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Topological and edge state properties of a three-band model for Sr2RuO4
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Modeling the spin-triplet superconductor Sr2RuO4 through a three-orbital tight-binding model, we investigate
topological properties and edge states assuming chiral p-wave pairing. In concordance with experiments, the three
Fermi surfaces consist of two electronlike and one holelike surface, corresponding to the α, β, and γ band on the
level of a two-dimensional system. The quasiparticle spectra and other physical quantities of the superconducting
phase are calculated by means of a self-consistent Bogoliubov-de Gennes approach for a ribbon-shaped system.
While a full quasiparticle excitation gap is realized in the bulk system, at the edges gapless states appear, some
of which have linear and others of which have a nearly flat dispersion around zero energy. This study shows the
interplay between spin-orbit-coupling-induced spin currents, chiral edge currents, and correlation-driven surface
magnetism. The topological nature of the chiral p-wave state manifests itself in the γ band characterized by an
integer Chern number. As the γ band is close to a Lifshitz transition in Sr2RuO4, changing the sign of the Chern
number, the topological nature may be rather fragile.
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I. INTRODUCTION

The layered perovskite compound Sr2RuO4 has attracted
much interest for its unconventional superconductivity appear-
ing at Tc ∼ 1.5 K in an essentially two-dimensional strongly
correlated Fermi liquid.1,2 NMR–Knight-shift measurements
can be well interpreted, assuming spin-triplet Cooper pairing.3

Enhanced zero-field relaxation in μSR experiments indicates
the existence of the intrinsic spontaneous magnetic fields in
the superconducting phase, suggesting broken time-reversal
symmetry.4 The leading candidate for the superconducting
phase compatible with these two and several further ex-
periments is the so-called chiral p-wave state, whose order
parameter can be represented as

d(k) = �0ẑ(kx ± iky). (1)

This state is the two-dimensional analog of the A phase
[Anderson-Brinkman-Morel (ABM) state] of 3He superfluid.5

It has a full energy gap and orbital angular momentum Lz of the
Cooper pairs along the z axis (perpendicular to the basal plane).
The two angular momentum states, kx + iky and kx − iky , are
degenerate and even allow the formation of domains.6,7

The chirality of the pairing function leads to edge states,
i.e., Andreev bound states, giving rise to spontaneous surface
currents whose direction depends on the sign of Lz.6,7 While
quasiparticle tunneling spectroscopy confirms the subgap
states near the surface,8–10 scanning Hall probes and the scan-
ning superconducting quantum interference device (SQUID)
microscopy experiments do not confirm the existence of
the supercurrent.11–13 These studies have been followed by
discussion on the overall experimental consistency of the chiral
p-wave phase for Sr2RuO4 (see, e.g., Ref. 14).

The chiral p-wave superconductivity has also attracted
much interest for the topological nature of this phase. The
chirality of the chiral p-wave superconducting state for the
single-band model is characterized by a topological number,
which is defined as

N = 1

4π

∫
d2km̂ ·

(
∂m̂
∂kx

× ∂m̂
∂ky

)
, (2)

where m = (Re�k, − Im�k,εk), and m̂ = m/|m|.15 �k (εk)
stands for the gap function (energy dispersion). This topo-
logical number is +1 or −1, which depends on the angular
momentum of Cooper pairing.15,16 The finite topological
number is associated with the gapless chiral edge mode at
the boundary of the domain wall with opposite chirality or at
the surfaces.

Sr2RuO4 has a K2NiF4-type lattice structure, which is
isostructural with the parent compound of the high-Tc curate
(La,Sr)2CuO4 and shows strong two-dimensional anisotropy.
The Fermi surfaces of cylindrical topology are formed by
three bands, the α, β, and γ sheets, which are mainly derived
from the Ru 4d-t2g orbitals. The dyz and the dzx orbitals give
rise to the nearly one-dimensional α-β bands and the dxy

orbital yields the genuinely two-dimensional γ band. Several
studies suggest that while the γ band is responsible for the
superconductivity, the α-β bands contribute the enhanced
incommensurate magnetic correlation.17,18 Note that strong
incommensurate magnetic correlations are well known from
neutron-scattering experiments, consistent with the simple
band-structure results,19–21 and are also manifest as incommen-
surate magnetic order for Ti-doped ruthenates Sr2Ru1−xTixO4

