12)

with E±(ϕ) in Eq. (5.7). The MBS regime is realized when
there are two ground states with opposite fermion parity. By
examining the many-particle spectrum of Eq. (5.12),

E0,0 = −α, E1,0 = �̃ + Ec,
(5.13)

E0,1 = −�̃ + Ec, E1,1 = α,

where En+,n− denotes the energy of a state with n± = 〈η†
±η±〉,

the condition (5.10) for the appearance of MBSs is replaced
by

α = �̃(ϕ) − Ec > 0. (5.14)

In the MBS regime, one has a double-degenerate ground state,
corresponding to negative energy eigenvalues E0,1 = E0,0.
Inclusion of the charging energy thus only shifts the conditions
for Majorana formation, and below we focus on the case
Ec = 0. Our proposal is therefore rather different from the
double-dot scenario in Ref. 62, where MBSs are induced only
in the limit of strong intradot Coulomb interactions while the
magnetic Zeeman field can be arbitrarily small.

The Josephson current [see Eq. (5.9)] turns out to be
nonzero (zero) for odd (even) N0, where the CPR in general
consists of two different regions: for �̃(ϕ) > α, we find
I = I0(ϕ) as for a single-channel quantum point contact (but
with a phase shift when δ �= 0), while I = 0 for �̃ < α. At
the boundary between both regions, the parity (−)N0 changes
from odd to even (or vice versa). It is precisely at these points
that two degenerate “half-fermion” BdG quasiparticle states
appear. Under the described conditions, these can form a pair
of spatially separated MBSs. Observation of I = 0 within a
part of the CPR can then serve as indirect signature for the

-1 -0.5 0 0.5 1
( ϕ + δ ) / π

-0.5

0

0.5

I 
/ γ

-1 0                        1

-0.2

0

0.2

ei e−iϕ/2 ϕ/2Δ Δ

FIG. 8. (Color online) CPR through a double dot in the atomic
limit [see Eq. (5.2)] with B = ε, μ = Ec = 0, and χ = π/2. (Main
panel) CPR (blue solid curve) for α = 0.4γ , where γ = (γL + γR)/2
with slightly asymmetric γR,L such that T0 = 0.99. Red points on the
CPR indicate that for the respective value of ϕ, a MBS pair is formed
(see main text). The dashed black curve shows the CPR for α = 0,
where no MBSs occur. The top left inset shows the schematic setup.
The bottom right inset gives the CPR for α = 0.99γ and significant
hybridization asymmetry, T0 = 0.5, as blue solid curve. The red point
indicates MBS pair formation, and the dashed curve is for α = 0
(without MBSs).

MBSs, as illustrated in Fig. 8. While jumps in the CPR can
also have a different origin, the peculiar feature linked to the
appearance of MBS pairs is the complete vanishing of the
supercurrent in a finite phase interval. For the asymmetric
case shown in the lower inset of Fig. 8, the other two points
on the CPR where the current vanishes correspond to spatially
overlapping MBSs.

Ideally, one should thus consider a symmetric setup with
T0 = 1 in order to satisfy Eq. (5.11). The MBSs can then be
detected through parity changes causing abrupt current jumps
in the CPR. In contrast, for asymmetric cases with T0 < 1,
Eq. (5.11) is satisfied only at ϕ = −δ, where MBSs cannot
be detected via transport measurements. With decreasing
transparency T0, corresponding to increasing overlap between
both MBSs [note that ϑ in Eq. (5.4) is a function of T0], the
critical current decreases and the flat region (I = 0) in the CPR
gets shorter. In fact, Eq. (5.9) predicts that for transparencies
T0 < Tc, with a critical transparency value determined by
γ
√

1 − T 2
c = α, there will be no flat CPR regions, and hence

no abrupt current jumps, at all. Finally, it is worthwhile
pointing out that in contrast to the fractional Josephson effect
for topologically protected Majoranas,25 the MBSs discussed
here do not mediate a Josephson current themselves.

VI. CONCLUSIONS

In this work, we have analyzed two particularly interesting
aspects of Josephson transport in hybrid superconductor-
dot systems—a pair of conventional BCS superconductors
connected through a multilevel quantum dot—where SOC,
Coulomb charging, and magnetic field effects are taken into ac-
count. First, we have studied the conditions for the anomalous
Josephson effect, i.e., supercurrent flow for vanishing phase
difference. It is remarkable that Coulomb interactions can
qualitatively affect this phenomenon to allow for ground-state
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anomalous supercurrents even when time-reversal breaking
perturbations are very small compared to all other relevant
scales. As described in Sec. IV, we find spontaneously broken
time-reversal symmetry with anomalous supercurrent flowing
for arbitrarily weak Zeeman fields. Second, in the deep subgap
case, we have determined the conditions for observing a pair
of topologically unprotected yet spatially separated Majorana
bound states in a double dot. The formation of such exotic
particles is presently under vigorous study and could be

indirectly detected in the CPR through the critical phases ϕ,
where the current switches from a finite value to zero. We hope
that these effects can soon be observed in experiments.
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