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Electronic specific heat of Ba1−xKxFe2As2 from 2 to 380 K
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Using a high-resolution differential technique we have determined the electronic specific heat coefficient
γ (T ) = Cel/T of Ba1−xKxFe2As2 with x = 0 to 1.0, at temperatures (T ) from 2 K to 380 K and in magnetic
fields H = 0 to 13 T. In the normal state γn(x,T ) increases strongly with x at low temperature, compatible
with a mass renormalization ∼12 at x = 1, and decreases weakly with x at high temperature. A superconducting
transition is seen in all samples from x = 0.2 to 1, with transition temperatures and condensation energies peaking
sharply at x = 0.4. Superconducting coherence lengths ξab ∼ 20 Å and ξc ∼ 3 Å are estimated from an analysis
of Gaussian fluctuations. For many dopings we see features in the H and T dependencies of γs(T ,H ) in the
superconducting state that suggest superconducting gaps in three distinct bands. A broad “knee” and a sharp
mean-field-like peak are typical of two coupled gaps. However, several samples show a shoulder above the sharp
peak with an abrupt onset at Tc,s and a T dependence γs(T ) ∝ √

1 − T/Tc,s . We provide strong evidence that the
shoulder is not due to doping inhomogeneity and suggest it is a distinct gap with an unconventional T dependence
�s(T ) ∝ (1 − T/Tc,s)0.75 near Tc,s . We estimate band fractions and T = 0 gaps from three-band α-model fits to
our data and compare the x dependencies of the band fractions with spectroscopic studies of the Fermi surface.
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The electronic specific heat γ measured to room temper-
ature contains a wealth of quantitative information about the
electronic spectrum of metallic systems over an energy region
±100 meV about the Fermi level, crucial for understanding
high-temperature superconductivity. Measurements of the
electronic specific heat have played an important role in
revealing key properties of the copper-oxide-based “cuprate”
high-temperature superconductors (HTSCs). Some examples
include the normal-state “pseudogap,”1–4 the bulk sample
inhomogeneity length scale,5 and more recently evidence that
the superconducting transition temperature is suppressed due
to superconducting fluctuations.6 In this work we extend such
measurements to the iron-arsenide-based “pnictide” HTSCs.
Here we present results obtained for polycrystalline samples
of Ba1−xKxFe2As2 (x = 0 to 1.0) using a high-resolution
differential technique.7

With this technique we directly measure the difference in
the specific-heat capacities of a doped sample and an undoped
reference sample (BaFe2As2). This eliminates most of the large
phonon term from the raw data and yields a curve dominated by
the difference in electronic terms. Features of the electronic
specific heat that would otherwise be masked by the large
phonon background are then clearly visible in the raw data
over the entire temperature range. Central to the success of this
technique are measurements on a series of samples at closely
spaced doping intervals, so that systematic trends in the the
relatively small difference in phonon terms between sample
and reference can be identified and appropriate corrections
made. After making these corrections, the differences in
electronic specific heat are determined with a resolution of
∼0.1 mJ mol−1 K−2, i.e., up to 1 in 104 of the total heat
capacity, at temperatures from 2 K to 380 K and in magnetic
fields from 0 T to 13 T. During a measurement run the total
specific heats of the sample and reference are also measured.
Using information on the electronic contribution deduced
from our differential measurements we are able to extract the

total phonon contribution from the total specific heat with
a high degree of confidence, and crucially without recourse
to arbitrary fitting and extrapolation procedures—a severe
shortcoming of conventional heat capacity measurements in
this temperature range. This allows us to determine a harmonic
phonon spectrum which we compare with inelastic neutron
data.

I. SAMPLE PREPARATION

Polycrystalline samples of Ba1−xKxFe2As2 were prepared
by a solid-state reaction method similar to that reported by
Chen et al.8 First, Fe2As, BaAs, and KAs were prepared
from high-purity As (99.999%), Fe (99.9%), Ba (99.9%),
and K (99.95%) in evacuated quartz ampoules at 800, 650,
and 500 ◦C, respectively. Next, the terminal compounds
BaFe2As2 and KFe2As2 were synthesized at 950 and 700 ◦C,
respectively, from stoichiometric amounts of BaAs or KAs
and Fe2As in alumina crucibles sealed in evacuated quartz
ampoules. Finally, 11 samples of Ba1−xKxFe2As2 with x = 0
to 1.0 were prepared from appropriate amounts of single-
phase BaFe2As2 and KFe2As2. The components were mixed,
pressed, into pellets, placed into alumina crucibles, and sealed
in evacuated quartz tubes. The samples were annealed for
50 h at 700 ◦C with one intermediate grinding, and were
characterized by room temperature powder x-ray diffraction
using Cu Kα radiation. The diffraction patterns were indexed
on the basis of the tetragonal ThCr2Si2 type structure (space
group I4/mmm). Lattice parameters calculated by a least-
squares method agree well with those reported by Chen
et al.,8 Johrendt and Pöttgen,9 and Avci et al.,10 as illustrated
in Fig. 1. The linear changes in lattice parameters with x

suggest that there is little difference between the nominal
and actual K concentration in the samples. Note that Avci
et al.10 estimate a compositional uncertainty �x � 0.01 from
inductively coupled plasma elemental analysis. The samples
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FIG. 1. (Color online) (a) The lattice parameters at room tem-
perature as a function of nominal composition (solid squares). The
open data points for comparison are from Chen et al. (Ref. 8; circles),
Johrendt & Pöttgen (Ref. 9; triangles), and Avci et al. (Ref. 10;
diamonds), whose data include b-axis parameters in the orthorhombic
phase. X-ray diffraction peaks corresponding to the (b) (2,0,0) and
(c) (1,0,7) reflections. The peaks are symmetric and there is little
variation in the widths with x.

for heat capacity measurement were cut from the larger pellets
using a diamond wheel saw, and weighed approximately 0.8 g.
All samples were stored in an argon atmosphere, cut under
flowing argon, and exposed only briefly to air, for less than
30 minutes while mounting them in the calorimeter or SQUID
magnetometer.

II. PHONON CORRECTION

The total specific heat coefficient γ tot = C tot/T can be writ-
ten as γ tot = γ + γ ph + γ an, where γ , γ ph, and γ an represent
the electronic, phonon, and anharmonic contributions, respec-
tively (see Fig. 2). Here γ ph = C

ph
v /T and γan = C

ph
p /T −

FIG. 2. (Color online) Total specific heat of Ba0.7K0.3Fe2As2

and phonon terms at constant pressure Cph
p /T = C tot/T − γ and

constant volume Cph
v /T = Cph

p /T − γan. Upper inset: Phonon density
of states histogram extracted from Cph

v /T for x = 0.3, compared with
the phonon spectrum of BaFe2As2 measured by inelastic neutron
scattering (Ref. 16). The curves are normalized by area. Lower inset:
Difference in phonon density of states between x = 0.1 and 0, and
between 1.0 and 0.