with the z-axis polarization as expected theoretically from
spin-orbit coupling.18,22
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In our previous study, we restricted ourselves to a two-band
model with the dzx and dyz orbitals, i.e., the α-β bands.23 In
this case, edge states appear as Andreev bound states. As the
topological number is zero due to the opposite chirality in
the electron- and holelike band, there are two bound states that
cross zero with opposite chirality. These states give rise to a net
supercurrent flowing at the surface. Additionally, we observe
a spin current parallel to the surface, which flows even in the
normal state due to the structure of orbital hybridization and
spin-orbit coupling. The spin orientation of the spin current
is along the z axis. The combination of supercurrent and
spin current leads to a net spin polarization. The almost flat
dispersion of the Andreev bound states yields a large density
of states at zero energy. With repulsive interaction, this can
also lead to a spontaneous spin polarization at the surface
due to the Stoner-like mechanism. Via spin-orbit and Hund’s
rule coupling, the orientation of the supercurrent and the spin
polarization are correlated.

In the present study, we extend this analysis to all three
bands, which leads to a topologically nontrivial situation.
We consider the γ band to be dominant and to carry a
finite topological number. Including interactions and spin-
orbit coupling of the three bands, we examine the interplay
between the chiral edge state derived from the γ band and the
magnetism at the surface.

II. MODEL AND METHOD

First, we introduce the model Hamiltonian of the two-
dimensional three-band system with ribbon shape. This ge-
ometry allows us to more easily access the properties near the
edges. This extended ladder-type system with the number of
legs L shown in Fig. 1 then has two edges. We consider open
boundary conditions in the y direction leading to edge states.
It is technically easy to turn to a bulk system by changing to
periodic boundary conditions in this direction and choosing L

to be sufficiently large. We always assume translational invari-
ance along the x direction. The orbital structure of the 4d-t2g

orbitals (dzx , dyz, and dxy) suggests a specific pattern of nearest-

l 2

l L

l L−1

l 3

y

't−'tt− t− zt−
'
z
t−

aU

aU

aU

aU

l 4

l 1
x i

't− 't zt−'
z
t−

FIG. 1. Lattice structure of L-leg ribbon with three orbitals: dyx ,
dzx , and dxy . t (t ′) stands for the hopping integral between same
(different) orbitals. tz (t ′

z) stands for the hopping integral between γ

orbitals. Ua represents the attractive interaction between the nearest-
neighbor sites.

and next-nearest-neighbor hopping supplemented by onsite
spin-orbit coupling, on the single-particle level. Moreover, we
add onsite repulsive interaction, i.e., inter- and intraorbital,
including Hund’s rule coupling. A nearest-neighbor interaction
will eventually be used to introduce unconventional supercon-
ductivity in the spin-triplet channel. For a simple notation, we
hereafter label the orbitals dzx , dyz, and dxy by x, y, and z,
respectively.

Covering all these parts, the Hamiltonian for the ribbon
model can be written as

H = Hαβ + Hγ + Hμ + HSO + Ha + Hr, (3)

with

Hαβ = −t
∑
i,σ

(
L∑

l=1

c
†
ilxσ ci+1lxσ +

L−1∑
l=1

c
†
ilyσ cil+1yσ + H.c.

)

− t ′
∑

i,σ,m,m′ �=z

L−1∑
l=1

(c†ilmσ ci+1l+1m̄σ

− c
†
il+1mσ ci+1lm̄σ + H.c.), (4)

Hγ = −tz
∑
i,σ

(
L∑

l=1

c
†
ilzσ ci+1lzσ +

L−1∑
l=1

c
†
ilzσ cil+1zσ + H.c.

)

− t ′z
∑
i,σ

L−1∑
l=1

(c†ilzσ ci+1l+1zσ + c
†
il+1zσ ci+1lzσ + H.c.),

(5)

Hμ = −μ
∑
ilmσ

nilmσ − �ε
∑
ilσ

nilzσ , (6)

HSO = −λ
∑
il

∑
mm′m′′

εmm′m′′
∑
σσ ′

c
†
ilmσσm′′

σσ ′cilm′σ ′ , (7)

Ha = Ua

∑
ilσσ ′

⎛
⎜⎝∑

m=
x,z

nilmσ ni+1lmσ ′ +
∑
m=
y,z

nilmσ nil+1mσ ′

⎞
⎟⎠ ,

(8)

