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Elastic contribution to interaction of vortices in uniaxial superconductors
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The stress caused by vortices in tetragonal superconductors contributes to the intervortex interaction which
depends on vortex orientation within the crystal, on elastic moduli, and is attractive within certain angular regions
even in fields along the c crystal axis. For sufficiently strong stress dependence of the critical temperature, this
contribution may result in distortions of the hexagonal vortex lattice for H||c. In small fields it leads to formation
of a square vortex lattice with a fixed H independent spacing. This should be seen in the magnetization M(H )
as a discontinuous jump of magnetization at the transition from the Meissner to mixed states.
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The strains in type-II superconductors that arise due
to the presence of vortices and defects were considered
time ago as a pinning mechanism, see, e.g., Ref. 1 and
references therein. Recently, vortex induced strains, their
weakness notwithstanding, were shown to cause substantial
changes in macroscopic magnetization in materials with
strong pressure dependence of the critical temperature Tc,
the result of long-range elastic perturbations as opposed to
short-range London intervortex interactions.2 Here uniaxial
materials are considered in fields along principal crystal
directions. To calculate the elastic energy, vortices are treated
as one-dimensional strain sources in an infinite crystal, so that
we deal with a planar elasticity problem.3

The value of dTc/dp (p is the stress or, in particular, the
pressure) is an indicator of strength of magnetoelastic effects
in the mixed state. It turned out recently that this derivative
in pnictides, and in Ca(Fe1−xCox)2As2 in particular,4 by one
or two orders of magnitude exceeds values for conventional
superconductors making Fe-based materials favorable for
observation of magnetoelastic effects.

It is shown below that elastic intervortex interactions in
tetragonal materials are strongly anisotropic even for vortices
directed along the c crystal axis. For a particular set of elastic
moduli, two vortices situated at [100] or [010] elastically
attract each other, whereas being at [110] they are repelled.
In large fields the extra interaction removes orientational
degeneracy of the standard 60◦ triangular vortex lattice
and should cause distortions of this structure in qualitative
agreement with data on KFe2As2.5 Possible relevance of
the elasticity in hexagonal crystals for low fields vortex
arrangement in MgB2 is discussed.6

I. TETRAGONAL CRYSTAL

The general form of elastic energy density is3

F = λiklmuikulm/2, (1)

where uik are strains and λiklm are elastic moduli. For brevity
we denote the nonzero components of the elastic tensor in the
crystal frame as7

λaaaa = λbbbb = λ1, λaabb = λ2, λabab = λ3,

λcccc = λ4, λaacc = λbbcc = λ5, (2)

λacac = λbcbc = λ6.

Consider a system of straight parallel vortices along z tilted
with respect to the frame (a,b,c) of an infinite tetragonal
crystal. Introduce the vortex frame (x,y,z) so that the angle
between the vortex axis z and the c axis is θ . Consider the tilt
as rotation round the a axis:

x = a, y = b cos θ − c sin θ, z = b sin θ + c cos θ. (3)

Although this is a particular tilt, the resulting physics only
weakly depends on this choice.

The elastic perturbation by vortices is caused by a number
of reasons among which effects of normal cores and of
supercurrents around were discussed, see, e.g., Refs. 8 and 9
and references therein. In this paper, only planar deformations
are considered, i.e., such that the displacement uz is zero and
all uiz = 0.

Components of the stress tensor σik = λiklmulm = λikαβuαβ

(hereafter Greek indices take only x,y values) are

σxx = λxxxxuxx + λxxyyuyy, (4)

σyy = λyyxxuxx + λyyyyuyy, (5)

σxy = 2λxyxyuxy, (6)

and

σzz = λzzxxuxx + λzzyyuyy. (7)

Furthermore,

σxz = 2λxzxyuxy, σyz = λyzxxuxx + λyzyyuyy. (8)

The needed elastic tensor components in the vortex frame are
given in Appendix A.