C
ph
v /T . Differential measurements of Ba1−xKxFe2As2 [see

Fig. 3(a)] between each sample and the x = 0 reference
give �γ tot = �γ + �γ ph (assuming that �γ an = 0), where
�γ ph is a bell-shaped curve peaking typically at around
30–40 K and varying as T 2 at low temperatures and 1/T 3 at
high temperatures.11 Within a single crystallographic phase
�γ ph(x,T ) is generally found to be a separable function
of x and T , i.e., �γ ph(x2 − x1,T ) = (x2 − x1)f (T ), and is
thus a universal function of T , scaling in magnitude with
changes in x.11 A simple calculation shows that this separable
form is expected for phonon shifts of up to ∼10%. If the
shifts have a linear doping dependence �ω/ω = a(ω)�x,
then f (T ) = − ∫

a(ω)(∂CE/∂T )ωg(ω)dω, where CE(ω/T )
is the Einstein specific heat function for a single harmonic
oscillator and g(ω) is the phonon density of states. Higher
order corrections ∝(�x)2 will only arise if �ω/ω is nonlinear
in �x, or for very large frequency shifts. This simple separable
behavior greatly increases the reliability of the correction for
x-dependent changes in phonon specific heat. To correct �γ tot

for the doping-dependent changes in the phonon term we
must first determine f (T ). Inspection of Fig. 3(a) reveals
a systematic negative peak at 35 K which grows with x,
and is consistent with an increase in phonon frequencies
expected from the substitution of heavier Ba by lighter K.
A simple estimate of average fractional phonon shifts using
the approximate relation �ω/ω ∼ −�γ ph/(dCph/dT ) yields
�ω/ω ∼ 2.5% over the range 0 � x < 0.3 and ∼4% over
the range 0.3 � x � 1. A suitable f (T ) was constructed to
remove this peak for each phase, the criterion being that
after applying the correction, no evidence for the broad 35 K
peak should be visible in any of the corrected curves. For the
tetragonal phase 0.3 � x � 1 this was achieved by scaling the
correction curve fT (T ), shown in the inset to Fig. 3(a), linearly
with doping. In the magnetically ordered orthorhombic phase
0 � x < 0.3, the phonon correction fO (T ) has a T dependence

144502-2



ELECTRONIC SPECIFIC HEAT OF Ba1−xKxFe . . . PHYSICAL REVIEW B 88, 144502 (2013)

FIG. 3. (Color online) (a) The directly measured raw difference
in specific-heat coefficients between the doped samples and undoped
reference. The inset shows the temperature dependence of the residual
phonon term corrections for the tetragonal (T) and orthorhombic (O)
phases. (b) The electronic specific heat of Ba1−xKxFe2As2 up to 380 K
(main figure) and 50 K (inset).

similar to fT (T ), but scales sublinearly with increasing x.
This sublinear doping dependence correlates with the decrease
of the spin-density-wave (SDW) order parameter with x,
suggesting that magnetophonon coupling is important in the
magnetically ordered phase. To ensure that each resulting f (T )
has a T dependence compatible with that of a phonon spectrum
it was modeled with a histogram for the difference phonon
spectrum with a fixed fractional bin width �ω/ω = 0.238, as
discussed previously.11

After applying the phonon correction �γ ph(x,T ) to
�γ tot(x,T ) for all our samples we obtain the difference of
electronic terms �γ (x,T ) = γ (x,T ) − γ (0,T ) between x and
x = 0. To obtain the electronic term for each sample from this
differential data requires that γ (T ) for one sample is known
or assumed, and for this we choose the x = 0.3 sample. After
removing the broad negative peak in �γ tot at 35 K for this
sample �γ (0.3,T ) has an additional negative T dependence
given by ∼−20 × 10−6T 3 mJ/mol K2 in the range 40 to 110 K.
The negative curvature of this term, already evident above
80 K in the raw �γ tot data shown in Fig. 3(a), continues
to increase in magnitude up to 136 K and then abruptly
vanishes at the magnetostructural transition. For this reason
we associate it with the T dependence of the electronic
and magnetic (magnon) specific heat coefficient γ (x = 0) of
the undoped sample in the SDW phase. From �γ (0.3,T )
a roughly T -independent normal-state γn(0.3) below Tc of
47 mJ mol−1 K−2 is inferred from the entropy-conservation
constraint between normal and superconducting states. Finally,

we note that the low-temperature value for γn(0.3) is very
close to its high-temperature value ∼50 mJ mol−1 K−2

determined directly from the difference between γ tot(0.3)
and the saturation value of γ ph = 3nR, where n = 5 is the
number of atoms per formula unit. We therefore assume
that γn(0.3) is approximately T independent over the entire
range, and choose the γ (0.3,T ) for x = 0.3 to be the “known
reference.” The electronic term γ (x,T ) for all other samples
is then calculated from γ (x,T ) = �γ (x,T ) − �γ (0.3,T ) +
γ (0.3,T ). Final curves for γ (x,T ) are shown in Fig. 3(b). It is
important to note that any error in our assumption that γn for
x = 0.3 is approximately T independent will affect equally the
resulting curves for γ (T ) for all other dopings and will have no
effect on differences in γ (T ) between samples. The fact that
all the curves for γ (T ) vary smoothly with temperature with
no sign of the phonon correction or the large 135 K anomaly
present in the raw data [Fig. 3(a)] provides confidence in the
corrections and procedure discussed above and in the accuracy
and reproducibility of the raw differential data.

With the electronic terms in hand we are able to determine
the phonon terms in γ tot directly and without resorting to
arbitrary polynomial fits. The total specific heat (C tot/T =
γ tot) and phonon terms at constant pressure (Cph

p /T =
γ tot − γ ) and constant volume (Cph

v /T = C
ph
p /T − γ an) are

shown in Fig. 2 for x = 0.3. The anharmonic term is given
by12 γ an = V Bβ2, where V is the molar volume, B is the
bulk modulus, and β is the volume expansion coefficient.
We assume that γ an is doping independent and use V =
61 cm3 mol−1 (Ref. 13), B ∼ 0.80 × 108 mJ cm−3 (Ref. 14),
and β(300 K) ∼50 × 10−6 K−1 (Ref. 15) to obtain a room
temperature value γ an(300 K) ∼12 mJ mol−1 K−2 for each
sample. To a very good approximation12 β(T ) ∝ C

ph
v (T )

and thus γ an(T ) = [Cph
v (T )/C

ph
v (300 K)]2 × γ an(300 K). The

upper inset in Fig. 2 compares the phonon density of
states extracted from C

ph
v (x = 0.3)/T with the spectrum for

BaFe2As2 obtained from inelastic neutron scattering (INS)
measurements by Mittal et al.16 (We are unaware of INS data
for any other K-doped samples.) Our histogram reproduces
the bandwidth and the initial slope of the spectrum, though
the neutron data place more weight at high frequencies. This
is not unexpected as inelastic neutron scattering measures a
(generalized) phonon spectrum weighted by the scattering
cross sections and inverse masses of the different ions,16,17

while the phonon specific heat gives equal weight to all phonon
modes. The heavy Ba ions contribute almost entirely to the
low-frequency phonon spectrum below 20 meV, but carry a
low weighting in the neutron spectrum. This may account for
the relatively greater weight in the phonon spectrum below
20 meV and smaller weight at higher frequencies revealed
by our measurements. In view of this, the agreement is
quite reasonable and helps validate our main assumption that
γn(0.3,T ) is approximately T independent.