Hr = Ur

∑
ilm

nilm↑nilm↓ + Kr

∑
ilm�=m′

nilm↑nilm′↓

+ (Kr − Jr )
∑

ilm<m′σ

nilmσ nilm′σ , (9)

where c
†
ilmσ (cilmσ ) is the creation (annihilation) operator

for electrons on the site i of leg l, in the orbital m (=x,
y, or z orbital) and with spin σ (=↑ or ↓). Moreover,
nilmσ = c

†
ilmσ cilmσ is the corresponding number operator, and

μ and λ stand for the chemical potential and the amplitude
of the spin-orbit coupling, respectively. The energy difference
between the (x-y) orbitals and z orbital is denoted as �ε.
εmm′m′′ and σ in HSO are the Levi-Civita symbol and the Pauli
matrix, respectively. Superconductivity is introduced by Ha

with Ua as the attractive nearest-neighbor interactions. Note
the anisotropic structure for the x and y orbitals which only
interact in the x and y direction, respectively. The repulsive
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FIG. 2. (Color online) Fermi surfaces of two-dimensional bulk
system for t ′ = 0.1t , tz = 0.7t , t ′

z = 0.3t , �ε = 0.065t , and λ = 0.1t

with Ua = Ur = Jr = 0. The black, blue, and red lines stand for the
α, β, and γ bands, respectively. The thin dashed lines stand for the
Fermi surface of α-β bands without t ′ and λ.

onsite interaction among the electrons includes intraorbital
Ur , interorbital Kr , and Hund’s rule coupling Jr , which are
important for the occurrence of magnetism near the edges. For
simplicity, we ignored the exchange and pair hopping terms
without changing the qualitative outcome. Note that we assume
the standard relation Ur = Kr + 2Jr .

To adjust the parameters, we examine the two-dimensional
bulk Fermi surface for the noninteracting case (Ua = Ur =
Jr = 0) in Fig. 2 and compare them with the ones observed
for Sr2RuO4. The two-dimensional bulk Hamiltonian can be
written as

H 2D = H 2D
band + Ha + Hr, (10)

H 2D
band =

∑
kσ

{∑
m

εm
k c

†
kmσ ckmσ + ε

xy

k (c†kxσ ckyσ + H.c.)

}

+HSO + Hμ, (11)

where εx
k = −2t cos kx , ε

y

k = −2t cos ky , ε
xy

k = 4t ′ sin kx

sin ky , and εz
k = −2tz(cos kx + cos ky) − 4t ′z cos kx cos ky , and

periodic boundary conditions are imposed in both directions.
The α and β bands, which mainly consist of the x and y

orbitals, have nearly one-dimensional characters with almost
square-shaped Fermi surfaces. If the orbital hybridization
and spin-orbit interaction were absent, indeed only one-
dimensional Fermi surfaces would appear (thin dashed lines in
Fig. 2). This leads to pronounced nesting features in the α and β

bands with the nesting vectors Q ∼ (2π/3,0) or (0,2π/3). The
electronlike (holelike) Fermi surfaces are centered around the
� (X) point. The two-dimensional electronlike γ band which
consists of the z orbital is connected with the α-β bands only
through the spin-orbit coupling and the repulsive interaction.

We introduce the BCS-type mean field in the spin-triplet
channel to decouple the attractive interaction terms in Ha in

the usual way by the gap functions defined as

�x
lm=x,z = 1

2 (〈ci+1lm↑cilm↓〉 + 〈ci+1lm↓cilm↑〉), (12)

�
y

lm=y,z = 1
2 (〈cil+1m↑cilm↓〉 + 〈cil+1m↓cilm↑〉), (13)

which corresponds to in-plane equal-spin pairing. The com-
ponents �x

ly and �
y

lx vanish due to the anisotropic structure of
the attractive interaction in Eq. (8). By its definition, �y

lm is not
symmetric with respect to the center of the ribbon (l = L/2).
However, the following relabeling yields a symmetric form:

�
y ′
lm ≡

⎧⎪⎨
⎪⎩

�
y

lm

/
2 (l = 1)

�
y

l−1m

/
2 (l = L)(

�
y

l−1m + �
y

lm

) /
2 (otherwise).