Given only two independent displacements ux,uy in the
planar problem of our interest, the components of the stress
tensor cannot be independent.3 Indeed, express uxx and uyy

from Eqs. (4) and (5):

uxx d = λyyyyσxx − λxxyyσyy, (9)

uyy d = λ1σyy − λxxyyσxx, (10)

d = λ1λyyyy − λ2
xxyy, (11)
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and substitute the result in Eq. (7):

σzzd = d1σxx + d2σyy, (12)

d1 = λzzxxλyyyy − λzzyyλxxyy, (13)

d2 = λzzyyλ1 − λzzxxλxxyy. (14)

The equilibrium conditions ∂σαβ/∂xβ = 0 or

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σyx

∂x
+ ∂σyy

∂y
= 0 (15)

are satisfied if one sets

σxx = ∂2χ

∂y2
, σyy = ∂2χ

∂x2
, σxy = − ∂2χ

∂x∂y
, (16)

with an arbitrary function χ (x,y).3 Relation (12) then provides
an equation for χ :

d1
∂2χ

∂y2
+ d2

∂2χ

∂x2
= d σzz. (17)

Since σii = −3p with the pressure p, we have

σzz = −3p − ∇2χ. (18)

Hence, we obtain

D2
∂2χ

∂x2
+ D1

∂2χ

∂y2
= −3pd. (19)

D1 = d + d1, D2 = d + d2. (20)

The rescaling

xn = x
√

d/D2, yn = y
√

d/D1 (21)

transforms this to a Poisson equation which can be solved for
χ (x,y). Hence, both the stresses σαβ and strains uαβ can be
found.

At first sight, the problem of elastic perturbation caused by
parallel vortices can be considered as planar for any orientation
of vortices relative to the crystal. This is, however, not the case.
The point is that in general the equilibrium conditions (15)
should be complemented by ∂σzβ/∂xβ = 0 with σzβ given in
Eq. (8). However, since the planar solutions uαβ are already
fixed to satisfy (15), there is no room for any extra conditions.
The only situation free of this contradiction is when both σzx

and σzy are zeros. The direct examination of elastic constants
involved in σzβ shows that they are ∝sin θ cos θ , i.e., σzβ = 0
only for θ = 0 and θ = π/2. Since the problem is planar
indeed for these orientations, they are considered in what
follows.

II. SINGLE VORTEX, θ = 0

For θ = 0 we have λyyyy = λ1, λxxyy = λ2, λxyxy = λ3,
λxxzz = λyyzz = λ5. Furthermore, d = λ2

1 − λ2
2, d1 = d2 =

λ5(λ1 − λ2), and D1 = D2 = D = (λ1 − λ2)(λ1 + λ2 + λ5).
For a single vortex in infinite sample the pressure is zero,

whereas the stress due to the vortex can be described as due to
a δ-function singular source. We have instead of Eq. (19):

∇2χ = 2πS(0) δ(r − a), (22)

where d/D ∼ 1 is incorporated in S. Note that no vortex model
is used here explicitly; the vortex is described as a δ-function

stress source of a “strength” S which can be estimated by
a better-than-London theory. This approach is justified since
the elastic perturbation is long range (∝1/r2); hence both the
effect of the core of a size ξ and of out-of-core region9,10 on
the order of the London penetration depth can be included in
the point source.

The solution is χ = S(0) ln |r − a| or in the Fourier space

χ (k) = −2πS(0)

k2
eika. (23)

Hence, we have

σxx(k) = 2πS(0)k2
y

k2
eika, σyy(k) = 2πS(0)k2

y

k2
eika,

σxy(k) = −2πS(0)kxk
2
y

k2
eika, (24)

and with the help of Eqs. (9), (10), and (6),

uxx = 2πS(0)

d

λ1k
2
y − λ2k

2
x

k2
eika, (25)

uyy = 2πS(0)

d

λ1k
2
x − λ2k

2
y

k2
eika, (26)

uxy = πS(0)

λ3

kxky

k2
eika. (27)

III. ELASTIC INTERACTION OF VORTICES, θ = 0

Let a vortex be at the origin and another one at a. The elastic
energy E = ∫

d rσαβuαβ/2 contains the self-energies of each
one of them and the interaction energy:

Eint =
∫

d rσ (0)αβ uαβ(a) =
∫

dk
4π2

σαβ(0,k) uαβ(a, − k).