III. ELECTRONIC SPECIFIC HEAT

Figure 4 represents the first comprehensive high-resolution
determination of the temperature, doping, and magnetic
field dependence of the absolute electronic specific heat of
Ba1−xKxFe2As2 across the entire series. This data together
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FIG. 4. (Color online) Electronic specific heat at zero (black line) and applied magnetic fields (colored lines) vs temperature. Entropy-
conserving normal-state curves are shown by the dotted lines. The applied fields shown are 1 to 13 T in 1 T increments for x = 0.2 to 0.4; 1 to
13 T in 2 T increments for x = 0.6 to 0.8; 0.2, 0.5, 1.0, 1.5, then 2 to 11 T in 1 T increments for x = 0.9; and 0.1, 0.2, 0.5, 0.7, 1.0, 1.2, 1.5, 2,
and 3 T for x = 1.0.

with Meissner effect measurements confirm that supercon-
ductivity is observed for x � 0.2, and that the x = 0 and
0.1 samples are nonsuperconducting at all temperatures. In
Fig. 5 we show S/T in zero field for all samples, where
the electronic entropy S(T ) = ∫ T

0 γ (T ′)dT ′. S(T )/T is the

FIG. 5. (Color online) Temperature dependence of the electronic
entropy for x = 0 to 1.0 up to 300 K (main figure) and 40 K (inset).
Dotted lines show normal-state curves.

average value of γ (T ) in the temperature range 0 to T ,
and equals γ (0) at T = 0. Apart from x = 0.9 and 1, the
underlying normal-state electronic term γn below Tc for the
superconducting samples could not be determined directly by
suppressing superconductivity with a magnetic field since their
upper critical fields exceed 13 T. However we can estimate
the T dependence of γn below Tc with reasonable confidence
using the following constraints. (i) γn and Sn = ∫

γndT

are continuous with no change of slope through Tc; (ii) the
normal-state and superconducting entropies are equal at Tc,
Sn(Tc) = Ss(Tc) (i.e., the areas under γn and γs below Tc)
are equal. For convenience we first choose a suitable T

dependence for Sn/T and then obtain γn from γn = dSn/dT .
The possible T dependence for Sn/T (and hence γn) is further
restricted by the reasonable assumption for a Fermi liquid
that γn = γn(0) + bT 2 [and Sn/T = γn(0) + bT 2/2] close to
T = 0. The broken lines in Figs. 4 and 5 show γn and Sn/T ,
respectively, for all the superconducting samples. As shown
in Fig. 4 for x � 0.8 we are able to significantly suppress
the transition temperature in a field of 13 T, and confirm our
normal-state γn curves to well below the zero field Tc.

Figure 6 shows the static susceptibility χ measured in 3 T
in a Quantum Design SQUID magnetometer. χ (T ) increases
systematically with doping, apart from the x = 0.9 data which
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FIG. 6. (Color online) Temperature dependence of the static
susceptibility measured at 3 T for x = 0 to 1.0.

lie above the x = 1.0 data. This is probably due to the presence
of a larger Curie-Weiss term in the x = 0.9 sample. In their
model, Kou et al. predict a small upturn at low T due
to the presence of itinerant electrons coexisting with local,
magnetically ordered moments.18 However the unsystematic
variation in the size of this upturn, both in our data and in
the literature,19,20 suggests that it is predominantly extrinsic in
nature. Above the SDW transition at T0, χ increases linearly
with T for x = 0 to 0.2, which has been attributed to antiferro-
magnetic correlations persisting above T0.18,21 For x > 0.4, χ

exhibits a broad peak between 100 K and 200 K and smoothly
crosses over at higher temperatures to a decreasing Curie-like
T dependence. This is precisely the behavior predicted by the
quantum Heisenberg antiferromagnetic model.21,22 In a local
moment model the steadily decreasing crossover temperature
in our data implies that the ratio of the next-nearest to
nearest neighbor magnetic superexchange energies, J2/J1,
decreases with x. On the other hand comparison of Figs. 5
and 6 shows that S/T and χ have broadly similar T

dependencies. This behavior is typical of a Fermi liquid in
which both properties are dominated by thermal excitation of
quasiparticles.

FIG. 7. (Color online) Temperature dependence of the Wilson
ratio R = R0χT/S, where R0 = (π 2k2

B )/(3μ2
B ), for x = 0 to 1.0.

The Wilson ratio R = (π2k2
BχT )/(3μ2

BS) is plotted in
Fig. 7. Note that we have not corrected χ for T -independent
core and Van Vleck terms which are unlikely to exceed
10−4 emu/mol. If the g factor is 2, R = 1 for noninteracting
quasiparticles, 2 for spin- 1

2 Kondo alloys, and many heavy-
fermion compounds and using this definition of the Wilson
ratio, 4.7 for noninteracting spin- 1

2 moments. R is expected
to decrease with electron-phonon enhancement of γ (T ) and
to increase with exchange enhancement of χ (T ). For the
entire doping range 0 � x � 1, R increases weakly with
increasing temperature in the paramagnetic tetragonal phase
from ∼0.9 to 1.9 as shown in the Fig. 7 inset. These values
are reasonable for a correlated Fermi liquid. Just above Tc the
superconducting samples with x = 0.2 to 0.8 have R = 1.2
to 1.3. In the orthorhombic SDW phase below T0 for x = 0
to 0.2, R increases steeply with decreasing temperature since
the entropy, determined solely by thermal excitations, falls
more rapidly with increasing magnetic order than χ . For
x = 0 the value χ (T = 0) � 4 × 10−4 emu/mole in Fig. 6
can be used to estimate the effective moment peff per Fe
atom in the SDW phase. Using the standard mean-field
formulas χ (T ) = 2Navp

2
eff/[3kB(T + T0)] and χ (0) � χ (T0),

where Nav is Avogadro’s number, we find peff = 0.66μB for
x = 0. The small step in R at the magnetostructural transition
T0 can be explained if only 42% of the entropy jump at T0

is caused by the SDW transition and the rest arises from the
structural transition which would not contribute to χ . (This
estimate uses the value R = 1.6 found just above T0 for x = 0.)

A. Normal state

We begin our discussion with the normal-state electronic
specific heat γn, which exhibits a remarkable evolution with
doping that is unlike anything we have seen previously in the
cuprate high-temperature superconductors.4

In the x = 0 sample there is a sharp and almost first-order
anomaly at the magnetostructural transition at T0 = 136 K,
with a small second-order-like shoulder ∼1 K above this.
This value of T0 agrees with published single-crystal data.23,24

At low temperatures, γ (0) ∼ 4.6 mJ mol−1 K−2 is a factor
ten lower than its value above T0, reflecting gapping, i.e.,
reconstruction, of the Fermi surface, and then increases as
∼20 × 10−6T 3 mJ mol−1 K−2 in the range 40–110 K. This T

dependence is caused by quasiparticle and magnon excitations
in the SDW phase. Band splitting and signs of partial gapping
of the Fermi surface have been observed in the SDW state of
BaFe2As2 by angle-resolved photoemission spectroscopy.25