(14)

The particle number and the spin polarization are defined
as

nlm = nlm↑ + nlm↓, (15)

mlm = nlm↑ − nlm↓, (16)

where nlmσ ≡ 1
N

∑
i〈c†ilmσ cilmσ 〉. For the repulsive interaction

terms, we use the Hartree-Fock-type mean-field decoupling
leading to

nilmσ nilm′σ ′ → nlmσ nilm′σ ′ + nlm′σ ′nilmσ . (17)

III. RESULTS

We calculate the order parameters self-consistently with
spatial resolution in the ribbon for Ua = −1.5t at zero
temperature. This leads to rather large gap functions such
that the coherence length is short, i.e., only a few lattice
constants. Hence, the number of legs L = 100 is sufficient
to ensure independent Andreev bound states at the two edges
and the ribbon center displaying essentially bulk properties.
The other model parameters are chosen as follows: particle
number n = 4, t ′ = 0.1t , tz = 0.7t , t ′z = 0.3t , �ε = 0.065t ,
and λ = 0.1t .

A. Superconducting property without repulsive interaction

We discuss first the superconducting order parameter in
the absence of the repulsive interaction (Ur = Jr = 0). We
find that the most stable pairing state has the chiral p-wave
form with d = ẑ(kx + iky) avoiding nodes in the excitation
gap, where the real and imaginary parts of the gap functions
have relative phase difference (π/2) and the same amplitudes
(Re�x = Im�y) in the bulk. Even in our ribbon model, this
symmetry still remains at the center of the ribbon, as depicted
in Fig. 3.

All gap functions, i.e., that of the α-β bands (�x
x , �

y
y)

and that of the γ band (�x
z , �

y
z ), have the same chirality but

opposite sign for the two-band subsets. Also in the ribbon
model, the d = ẑ(kx + iky) and d = ẑ(kx − iky) states are
degenerate and have the relation Re�x = ±Im�y . Hereafter,
we focus on the d = ẑ(kx + iky) state, unless otherwise noted.

At the ribbon edges, �y is suppressed and �x is slightly
enhanced.7 Andreev bound states appearing at these edges give
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FIG. 3. (Color online) Gap functions as a function of leg index l

in d = ẑ(kx + iky) superconducting state for Ur = Jr = 0.

rise to the zero-energy peak in spectral function defined as

ρlmσ (ω) = 1

N

∑
k,n

|uk(lmσ,n)|2δ(ω − Ekn), (18)

ρ tot
lσ (ω) =

∑
m

ρlmσ (ω), (19)

where Ekn [uk(lmσ,n)] is the energy eigenvalue (wave-
function eigenvectors) with the quantum number n and the
momentum k of the mean-field Hamiltonian. Figure 4 shows
the spectral functions near an edge for Ur = Jr = 0. Note
that the spectral function ρlmσ (ω) depends only very weakly
on the spin index in the absence of the repulsive interaction.
In the low-energy region, a rather sharp peak structure appears
within the fully opened superconducting gap of the chiral
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ω /t

(a) Total spectral function at l=1

ρ 
to

t 1 σ
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 )
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(b) Spectral function at l=1
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 y orbital
 z orbital

ρ 
1m

σ (
ω 

)

FIG. 4. (Color online) Spectral functions at l = 1 for
Ur = Jr = 0. (a) Total spectral function. (b) Each component of
spectral function.
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FIG. 5. Spectral functions of the y orbitals for various l near an
edge for Ur = Jr = 0.

p-wave phase, as shown in Fig. 4(a). Figure 4(b) indicates
that the peak structure originates from the y orbital, i.e., it is
due to the Andreev bound state of the py component of the
pair wave function yielding the π -phase shift for quasiparticles
bouncing off the surface (see Fig. 5 and discussion below). The
contributions of the x and z orbitals are considerably smaller.
Note that the one-dimensional character in the band related
to the x component still remains strongly visible through
the singularities in the density of states at the band bottom
and top.

We now follow the zero-energy peak of the y orbital
as a function of the distance from the edge (see Fig. 5).
With increasing distance l, the height of the peak is reduced
gradually indicating that this peak represents a surface bound
state. Note that the peak structure vanishes at l = 3 × integer,
which indicates a spatial oscillation with the nesting wave
vector Q ∼ 2π/3, which corresponds to a Friedel-type of
oscillation of the bound-state wave function.24,25

In order to analyze the low-energy edge states, we compare
the energy dispersions for the bulk and the ribbon model.
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FIG. 6. Energy dispersion in the low-energy sector of the super-
conducting state; (a) bulk and (b) ribbon for Ur = Jr = 0.