(28)

After straightforward algebra one obtains for θ = 0:

Eint

S2(0)
= d

D2

[
λ1(I1 + I2) + d − 2λ2λ3

λ3
I3

]
, (29)

where

I1 =
∫

dk
k4
x

k4
e−ika, I2 =

∫
dk

k4
y

k4
e−ika,

I3 =
∫

dk
k2
xk

2
y

k4
e−ika. (30)

One easily verifies that I1 + I2 = −2I3 if a �= 0. Thus, for
θ = 0 the interaction energy is proportional to I3(a).

Consider the second vortex in the first quadrant ax >

0,ay > 0. To evaluate, e.g., I2, integrate first over kx utilizing
the pole kx = −i|ky | in the lower half of the complex plane
kx : ∫ ∞

−∞

dkxe
−ikxax(

k2
x + k2

y

)2 = π

2k4
y

e−|ky |ax
(
axk

2
y + |ky |

)
. (31)

Integration over ky gives

I2 = π
3a4

x − 6a2
xa

2
y − a4

y

a6
. (32)
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FIG. 1. Contours of constant elastic interaction energy or of
I3(ax,ay) corresponding to a vortex at the origin and another one
at a = (ax,ay). Both vortices are parallel to the c axis. λ1 − λ2 − 2λ3

is assumed positive.

Similarly one obtains

I1 = π
3a4

y − 6a2
xa

2
y − a4

x

a6
, I3 = −π

a4
x − 6a2

xa
2
y + a4

y

a6
.

(33)

In polar coordinates ax = a cos ϕ, ay = a sin ϕ, one has

I3 = − π

a2
cos 4ϕ, I2 = π

a2
(cos 4ϕ + 2 cos 2ϕ),

I1 = π

a2
(cos 4ϕ − 2 cos 2ϕ). (34)

Hence, the interaction energy takes the form

Eint

S2(0)
= − πd3

D4λ3

(λ1 + λ2)(λ1 − λ2 − 2λ3)

a2
cos 4ϕ. (35)

The energy Eint changes sign at ϕ = π/8 and 3π/8 in the
first quadrant. If λ1 − λ2 − 2λ3 > 0 and the intervortex vector
a is in the domain −π/8 < ϕ < π/8 adjacent to [100], the
elastic contribution to the interaction is attractive, whereas it
is repulsive for π/8 < ϕ < 3π/8 near [110]. Figure 1 shows
contours of a constant I3(ax,ay). Note that Eint in addition to
either attractive or repulsive dependence on the intervortex
distance a, depends on the azimuth ϕ, which for the example
shown in the figure means that for a given a the second vortex
is pushed toward [100] or [010].

IV. ELASTIC INTERACTION, θ = π/2

In this case, examination of elastic moduli, Appendix A,
gives λyyyy = λ4, λxxyy = λ5, λxyxy = λ6, λxxzz = λ2, λyyzz =
λ5. Furthermore, d = λ1λ4 − λ2

5, D1 = λ4(λ1 + λ2) − 2λ2
5,

and D2 = λ1(λ4 + λ5) − λ5(λ5 + λ2).
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FIG. 2. Contours of constant elastic interaction energy corre-
sponding to a vortex at the origin and another one at a rescaled
position (ax,ay). Both vortices are parallel to the b crystal axis.
The elastic moduli chosen are λ1 = 1, λ2 = 0.5, λ3 = 0.3, λ4 =
0.2, λ5 = 0.075, λ6 = 0.2.

The same argument which led to derivation of Eq. (22)
from Eq. (19) leads again to a Poisson equation but in rescaled
coordinates (21) with, however, a new source S(π/2). We then
obtain the same expressions for σαβ(k) in properly rescaled
k’s and a’s. The strains are obtained with the help of Eqs. (9),
(10), and (6).

The interaction energy now is a linear combination of I1, I2,
and I3 with the moduli dependent coefficients. Without going
into details, one can write this energy as

Eint = S2(π/2)
A cos 4ϕ + B cos 2ϕ

a2
, (36)

where A,B depend on elastic moduli. The interaction energy
may have a structure similar to the case θ = 0 of Fig. 1 but
distorted due to the lost symmetry of the 90◦ rotation. In other
words, attractions for a along [100] and [001] are no longer the
same, the attraction domain adjacent to [001] may shrink. For
certain choices of moduli, this domain disappears altogether,
an example is shown in Fig. 2 where [100] corresponds to
attraction, whereas [001] to repulsion.