At low temperatures, γ (0) = 8.7 mJ mol−1 K−2 for x = 0.1,
while for x = 0.2, extrapolating from above the weak su-
perconducting transition, γn(0) = 22.3 mJ mol−1 K−2. This
progressive increase in γ (0) with x arises from the progressive
reduction in the gap induced by SDW order and the larger
number of free carriers at low T . For x = 0.1 and 0.2 the
corresponding anomalies at T0 = 131.6 K and 107 K are
broader and considerably reduced in magnitude compared
with x = 0, in agreement with the data of Rotter et al.13

The magnetic field dependencies of these anomalies are
extremely weak. 57Fe-Mößbauer spectroscopy13 and neutron
diffraction10,26 measurements show that the SDW phase is fully
suppressed somewhere between x = 0.2 and 0.3, and we see
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FIG. 8. (Color online) Normal-state electronic specific heat γn vs
doping at several temperatures and band structure values (Refs. 29
and 30) for x = 0, 0.5, and 1. Dotted lines show γn for values of x

where T < Tc.

no evidence for a magnetostructural transition in our x = 0.3
sample. The very weak anomaly at 67 K in the differential data
for this sample [Fig. 3(b)] is probably due to an FeAs impurity
phase.27 By comparing the height of this anomaly to that of
pure FeAs28 we estimate a FeAs concentration of 4 mole %
in this sample. FeAs anomalies are absent in all of our other
samples.

Values of the normal-state γn at several fixed temperatures
are shown in Fig. 8. As x increases from 0 to 0.3, the collapsing
magnetostructural anomaly results in a gradual filling-in of the
normal-state γn at low T , while above 200 K γn is only weakly
dependent on x and T [see Figs. 3(b) and 8]. However for
x > 0.3 we observe a systematic decrease in γn with x and
with T at high T . At low T there is a larger peak in γn(T ) that
grows with x and correlates with the growth in γn(T = 0); see
Fig. 3(b). At intermediate concentrations x = 0.5 to 0.8, this
peak is masked by the superconducting transition, though its
presence in the underlying normal-state γn can be inferred from
the entropy-conserving determinations of γn and Sn/T shown
in Figs. 4 and 5. The magnitude of the peak grows rapidly
towards x = 1, with the peak temperature falling with x to
15 K at x = 1. A similar enhancement at low T and high x has
also been observed in the related Sr1−xKxFe2As2 system via
conventional heat capacity techniques.31 Although we cannot
entirely exclude the possibility that the low-temperature peak
in γn is a result of an error in the phonon correction, we believe
that this is unlikely for the following reasons. As noted above,
the observed negative peak in the raw data at 35 K, increasing
progressively with x across the entire series, is consistent with
the expected increase in phonon frequencies on substituting
heavy Ba with light K. To explain a positive peak, increasing
nonlinearly with x at a temperature decreasing with x, in terms
of phonons would require a substantial T - and x-dependent
softening of low-frequency phonon modes. We are unaware
of any reason or evidence for such soft-mode behavior in
heavily doped Ba1−xKxFe2As2, and we believe this low-T
positive peak is more likely to be a feature of the electronic
spectrum.

FIG. 9. (Color online) A set of model electronic density of states
curves which reproduces γn(x,T ) from 0 K to 380 K. The DOS at the
Fermi level determined from γn extrapolated to T = 0 is compared
with values from band structure calculations (Refs. 29 and 30) in the
upper left inset.

Also shown in Fig. 8 are band structure (bs) values29,30 for
γn for x = 0, 0.5, and 1. Comparison with the experimental
values show an electronic mass enhancement m∗/mbs of
around 4 for x = 0 (T > T0) increasing to around 9 at 40 K
for x = 1. This evolution is inconsistent with a simple shift
of the Fermi level (EF ) towards a Van Hove singularity in the
density of states (DOS) as proposed for example in overdoped
cuprates.32 This would give an increasing γn with x at all T

and a significant shift in the peak temperature of the low-T
hump in γn(T ) with x. Instead, the x dependence at high
and low T is suggestive of a transfer of spectral weight from
high to low energies. This can been seen explicitly in a set of
model effective DOS curves shown in Fig. 9 that reproduces
the γn(x,T ) data over the entire temperature range. In these
calculations the chemical potential was adjusted in order to
maintain the same number of quasiparticles at all T . The
development of the low-T hump between 15 and 20 K requires
a very sharp spike in the DOS located about 5 meV from
EF , that grows in magnitude with x at the expense of states
on either side of it. It is possible that this kind of structure
arises from strong electron-electron correlations of the type
that occur in heavy-fermion compounds. The evolution of
γn(x,T ) for x > 0.3 can probably be explained in terms of
a temperature-dependent mass enhancement that increases
with x, and indeed the T dependence of γn resembles the
renormalization expected from coupling of the electrons to
phonons33 or to paramagnons.34 The substantial reduction in
the Wilson ratio for x = 1 shown in Fig. 7 (inset) could be
evidence in favor of electron-phonon enhancement. Although
electron-phonon interactions are thought to be relatively weak
in these materials,35 we should remember that any electron
interaction process that is strongly volume dependent will
increase the electron-phonon coupling. The peak in γn at 15 K
for x = 1 is reduced by less than 0.15% in magnetic fields up
to 13 T (for which the Zeeman energy μBH/kB = 9 K). This
could be a problem for theories involving spin fluctuations
and might point towards more general correlations of the Fe
3d electrons as mentioned in Ref. 36.
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FIG. 10. Doping dependence of the superconducting condensa-
tion energy and the main-peak transition temperature Tc,p .

B. Superconducting state

Several important properties of the superconducting con-
densate can be determined directly from the specific-heat data
shown in Figs. 4 and 5. The superconducting condensation
energy U (0) is the free energy difference at T = 0 between
normal and superconducting states in zero field, and is given
by U (0) = ∫ Tc

0 (Sn − Ss)dT . Values for U (0) are shown in
Fig. 10 and peak sharply at x = 0.4. The free energy difference
between 0 and H , �F (H,T ) = ∫ T

0 [S(H ) − S(0)]dT , yields
the magnetization M = −(∂�F/∂H )T in the mixed state
and from that the superfluid density and critical fields. This
will be the subject of a further publication. Finally, the field
dependence of γ (H,T ) in the mixed state at low T can be
used to determine the pairing symmetry. In the clean limit a
single s-wave gap gives rise to a linear H dependence,37 while
a d-wave gap results in a

√
H dependence.38 γ (H ) − γ (0)

at 5 K is shown in Fig. 11 for x = 0.2 to 0.8. The data are
well described by a slightly sublinear Hn power law with n

FIG. 11. (Color online) The change in electronic specific heat at
5 K as a function of magnetic field for x = 0.2 to 0.8. Lines show fits
to Hn with values of n shown in the the inset. In the clean limit, n = 1
(0.5) is expected for a single s-wave (d-wave) gap. Also shown in the
inset is the doping dependence of the zero-field electronic specific
heat at 5 K, which for x > 0.4 is significantly higher than its limiting
value at low temperatures.

ranging from 0.75 to 1.0 (see the inset to Fig. 11). Sublinear
behavior has been interpreted in terms of a multiband s±-wave
state, comprising either two unequally sized isotropic s-wave
gaps in the presence of impurity scattering, as proposed by
Bang,39 or an isotropic gap in combination with an anisotropic
gap, as proposed by Wang.40 We see from the inset to Fig. 11
that γ (0,T = 5 K) is much smaller for x = 0.3 to 0.5 where
n ≈ 0.75. It is quite possible that all samples would show
sublinear H dependence in the low-T limit. A detailed analysis
taking into account the three bands described below and their
T dependence would be needed to obtain meaningful values
of n.