The chiral p-wave superconducting state has by symmetry a
nodeless quasiparticle gap in the bulk system, as shown in
Fig. 6(a). Note that the Fourier transformation for the bulk and
ribbon systems is introduced only in the x direction as

cilmσ = 1√
Lx

∑
k

cklmσ e−ikxi , (20)

where k stands for the momentum along the x direction and
xi is the x coordinate of site (i,l). Lx is the number of sites
in the x direction. The results for the bulk systems are taken
by imposing periodic boundary conditions in the y direction,
such that for given k, as many energy levels appear as in the
ribbon case with open boundary conditions.

In contrast to the bulk, the ribbon spectrum in Fig. 6(b)
has subgap states which can be distinguished into two classes.
There are those states forming almost flat bands with a strong
dispersion only around k ∼ 2π/3 and those states with a steep
linear dispersion around k = 0. The former originate from the
α-β bands. These flat bands are responsible for the larger peak
around zero energy seen in Figs. 4 and 5. The latter are the
chiral edge states of the γ band whereby each edge contributes
one chiral branch which is topologically protected.

B. Magnetic instability

We now turn on the repulsive onsite interactions, which
we keep small enough so as not to trigger an instability in
the bulk system. Nevertheless, the spectral redistribution at
the edges through the subgap states provides an environment
where spin magnetism can easily emerge.23 This becomes

5 10 15 20
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 Ur =t

m
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-0.002
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0.002

m
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, m
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FIG. 7. (Color online) Spin polarization of the y orbitals for
several choices of Ur near an edge. The inset shows spin polarizations
of the x orbitals (solid line) and z orbitals (dashed line).

immediately obvious if we look at the results for spontaneous
spin polarization depicted in Fig. 7, which is localized at the
edges. With increasing Ur , the amplitude of the spin polariza-
tion increases, but the penetration towards the bulk remains
essentially unchanged. We notice that the spin polarizations
of the x and z orbitals are almost independent of the repulsive
interaction, while the y orbital displays magnetism strongly
depending on the repulsive interaction and, thus, dominating
magnetism at the edges.

The magnetism, which is present dominantly in the x

orbital due to the superposition of the supercurrent and spin
current even for Ur = 0, is much weaker and has only a
minor contribution to the magnetism despite transfer through
next-nearest-neighbor hopping and the spin-orbit coupling, as
seen in the inset of Fig. 7. This small spin polarization has,
however, the role that it yields a bias for the spontaneous spin
polarization of the y orbital. Thus, the magnetism is correlated
with the orientation of the supercurrent. The oscillation of the
spin polarization as seen in Fig. 7 is again of the type of a
Friedel oscillation with the nesting wave vector Q ∼ 2π/3
and also indicates that the instability is basically triggered
by the band-structure nesting feature of the α-β bands.
Figure 8 supports this observation, as we can see that the spin
polarization is due to the spin splitting of the essentially flat
subgap states originating from the α-β bands and the γ -band
subgap states are essentially unaffected. Thus, the Stoner-like
spin instability is facilitated by the large density of states at
zero energy provided by the near flat bands.

The effect of Hund’s rule coupling Jr is weak for the y

orbital as well as the x orbital, but is rather influential for the
z orbital, as can be seen in Fig. 9.

The role of spin-orbit coupling is complex in view of the
spontaneous magnetism of the y orbital. On the one hand, it
transfers the spin polarization between the different orbitals,
but is also responsible for the spin currents at the surface,
as mentioned earlier. Therefore, there is considerable effect
due to spin-orbit coupling in the buildup of magnetism in
both the x and z orbital, as seen in the inset of Fig. 10. On
the other hand, spin-orbit coupling enhances the dispersion in
the y orbitals such that its density of states at zero energy is
diminished, leading to a reduction of the spin polarization, as
can be observed in Fig. 10.
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FIG. 8. (Color online) (a) Energy dispersions and (b) spectral
functions at l = 1 in the low-energy region for several choices of Ur

for Jr = 0. The solid (dashed) line stands for the spectrum of the
electron up (down) spin in the lower panel.

C. Properties of charge and spin currents

We now turn to the current densities, defining the spin-
dependent current operators,

jlσ ≡ j
αβ(1)
lσ + j

αβ(2)
lσ + j

γ (1)
lσ + j

γ (2)
lσ ,

j
αβ(1)
lσ = 1

N

∑
k

(2t sin k)c†klxσ cklxσ ,

(21)
j

αβ(2)
lσ = 1

N

∑
m(=x,y)

{(−2it ′ cos k)c†klmσ ckl+1m̄σ

+ (2it ′ cos k)c†kl+1mσ cklm̄σ },

j
γ (1)
lσ = 1

N

∑
k

(2tz sin k)c†klzσ cklzσ ,

(22)
j

γ (2)
lσ = 1

N

∑
k

(2t ′z sin k)(c†klzσ ckl+1zσ + c
†
kl+1zσ cklzσ ).