V. DISCUSSION

The straightforward technique offered above can be applied
to a variety of situations for which the elastic moduli are
known. There is no point in going to all such possibilities in
a general discussion of this paper. It is worth noting, however,
that for vortices along the c axis of tetragonal crystals, the
generic form of this interaction is that of the geometric factor
I3(ax,ay) with the sign and value of the prefactor depending
on elastic moduli, i.e., Eint should always be of the form
shown in Fig. 1. This implies in particular that the elastic
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contribution removes the degeneracy of orientations of the
hexagonal vortex lattice for this field orientation. Moreover,
since at large distances elastic 1/a2 interaction overcomes the
exponentially weak London repulsion, one expects low density
vortices parallel to c to form a square lattice. In small in-plane
oriented fields, θ = π/2, one expects to have vortex chains
along b or c depending on a particular set of elastic constants.

It is worth noting that the method developed for tetragonal
crystals can be applied for the cubic symmetry by setting
λ4 = λ1, λ5 = λ2, and λ6 = λ3, see Eqs. (2). It is also easily
shown that the elastic energy for the hexagonal symmetry
can be obtained from the tetragonal expressions by setting
λ1 = λ2 + 2λ6, Appendix B. Then Eq. (35) shows that vortices
parallel to c of a hexagonal crystal do not interact elastically,
the conclusion obtained in Ref. 8.

As was shown above, the elastic field created by parallel
vortices can be considered as planar only when vortices are
oriented along principal crystal directions. This is not so for
a general vortex orientation, when the strength S of the stress
caused by vortex cores and by the currents around may depend
on vortex orientation in a nontrivial manner; enough to mention
that in this situation the currents do not flow exclusively in
the plane perpendicular to the vortex direction. For arbitrary
orientations, one should use a more general approach involving
the Green’s function of anisotropic elastic media.11 This, in
fact, has been done for hexagonal crystals.8 This technique is
formally more involved while, as far as physics is concerned,
the major features of elastic interactions are already seen in
the limiting cases of θ = 0 and π/2.

We now compare the elastic contribution with the standard
London repulsion

EL = φ2
0

8π2λ2
L

K0

(
a

λL

)
, (37)

where λL is the London penetration depth. Since the
a-dependent factors I1,2,3 in the elastic interaction (29) go
as 1/a2, we estimate

Fel ∼ S2/λ̃a2, (38)

where λ̃ ∼ 1012 erg/cm3 is the order of magnitude of elastic
constants. At large distances the power-law elastic interaction
dominates the exponentially weak London repulsion. Hence,
Eint positive at short distances may turn negative along the
directions where the elastic attraction exceeds the London
repulsion, i.e., Eint(a) goes through a minimum at some am, and
approaches zero being negative as a → ∞. In other words, in
small fields vortices parallel to c will occupy these minima,
i.e., form a square lattice in the tetragonal or cubic cases with
a fixed field-independent spacing close to am.

In Ref. 2 the source term in the equation for strains, ∇2χs =
2πSsδ(r − a), due to the vortex core was estimated as Ss ∼
ζ ξ 2, where ξ is the core size and

ζ ≈ H 2
c

Tc

dTc

dp
(39)

is the relative volume change of normal and superconducting
phases. It was argued later that this estimate, based on the core
solely responsible for the strain, underestimates the vortex
induced strain by a factor as large as (ln κ)2 with κ being the
Ginzburg-Landau parameter.9,10 Hence, the stress source in

our case can be estimated as

S ∼ λ̃ζ ξ 2(ln κ)2. (40)

The distance at which the elastic and London interactions
are of the same order is estimated by setting Fel ≈ FL:

a2

λ2
L

K0

(
a

λL

)
≈ S2

λ̃φ2
0

≈ λ̃ζ 2ξ 4(ln κ)4

φ2
0

. (41)

Roughly one estimates the right-hand side of this equation
as 5 × 10−4 taking a moderate value dTc/dp ≈ 1 K/GPa =
10−10 K cm3/erg and Hc ≈ 1 T. Solving Eq. (41) numerically,
we get a/λL ≈ 10. Taking this distance as a side am of the
low field square vortex lattice in tetragonal crystals, we obtain
the paramagnetic contribution to the magnetization �M =
φ0/4πa2

m. Therefore, at the transition from Meissner to the
mixed state at the entry field Hent, M(H ) should jump from
−Hent/4π on the Meissner side to −Hent/4π + �M . For λL ∼
10−5 cm we estimate �M ∼ 1 G.