Like γn, the superconducting-state γ displays a rich
progression with doping. This can be clearly seen from the
magnetic field dependence γ (H,T ) for x = 0.2 to 1 shown in
Fig. 4 and from the change with field �γ (H,T ) = γ (H,T ) −
γ (0,T ) shown in Fig. 12. Note that the phonon contribution
to the raw data is independent of field and does not contribute
to �γ (H,T ). In contrast to a previous study41 we observe
superconducting anomalies in all samples from x = 0.2 to
1.0. For most of the superconducting compositions we can
identify three distinct features in plots of γ (H,T ) (Fig. 4) and
�γ (H,T ) in Fig. 12 which appear to correspond to different
SC gaps in three bands. The temperatures associated with
these features are shown in Fig. 14. The most obvious feature
is a relatively sharp mean-field-like peak at Tp reflecting the
collapse of a gap with T = 0 magnitude �p(0)/kB = αpTc,p,
where Tc,p is taken to be the temperature of maximum negative
slope of γ (T ) (slightly above the peak temperature Tp). This
feature appears as a sharp negative peak at Tp in �γ (H,T )
in Fig. 12. At lower temperature there is a broad Schottky-
like anomaly (the “knee”) peaking at Tk . The progressive
suppression of the knee in the vicinity of Tk with increasing
magnetic field, clearly seen in Fig. 12, and the rapid increase
in γ (H,T ) at lower temperatures seen in Fig. 4 confirm that
the “knee” is of superconducting origin and is not an artifact
of errors in our phonon correction. Since the peak is broad,
the underlying SC gap must be essentially T independent in
the region T ∼ Tk , with approximate magnitude �k(0)/kB ∼
2.2Tk . The onset temperature of the knee gap is uncertain
but is at least as high as Tp since no further anomaly is
seen between Tk and Tp. The highest temperature feature
clearly visible in the zero-field data in Fig. 4 for x = 0.5,
0.6, and 0.7, and in the onset of an H -dependent suppression
for x = 0.8 and 0.9, is a broad shoulder extending above Tp

with an abrupt onset signifying a phase transition at Tc,s .
Tc,s is close to Tm ≈ 38 K for x = 0.5 to 0.7 and ≈21 K
for x = 0.8 and 11 K for x = 0.9. We note that Tc,s also
coincides with the onset of diamagnetism (see Fig. 13) and is
the true superconducting transition temperature. Examination
of Fig. 4 shows that field-dependent shifts are comparable in
magnitude for both the main peak and shoulder for x = 0.5
to 0.8. This implies that values for the upper critical field
will also be comparable for both features. Finally as shown
in Fig. 4, for dopings x = 0.3 to 0.6 where the “knee” gap
is large enough to estimate the initial T dependence of γ (T ),
we find a small but finite γ (T = 0). Even in samples where
γ is relatively large at our lowest temperature a small value
of γ (0) 
 γn can be inferred from plots of S/T in Fig. 5. A
small residual γ (0) has been found for x = 1 in measurements
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FIG. 12. (Color online) (a)–(f) The magnetic-field-dependent change in electronic specific heat vs temperature up to 13 T for x = 0.2 to
0.7. Arrows mark the temperature of the knee feature, Tk .

down to 0.1 K (Ref. 42) confirming our conclusions from
S/T (Fig. 5). These values of γ (0) are summarized later
in Fig. 22(c). The conclusion that γ (0) is small for all x is

FIG. 13. (Color online) (a) Zero-field-cooled magnetization mea-
sured in a 10 G magnetic field for x = 0.4 to 0.8. Upward and
downward arrows denote the main peak temperature (Tc,p) and
shoulder onset temperature (Tc,s), respectively. (b) Zero-field-cooled
magnetization (normalized by magnetic field) for x = 0.4 in magnetic
fields of 5 to 50 G. The structure between 25 and 35 K is due to
intergrain coupling.

important since it confirms the existence of a low-temperature
knee in γ (T ) for all of the higher values of x, and also
demonstrates that the small magnitude of the anomalies at
Tp for high x is not due to nonsuperconducting regions in the
sample or to strong pair breaking. The small residual γ (0) may
result from pair breaking in one or more of the gaps, a low level
of impurities, or an additional nonsuperconducting band with
a very small DOS. For x = 0.2 the strong suppression of the
superconducting transition in the magnetically ordered phase
makes identification of the three features discussed above far
less clear. The structure in �γ (H,T ) in Fig. 12(a) reveals that
the rather featureless broad superconducting anomaly shown
in Fig. 4(a) is in fact composed of two peaks at 11 K and 23 K,
which may perhaps be attributed to the main-peak and shoulder
bands respectively. The weak negative curvature in zero field
and rapid increase with H below the crossing point at 7 K may
suggest a small superconducting gap possibly associated with
the “knee” band.

1. Knee

As shown in Figs. 4, 12, and 14 the peak temperature Tk of
the broad “knee” feature decreases with x from around 17 K
for x = 0.3 to 3 K for x = 0.7 and in fact is still present at
∼0.7 K (Ref. 42) for x = 1. However, the amplitude of the
knee grows with x due to the increasing dominance of the
normal-state DOS for this band (Sec. V), and at low T and
high x this feature makes the largest contribution to γ (T ).

2. Main peak

Transition temperatures for Ba1−xKxFe2As2 quoted in
the literature9,10 correspond most closely to the transition
temperatures Tc,p of the mean-field-like peaks shown in
Fig. 14. For 0.3 � x � 0.7, Tc,p(x) is approximately parabolic
with a maximum value Tm = 38.5 K at xm = 0.39. However,
evidence presented below suggests that for x = 0.4 the main
peak and shoulder anomalies may almost coincide, and that
Tc,p and therefore also Tm may be ∼1 K lower than the
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FIG. 14. (Color online) Temperatures Tk , Tc,p , and Tc,s associated
with the knee, peak, and shoulder features, respectively.

values quoted above. At higher x, Tc,p decreases more slowly
and for x = 1 we find Tc,p = 3.2 K. With the disappearance
of the magnetostructural transition just below x = 0.3, the
anomaly height �γ (Tc,p) at Tp increases rapidly to a maximum
at x = 0.4, as shown in Fig. 15. For x = 0.4 and 0.5 the
anomaly heights are comparable with or larger than published
single-crystal data.23,43 The decrease in �γ (Tc,p) by 30% in
x = 0.5 and a further factor of two for x = 0.6 coincides with
the growth of the “shoulder” above Tp. �γ (Tc,p) is relatively
constant between x = 0.6 and 0.9 where we see evidence for
a “shoulder” but increases for x = 1 where no evidence for
a “shoulder” is observed (Fig. 15). Since the residual γ (0) is
small and γn increases continuously across the series (Fig. 15),
an increase in �γ (Tc,p) for x > 0.4 would be expected on
a single-band scenario. In a multiband situation, however,
�γ (Tc,p) would be roughly constant if the contributions to
γn from the bands with larger gaps are approximately doping
independent, as suggested by explicit fits to the data in Sec. V
(Fig. 22). So the very sharp fall in �γ (Tc,p) is unexpected, and
seems to result more from the growth of the shoulder.