Here we used the notation that m̄ means x̄ = y and ȳ = x.
Since jn(2) (n = αβ or γ ) in this form is not symmetric with
respect to the center of the ribbon (l = L/2), we introduce the
following redefinition for the purpose of display:

j
n(2)′
lσ ≡

⎧⎪⎪⎨
⎪⎪⎩

j
n(2)
lσ

/
2 (l = 1)

j
n(2)
l−1σ

/
2 (l = L)(

j
n(2)
l−1σ + j

n(2)
lσ

)/
2 (otherwise).

(23)
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FIG. 9. (Color online) Spin polarization of the y orbitals for
several choices of Jr near an edge for Ur = t . The inset shows spin
polarizations of the x orbital (solid line) and z orbitals (dashed line).

Therefore, for the spin-dependent current density, we now use

jn
lσ ≡ j

n(1)
lσ + j

n(2)′
lσ . (24)

In the absence of the repulsive interactions, the spin-
dependent currents from the α-β and the γ bands along the x

direction are depicted in Fig. 11. The spin-dependent currents
appear near the edges, and the sum of each current jlσ becomes
the net charge current flowing along the edges. Because
of time-reversal symmetry breaking in the superconducting
state, both the spin ↑ and ↓ currents from all α-β and γ

bands flow in the same direction. The flow direction and the
amplitudes are associated with the sign of the chirality or of the
spin-orbit interaction, in which the following relations have to
be satisfied:

jn
lσ [d = ẑ(kx + iky)] = −jn

lσ̄ [d = ẑ(kx − iky)], (25)

jn
lσ (signλ = +1) = jn

lσ̄ (signλ = −1). (26)

With the gap functions of both the α-β and γ bands having
the same chirality, the flow directions of the currents are the
same. The j

n(1)
lσ component is larger than that of j

n(2)
lσ , and is

dominant in the current, which indicates that in contrast to the
magnetic property, the currents are dominated by the x and z

orbitals.
The spin-orbit interaction yields a difference between the

spin ↑ and ↓ currents, as has been discussed in Ref. 23 for the
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FIG. 10. (Color online) Spin polarization of the y orbital for
several choices of λ near an edge for Ur = 0.5t and Jr = 0. The inset
shows spin polarizations of the x orbital (solid line) and z orbital
(dashed line).
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(a) Spin-dependent currents

FIG. 11. (Color online) (a) Spin ↑ currents for d = ẑ(kx + iky)
state as a function of leg index l for λ = 0.1t and Ur = Jr = 0. (b)
Magnification of (a). Solid lines stand for spin ↑ and ↓ electron for
λ = 0.1t , and open (closed) circle represents the current for λ = 0.

α-β bands. There the combination of hopping and spin-orbit
coupling yields circular spin current patterns which cancel
in the bulk but yield a net spin current at the surface due to
the lack of cancellation. Spin-orbit coupling together with the
chiral supercurrents leads also to a weak spin current in the γ

band.
Now let us compare the charge and spin currents defined as

Ĵ c
l = − e

h̄

∑
σ

(
j

αβ

lσ + j
γ

lσ

)
, (27)

Ĵ s
l =

∑
σ

σ
(
j

αβ

lσ + j
γ

lσ

)
, (28)

for the two-band model23 and the three-band model. Figure 12
shows that essential differences can be found largely in the
charge but much less in the spin current distribution, in the
absence of repulsive interactions. Note that Fig. 11(b) shows
that the γ band does not carry spin currents in this case. The
orientation of the charge current remains the same, but the
magnitude is considerably larger for the three-band model
due to the contributions of the γ band. The lack of change for
the spin current is not surprising in view of the mechanism
driving the spin currents in the α-β bands. Interaction effects
are not strong on both current densities, as Fig. 13 shows.