As mentioned, in some Fe-based compounds the derivative
dTc/dp is by an order of magnitude larger,4 which results in
higher estimates for �M . This might be a reason for a very
sharp and narrow peak in M(H ) at low fields observed in
many compounds of this family.12,13

As argued above, in hexagonal crystals the elastic
interaction is absent for vortices directed along c. However,
a small misalignment of these directions may cause vortex
chains to appear with a field independent intrachain spacing.
It is of interest to compare our estimates with vortex chains in
MgB2 observed is small fields nominally parallel to c.6 In this
material dTc/dp ≈ 1 K/GPa = 10−10 K cm3/erg.14 Taking
Hc ≈ 1 T, we obtain the same estimate as above: a/λL ≈ 10.
Reference 6 reports a nearly field-independent intrachain
distance as ≈2.5 μm, which is by a factor of 20 larger than
λL(0) ∼ 0.1 μm. Since, according to the authors, the actual
temperature at which the vortex structure forms might be close
to Tc, the relevant λL is larger, so one may consider the above
estimate as having the correct order. It would be interesting
to do the same experiment in a deliberately tilted field and
compare the data with calculation based on particular elastic
moduli of MgB2.
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APPENDIX A: ELASIC MODULI

The tensor components are easily reproduced since tensors
transform as products of coordinates. In nonzero λ, index x

can appear even number of times, z can come either in even
numbers or in combination with y:

λxxxx = λ1,

λyyyy = λ1 cos4 θ + λ4 sin4 θ + (λ6 + λ5/2) sin2 2θ,

λxxyy = λ2 cos2 θ + λ5 sin2 θ,

λxyxy = λ3 cos2 θ + λ6 sin2 θ,

144514-4



ELASTIC CONTRIBUTION TO INTERACTION OF . . . PHYSICAL REVIEW B 88, 144514 (2013)

λxxzz = λ2 sin2 θ + λ5 cos2 θ,

λzzyy = λ5(sin4 θ + cos4 θ ) + (λ1 + λ4 − 4λ6) sin2 θ cos2 θ,

λxzxy = (λ3 − λ6) sin θ cos θ,

λxxyz = (λ2 − λ5) sin θ cos θ,

λyzyy = [(λ1 − λ5) cos2 θ

+ (λ5 − λ4) sin2 θ − 2λ6 cos 2θ ] sin θ cos θ,

λyzzz = (λ1 sin2 θ + 3λ5 cos 2θ − λ4 cos2 θ ) sin θ cos θ.

Note that the last four entries are zeros for θ = 0,π/2.

APPENDIX B: HEXAGONAL CRYSTALS

The elastic energy of hexagonal crystal in the crystal frame
is3

Fh = (2λξηξη + λξξηη)
(
u2

xx + u2
yy

)
+ 2(2λξηξη − λξξηη)uxxuyy + 4λξξηηu

2
xy

+ λzzzzu
2
zz/2 + 2λξηzz(uxx + uyy)uzz

+ 4λξzηz

(
u2

xz + u2
yz

)
. (B1)

Here λξηξη, λξξηη, λξηzz, λξzηz, λzzzz are five independent elas-
tic constants, ξ = η∗ = x + iy.

Compare this with the energy Ft for the tetragonal case
which in the crystal frame and our notation reads

Ft = λ1
(
u2

xx + u2
yy

)
/2 + λ2uxxuyy + 2λ3u

2
xy + λ4u

2
zz/2

+ 2λ5(uxx + uyy)uzz + 2λ6
(
u2

xz + u2
yz

)
. (B2)

Clearly, Fh = Ft if

λ1 = 2(2λξηξη + λξξηη), λ2 = 2(2λξηξη − λξξηη),

λ3 = 2λξξηη, λ4 = λzzzz, λ5 = λξηzz, λ6 = λξzηz.

(B3)

Hence, we have λ1 = λ2 + 2λ3.
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