The field dependence of the main peaks shown in Figs. 4
and 12 provide clear evidence for short coherence lengths
and low dimensionality. First the peaks broaden and reduce

FIG. 15. (Color online) Doping dependence of the jump �γ (Tp)
in the electronic specific heat (�γ ) at Tp , compared with published
values for single-crystal samples (open circles; Refs. 23,42,43, and
47). Also shown is the normal-state electronic specific heat at 40 K.

in height with an almost H -independent onset. This behavior
is typical of short coherence length superconductors such as
the high-Tc cuprates and is in sharp contrast to the progressive
shift to lower temperature without change in shape observed
in classical superconductors.44 Second for x = 0.2 to 0.8 there
is a well-defined crossing point in γ (H,T ) 5 to 10 K below
Tp over a wide range of fields which is also observed in the
highly anisotropic cuprate Bi2Sr2CaCu2O8.45 In zero field,
superconducting fluctuations invariably extend well above the
temperature at which an H dependence is first observed, and
can in the present system be easily distinguished from the
shoulder by their positive curvature and absence of an onset
temperature. Zero-field fluctuations above Tc,p can be seen
in the data for γ (H,T ) in Fig. 4 and in dγsn/dT shown in
Fig. 17, and in all cases appear to diverge towards Tc,p and
never towards Tc,s . This term can be well fitted both near
Tc,p and above Tc,s by an expression for 3D-2D Gaussian
fluctuations,46

γ fluc = Bfluc

T
√

τ 2 + ττ ∗ , (1)

where Bfluc = (R/4π )(a/ξab)2, τ = |T/Tc,f l − 1|, and τ ∗ =
(ξc/c)2 is the 3D-2D crossover temperature. R is the universal
gas constant, a and c are the lattice parameters from Fig. 1,
and ξab and ξc are the ab-plane and c-axis superconducting
coherence lengths at T = 0. Values for all the parameters
for H = 0 are shown in Table. I. For most of the samples,
good fits to the 3D-2D Gaussian fluctuation expression
were obtained taking Tc,f l = Tc,p, the main peak transition
temperature. Deviations from the fit are only visible close to
Tc,p, as demonstrated by the abrupt downturns in the corrected
curves in Figs. 16(a) and 16(b). However for x = 0.4 where
no shoulder is observed, there is an abrupt change of the
fluctuation T dependence close to 38 K which is similar to
that seen in samples with a shoulder. Because of this abrupt
change a good fit to the Gaussian fluctuation expression above
38 K could only be obtained if Tc,f l was taken to be ∼1 K
lower than Tc,p. This may be indirect evidence that the main
peak and shoulder anomalies are almost coincident for this
sample and the true Tc,p for x = 0.4 is ∼1 K lower than the
value 37.55 K quoted in Table I. Values of Bfluc are reasonably
reliable but values of τ ∗ are not very reliable for samples with
a shoulder. For x = 0.3, τ ∗ is very sensitive to the value taken
for Tc,f l which is difficult to estimate since the main peak and
shoulder are difficult to distinguish. Values for the coherence
length ξab ∼ 20 Å that we find from the fluctuation term in
Ba1−xKxFe2As2 (BKFA) are comparable with those found in
the cuprates and are consistent with the large values of upper
critical field Hc2 that can be inferred from plots of γ (H,T )
in Fig. 4.

3. Shoulder

The onset of the shoulder at Tc,s is abrupt, signifying a phase
transition, and is the temperature at which diamagnetism is
first observed (Fig. 13), confirming its superconducting origin.
Fluctuations diverging towards Tc,s are at least two orders of
magnitude smaller than fluctuations diverging towards Tc,p.
For x = 0.5, 0.6, and 0.7, Tc,s ∼ 38 K is close to Tm, the
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TABLE I. Parameters extracted from 2D-3D Gaussian fluctuation fits.

x Tc,p (K) Tc,f l (K) Bfluc (mJ/mol K2) τ ∗ ξab (Å) ξc (Å) Tc,s (K) A (mJ/mol K2) m

0.3 35.88 34.1 25 0.02 20.0 1.0
0.4 37.55 36.5 43 0.19 15.3 2.9
0.5 33.75 33.75 28 0.06 19.0 1.7 37.63 49 0.5
0.6 27.12 27.12 21 0.12 21.9 2.3 37.53 25 0.5
0.7 17.5 17.5 18 0.14 23.6 2.5 37.51 9.45 0.81

maximum value of Tc (Fig. 14). It then falls to ∼21 K and
11 K for x = 0.8 and 0.9.

The shoulder T dependence is unique as far as we are aware,
and for x = 0.5 to 0.7 is well described over a substantial range
below Tc,s by the expression

γsn − γfluc = A(1 − T/Tc,s)
m (2)

with values of A, Tc,s , and m shown in Table I. The amplitude
A of the shoulder decreases rapidly as Tc,s − Tc,p increases
and for x = 0.5 and 0.6 the exponent m is close to 0.5, as
demonstrated by the linearity of (γsn − γfluc)2 vs T shown in
Fig. 16(b). For x = 0.7 we find an exponent m ∼ 0.8. For this
sample the rather large Tc,s − Tc,p ∼ 20 K and uncertainty in

FIG. 16. (Color online) (a) The shoulder feature in γsn = γs − γn

(dotted lines) and γsn − γ fluc (solid lines) for x = 0.5, 0.6, and 0.7.
(b) (γsn − γ fluc)2 vs T illustrating the initial

√
1 − T/Tc,s temperature

dependence for x = 0.5 and 0.6. For x = 0.7 see text.

the T dependencies of the normal-state γn and the fluctuation
term complicate the determination of the magnitudes and T

dependencies of the shoulder. For x = 0.8 and 0.9 there is a
more or less abrupt onset at Tc,s but the shoulder has a positive
curvature corresponding to m > 1. For convenience we will
refer below to Eq. (2) as the “A

√
1 − T/Tc,s” dependence of

the shoulder recognizing that this T dependence is only correct
for the x = 0.5 and 0.6 samples. We consider four possible
causes for the shoulder between Tp and Ts : (a) that Tc,s is the
transition temperature for the “knee” gap; (b) inhomogeneity
in the local doping x giving rise to a spread of local Tc’s
and a consequent broadened anomaly; (c) intrinsic electronic
inhomogeneity; (d) a third band with energy gap �s which
opens at Ts . We explore these possibilities below.

(a) Attributing the shoulder to the onset of the “knee” gap
is tempting due to its simplicity. However, since Tc,s � �k ,
the entropy difference Sns above Tp is too small to account for
the weight in the shoulder and would result at most in only a
very weak anomaly at Ts . We therefore reject this hypothesis.