D. Induced magnetic fields

Both the charge current and the spin polarization yield
the net magnetic field. By means of the Maxwell’s equation
∇ × B = μ0 j , we obtain the magnetic field from the charge
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J l
c

FIG. 12. (Color online) Charge and spin currents as a function of
leg index l for Ur = Jr = 0. The insets show the magnifications near
an edge.

current, which is given by

Bc
z (l) = μ0

l∑
l′

〈
J c

l′
〉 = − et

h̄a
μ0

l∑
l′

〈
J̃ c

l′
〉
, (29)

where 〈J̃ c
l′ 〉 represents the dimensionless current density. On

the other hand, the spin polarization generates the following
magnetic field:

Br
z (l) = − μ0

a2c
μB(nl↑ − nl↓), (30)

where μB is the Bohr magneton and a (c) is the lattice constant
in the x and y (z) direction. We stress that both prefactors in
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FIG. 13. (Color online) Charge current as a function of leg index
l near an edge for several choices of Ur and Jr . The inset shows spin
current.
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FIG. 14. (Color online) Spontaneous magnetic field for several
choices of Ur for λ = 0.1 and Jr = 0. The solid [dashed] line stands
for Br

z (l) [Bc
z (l)].

Br
c (l) and Br

z (l) have the same order of magnitude. Figure 14
shows these two fields without the prefactors, respectively.
Here, Meissner-Ochsenfeld screening effects are not taken into
account, which would limit the current-induced field to the
surface region.

Although the presence of the γ band increases the magnetic
field due to the charge current in comparison with the case
in the two-band model, both magnetic fields are still of
comparable magnitude and opposite sign. Therefore, the net
magnetic field can be reduced due to the compensation, which
leads to a reduction of the overall field that could be measured
at the edges, as already discussed in Ref. 23.

E. Topological property

Finally, we address the topological properties of the super-
conducting phase in the three-band model. For the materials
with the fully opened insulating or superconducting gap, the
edge states are closely related with topological properties
of the bulk state due to the bulk-edge correspondence.26,27

In order to study the topological properties, we consider
the two-dimensional bulk Hamiltonian given by Eq. (10),
including the BCS-like decoupling of the pairing interaction,
like in the ribbon model.

We define the topological invariant in the superconducting
phase, following Ref. 28, as

NT = −2πi

N

∑
k

∑
ijkl

∑
n,n′

(
J x

k

)
ij

(
J

y

k

)
kl
u∗

k(i,n)uk(j,n′)u∗
k

× (k,n′)uk(l,n)
f (Ekn) − f (Ekn′)

(Ekn − Ekn′ )2
, (31)

where indices i,j,k,l include the site, orbital, and spin. The
matrix element J

μ

k is formally defined like a current,

(
J

μ

k

)
ij

= 〈i|∂Hk

∂kμ

|j 〉, (32)

with the mean-field Hamiltonian H 2D
MF = ∑

k Hk, where En

stands for the energy eigenvalue of the quasiparticle state with
index n in the two-dimensional bulk system and f (En) is the
Fermi distribution function. Note that in the superconducting
phase, Eq. (32) does not have the meaning of physical charge

-3 -2 -1 0 1 2 3
-1

0

1

μ /t
N

T

 λ=0.0
 λ=0.1t
 λ=0.2t

(b) Three-band model

-3 -2 -1 0 1 2 3
-1

0
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 λ=0.0
 λ=0.1t
 λ=0.2t

N
T

μ /t

(a) Two-band (α−β ) model

FIG. 15. (Color online) Topological number as a function of
chemical potential μ for several choices of λ with d = ẑ(kx + iky):
(a) two-band and (b) three-band models.

current.29 NT becomes an integer and corresponds to the so-
called Chern number in the case of a topologically nontrivial
state.

Figure 15 shows the topological number NT as a function
of the chemical potential, where a clear difference between the
two-band and three-band model can be observed. Note that the
electron number and the Fermi-surface structure of Sr2RuO4

are reproduced at μ ≈ t . In the two-band model, there are two
Fermi surfaces, i.e., an electronlike and a holelike one, whose
Chern numbers are opposite and cancel perfectly. Thus, NT

vanishes in the wide range of μ shown in Fig. 15(a). The
finite NT , however, appears only near the bottom or top of
the two bands, where either the electron or the hole Fermi
surface is completely depleted. The range of nonzero NT can
be enlarged by increasing spin-orbit coupling, which affects
the band structure. The reason why NT does not reach an
integer value can be attributed to the fact that the Fermi
surface is very close to a symmetry point in the Brillouin
zone: the � point for μ ≈ −2t and the X point for μ ≈ +2t ,
where the gap function becomes zero. Thus, the condition
for topological protection is not given in the two-band model
because the Fermi surface in the superconducting phase is
blurred.

Since the two-band system has vanishing Chern number
in the wide range of μ, the observed finite NT in the three-
band model originates from the γ band, which provides an
integer value NT = +1 or −1, as shown in Fig. 15(b). In
addition, an interesting aspect arises, i.e., the sign change of
NT at μ= μc ≈ 1.15t . This indicates that the γ band shows
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FIG. 16. Energy dispersion in the low-energy sector of the
superconducting state at μ = 1.2t .

a Lifshitz transition from electronlike (μ < μc) to holelike
(μ > μc). Here the topological sector is switched and the chiral
edge states shift from crossing zero at kx = 0 to k = ±π .
Figure 16 shows the energy dispersion at μ = +1.2t , where
the Fermi surface touches the X point, resulting in vanishing
of the gap function due to the symmetry. Since the chemical
potential of Sr2RuO4 is rather close to μc, the chiral edge state
might be fragile against disorder.30

We would like to comment on the initial discrepancy in
the topology of the γ -Fermi surface in angle-resolved photoe-
mission spectroscopy (ARPES) measurements. Early ARPES
results indicated a holelike γ sheet,31 while later experiments
confirmed an electronlike Fermi surface, consistent with de
Haas-van Alphen measurements.32 The position of the Fermi
level for the γ band near the z-axis-oriented surface may
be subtle and depend on surface-state properties. Moreover,
surface reconstruction that doubles the unit cell, affecting
particularly the z orbital, has been reported, which complicates
the topology of the superconducting phase on the γ band.33

Thus, it would not be surprising that near the z-oriented
surfaces, the chiral edge states may become rather fragile to
disorder. This aspect of the γ band will be discussed elsewhere
in more detail.

IV. SUMMARY AND DISCUSSIONS

We have examined the complex interplay between the
topological aspects of the superconducting phase, i.e., band-
structure-driven surface spin currents and correlation-driven
magnetism for a three-band model corresponding to Sr2RuO4.
In a model favoring spin-triplet pairing, a chiral p-wave
superconducting phase is realized which appears with the
same chirality coupled in all three bands (α, β, and γ

band) connected through spin-orbit coupling and interband
hybridization. The topological nature of the chiral p-wave
state is visible in the γ band, which gives rise to a chiral edge

mode following the expectations. The α-β bands together also
give rise to Andreev bound states at the surface, which are
not topologically protected. However, due to the nearly flat
dispersion, these states generate a large zero-energy density
of states, which makes them very susceptible to a Stoner-like
magnetic instability. Note that this is compatible with magnetic
correlations due to the nesting feature of the α-β bands,
which leads to strong incommensurate magnetic correlations
as observed by neutron scattering.19

We would like to emphasize here the connection between
the correlation-driven magnetism and the chiral superconduct-
ing phase. This is caused by spin polarization induced by
the combination of normal-state spin currents at the surface
carried by the α-β band electrons and the chiral edge states.
This correlation of chiral and spin edge magnetism may give
rise to a cancellation of the magnetic signal at the surface,
which could be an explanation for the negative result in the
search for chiral magnetism in Sr2RuO4.

Note that the spin-orbit coupling between the α and β

bands acquires Rashba-type features near the surface, since
the hybridization between different orbitals lacks inversion
symmetry. The γ band does not have this feature. Naturally
there is a slight modification of the orbital structures at the
surface such that additional Rashba-like spin-orbit coupling
appears. This is, however, considerably weaker as it involves
hybridizations which are completely suppressed in the bulk by
symmetry. Modification due to these corrections is small, e.g.,
changing slightly the surface density of states at zero energy,
which would affect the magnetic instability slightly. However,
no qualitative change appears.

Another aspect which is of interest in the context of the
edge state is the topological nature of the superconducting
phase. By evaluating the Chern number, we show that the γ

band is intrinsically a topologically nontrivial phase, while
the α-β bands constitute together in the relevant band-filling
range a topologically trivial subsystem. However, a closer look
at the Chern number shows that the actual system is close to a
Lifshitz transition, which would yield a switch of the sign of
the Chern number. While this does not affect the edge states
essentially in a clean system, it potentially makes them fragile
to disorder. Also this is a feature which can jeopardize the
observation of chiral edge currents in the system. It also may
provide opportunities for novel phenomena in a topological
superconductor, if Sr2RuO4 turns out to be in this class.
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