(b) In principle the shoulder could be caused by inhomo-
geneity in local doping x leading to a distribution of Tc’s.
In the present case where Tc(x) has a maximum at Tm, the
shoulder would still have a sharp onset at Tm as observed.
However, considerable insight into the question of chemical
inhomogeneity is given by the plots of dγsn/dT in zero
field shown in Fig. 17 for x = 0.4 to 0.8. For all samples
we see a sharp negative peak in dγsn/dT resulting from the
mean-field-like anomaly at Tp and, for the 0.5 and 0.6 samples,
a broad feature extending up to Tc,s due to the shoulder. Since

FIG. 17. (Color online) Temperature derivative of γsn = γs − γn

for x = 0.4 to 0.8. The inset shows an expanded plot of the 15 to
45 K region.

144502-10



ELECTRONIC SPECIFIC HEAT OF Ba1−xKxFe . . . PHYSICAL REVIEW B 88, 144502 (2013)

TABLE II. Transition temperature (Tc,p), ideal step height (�γp),
and standard deviations in transition temperature (σT ) and doping
(σx) of the main peak feature.

x Tc,p (K) �γp (mJ/mol K2) σT (K) σx

0.4 37.55 90 0.41 0.047
0.5 33.75 60 0.42 0.008
0.6 27.12 25 0.54 0.008
0.7 17.50 14.5 0.52 0.005
0.8 11.46 15 0.43 0.007
0.9 6.6 17 0.40 0.011
1.0 3.2 42.5 0.18 0.005

these two features can be clearly distinguished we will consider
them separately.

The sharp negative peak can be fitted to a Gaussian
function dγsn/dT = �γp/(

√
2πσT ) exp[−(T − Tc)2/2σ 2

T ],
where �γp is the ideal entropy-conserving step height in γsn

in the absence of broadening and σT is the standard deviation.
Values of Tc, �γp, and σT are given in Table II. If we assume
that the spread in Tc for the sharp peak is due to a spread in
local doping x, then we can use the Tc,p(x) data in Fig. 10 to
convert them into the standard deviation in x, σx . As shown in
Table II, these are remarkably small. Furthermore it is evident
from Figs. 4 and 18 that the shoulder and main peak make
comparable contributions to the total height of the anomaly.
Interpreted in terms of inhomogeneous doping this requires
a bimodal distribution with around half of the sample being
very close to the nominal composition and half having a broad
range of x. We have made a detailed analysis of this situation
using arguments summarized in the Appendix starting from
the formula

γsn(T ) =
∫

γsn(T/Tc)P (Tc)dTc, (3)

where γsn = γs − γn and P (Tc) is the normalized probability
distribution of local Tc’s. The function γsn(T/Tc) can either
represent an unbroadened mean-field transition with a dis-
continuous jump �γ at Tc and is zero for T > Tc or the
actual experimental data for x = 0.4 where no shoulder is
observed. In both cases we conclude that arguments involving

FIG. 18. (Color online) Electronic specific heat with the normal-
state part subtracted for x = 0.4 to 0.8.

chemical inhomogeneity are contradicted by the linear x

dependence and symmetric broadening seen in the x-ray
spectra [Figs. 1(a)–1(c)].

A further puzzling feature is the absence of a significant
fluctuation term diverging at or near the onset of the shoulder
at Tc,s . Integrating Eq. (1) for γ fluc over the distribution
P (Tc) ∝ 1/

√
1 − Tc/Tc,s expected for inhomogeneity extend-

ing through xm gives a fluctuation term γ fluc ∝ 1/
√

T − Tc,s

that diverges at Tc,s . If Bfluc is comparable with the values
found for the main peak, this term would be very much
larger than that observed, and its absence is further evidence
against an explanation for the shoulder in terms of spatial
inhomogeneity.

An explanation for the shoulder in terms of doping inhomo-
geneity therefore faces severe challenges. (i) How can a very
sharp main peak at Tp with small σx ∼ 0.006 (Table II) coexist
with a shoulder with a much larger spread ∼2|x0 − xm| ∼ 0.2
to 0.6, where x0 is the nominal concentration? (See Appendix.)
(ii) The large weight ∼50% in the shoulder with a substantial
probability P (xm) at xm should be clearly visible in x-ray
spectra. In fact the x-ray spectra shown in Fig. 1 are relatively
sharp with an x-independent half-width and no evidence for
a shoulder towards or beyond xm. (iii) If there is doping
inhomogeneity we would expect this to be symmetrical
about the nominal doping x0 and the average to be close to
x0, contrary to the conclusions in the Appendix. (iv) This
interpretation cannot explain the divergence of the amplitude A

of the shoulder as Tc,s − Tc,p decreases, or the almost complete
absence of fluctuations diverging at Tc,s .

For all these reasons we believe the samples are spatially
homogeneous with a root-mean-square (rms) width ∼0.006
given by that of the main peak at Tp. This is in fact an
upper limit as the width will also contain a contribution from
instrumental broadening of the transition. We conclude that it
is extremely unlikely that the shoulder is due to local doping
inhomogeneity.

(c) Intrinsic electronic inhomogeneity. Even without chem-
ical inhomogeneity, local electronic inhomogeneity may give
rise to a distribution of gaps with onset temperatures from Tc,p

to Tc,s . Such a situation might arise due to local variations
in the Fe-As-Fe bond angle, the value of which can have
a strong influence on the presence or absence of certain
sheets of the Fermi surface.48 Frustration in the sign of the
superconducting gaps in a three-band s± scenario may also
lead to a local spread of gap magnitudes. Any band or gap
unaffected by these effects would contribute to the sharp
anomaly. These local effects on bands and superconducting
gaps would not affect the x-ray spectra and therefore this
interpretation would not be subject to many of the objections
raised above against chemical inhomogeneity. However, as
seen above, the anomalous

√
1 − T/Tm dependence of γ (T )

in the shoulder region requires a probability distribution
P (Tc) ∼ 1/

√
1 − Tc/Tm that diverges at Tm. This is expected

for chemical inhomogeneity extending through xm with a
parabolic Tc(x), but would be harder to explain for intrinsic
electronic inhomogeneity.

(d) Our last hypothesis is that the shoulder results from a
third band with a superconducting gap �s with an unconven-
tional T dependence near Tc,s . Evidence for three gaps has been
observed in electron-doped BaFe1.87Co0.13As2 (Ref. 49) and
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multiple bands are found to cross the Fermi level in BKFA,50

so the prospect of multiple gaps is not unreasonable.
The complex transitions seen here in BKFA appear to

suggest a minimum of three bands and three superconducting
gaps. Theories of two coupled gaps51,52 invariably predict a
sharp peak in γ (T ) at the initial onset temperature Tc, and
a broad Schottky-like anomaly at lower temperatures. This
agrees with the behavior seen in the well-established two-gap
material MgB2 (Ref. 53) and accounts for the “knee” and “main
peak” features in our data. Two-gap theories cannot however
explain the additional “shoulder” feature in BKFA and most
importantly, the absence of a jump in γ (T ) at the onset of
long-range order at Tc,s .

The T dependence of the gap close to Tc,s can be determined
from the γ (T ) ∼ (Tc,s − T )0.5 T dependence in the shoulder
region. If the quasiparticle energies have the BCS dependence

E =
√

ε2 + �(T )2, (4)

it is easily shown that close to the transition when �(T ) 

kBT , the entropy Sns = Sn − Ss is given by

T Sns = N (0)�(T )2 (5)

for �(T ) 
 kBT , where N (0) = 3/(2π2k2
B)γn is the renor-

malized normal-state DOS/spin at EF and γn ≡ γn(T = 0). If,
as in a usual mean-field transition, γns has a step �γ (Tc) at Tc

then Sns = �γ (Tc)(Tc − T ) just below Tc and Eq. (5) gives the
expected mean-field dependence �(T ) ∼ (Tc − T )0.5. If there
is no step at Tc but instead γns ∼ (Tc − T )0.5 as we observe
for the shoulder, then Sns ∼ (Tc − T )1.5 and from Eq. (5),
�(T ) ∼ (Tc − T )0.75. We are unaware of any theoretical
treatment that predicts this limiting T dependence. Note that
for a k-dependent gap or for multiple gaps (�i), �2(T ) in
the above expressions should be replaced by a Fermi surface
average �2

rms(T ) = ∑
gi�

2
i and gi = γn,i/γn.

Ferrell54 has derived the following exact expression for
�2(T ) for a weak-coupling s-wave superconductor in terms of
the superconducting free energy Fns and entropy Sns which is
valid over the entire range 0 < T < Tc

2Fns(T ) + T Sns(T ) = N (0)�2(T ), (6)

where Fns = − ∫ Tc

0 SnsdT . This result is also valid for an
anisotropic gap if �2(T ) is replaced by a Fermi surface
average �2

rms(T ), and we will assume that it is approximately
correct for coupled multiple bands. This gives the standard
BCS expression at T = 0, �2

rms = 2U (0)/N (0), where U (0) =
Fns(T = 0) is the SC condensation energy, and also the expres-
sion �2

rms(T ∼ Tc) = (2π2k2
B/3)T Sns/γn = T Sns/N (0) near

Tc where �rms/kB 
 T . We will therefore assume that for
coupled gaps Eq. (6) gives a good approximation for �2

rms(T )
over the entire temperature range, and that the temperature
derivative of Eq. (6)

Cns − Sns = T 2 d(Sns/T )

dT
= N (0)

d�2
rms

dT
= 3γn

2π2k2
B

d�2
rms

dT
(7)

gives a good approximation to the slope d(�2
rms)/dT , (ignoring

the T dependence of γn). We note that for strong coupling,
N (0) in Eqs. (5)–(7) is smaller than its normal-state value
because of the effect of the superconducting gap on the

renormalization.55 Thus for strong coupling superconductors
using Eqs. (5)–(7) with the normal-state value for N (0)
underestimates the true values for �2

rms and d(�2
rms)/dT . For

example, for the strong-coupling superconductor Pb, �(0)
deduced from U (0) is ∼12% lower than the gap �(0) found
from tunneling experiments.55

Plots of �rms(T ) vs T , �2
rms vs T , d(�2

rms)/dT vs
T obtained via Eq. (7), and �2

rms(x,T ) vs �2
rms(x = 0.4,T )

are shown in Figs. 19(a)–19(d), respectively. The first three
plots show a rather abrupt crossover from a more or less
conventional T dependence below Tp to an unconventional
“shoulder” T dependence above Tp, the crossover occurring
when �rms(T ) falls below �rms(Tp) ∼ 1–1.5 meV. The persis-
tence of a finite gap above the shoulder onset Tc,s , most clearly
seen in Fig. 19(a), is due to superconducting fluctuations
diverging at Tc,p. These plots show several interesting and
unusual features. Below Tp the slopes d(�2

rms)/dT obtained
from Fig. 19(c) are almost independent of doping, and
give no advance warning of the strongly doping-dependent
peak heights and shoulders at and above Tp. Figure 19(d)
shows a striking linear relation between �2

rms(x,T ) and
�2

rms(0.4,T ) at all temperatures up to Tp, in contrast to the
expected negative curvature. This crosses over abruptly at
Tc,p to a gentle decrease to zero at Tc,s . In the linear region
below Tp

�2
rms(x,T ) = a1(x)�2

rms(0.4,T ) − a2(x), (8)

where a1(x) = 1.06 and 1.03 for x = 0.5 and 0.6, and
the intercept a2(x) increases approximately linearly with x

for x < 0.6 and more slowly at higher x. An unexpected
consequence of Eq. (8) is that for x > 0.4 the main peak
transition temperatures Tc,p can be predicted simply from a
T -independent downward shift of �2

rms(0.4,T ) by a2(x). Note
that these simple parallel shifts with x are not seen in the
curves for �rms(x,T ). Interestingly we find that d(�2

rms)/dT

is also independent of H below Tp(H ) leading to similar
parallel downward shifts in �2

rms with H for x = 0.4, 0.5,
and 0.6.

We have seen that fluctuations always appear to diverge
towards Tc,p, and conclude that at this temperature the
magnitudes of the main peak and knee gaps are close to
zero. Assuming that all three gaps are coupled at lower
temperatures, coupling to the shoulder gap must therefore
weaken as T approaches Tc,p leading to a change in the
shoulder gap T dependence. However, the fact that the
amplitude A of the anomalous

√
1 − T/Tc,s dependence in

γ (T ) from the shoulder increases as x goes from 0.7 to 0.5
and Tc,s becomes closer to Tc,p (Fig. 16) clearly shows that
the main peak and shoulder gaps are not independent above
Tc,p, even though the magnitude of the main peak gap is
small. It is possible that residual coupling to fluctuations in
the main peak order parameter may be responsible for the
anomalous γ (T ) = A

√
1 − T/Tc,s temperature dependence

in the shoulder region. The T dependence of �2
rms found

above gives �2
rms(Tp) ∼ [2/3N (0)]ATp(1 − Tp/Tc,s)1.5. If, as

observed, coupling to the shoulder gap changes abruptly at
a roughly constant value for �2

rms(Tp), this result provides
a simple explanation for the divergence of A as Tc,s − Tc,p

decreases.
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FIG. 19. (Color online) (a) Root-mean-square superconducting
gap �rms vs temperature for x = 0.2 to 0.8, calculated from the heat
capacity via Eq. (6). (b) �2

rms vs temperature. (c) −d(�2
rms)/dT for

x = 0.4 to 0.8 calculated from Eq. (7). The slope of �2
rms below Tp is

approximately independent of doping. (d) �2
rms(x) vs �2

rms(0.4) where
temperature is an implicit parameter.

IV. THREE-BAND α-MODEL FITS

Guided by the evidence for three distinct gaps in Figs. 4
and 12 we have extended the widely used56–59 two-band α

model60 to estimate the T = 0 gaps and DOS for the three
bands. In the α model the ratio α = �0/kBTc of each gap is an
adjustable parameter, and �(t) = �0δBCS(t) where δBCS(t) is
the normalized BCS gap at t = T/Tc.61 For the knee and main
peak bands we employ the BCS T dependence δBCS(t), taking
the onset temperature of the knee gap to be the same as that
of the main peak gap. We integrate both bands over identical
Gaussian distributions of onset temperatures, with standard
deviation ∼0.7 K, to simulate the rounding of the main peak.
Assuming that a distinct band is responsible for the shoulder,
we model its T dependence as follows. As discussed above,
the

√
1 − T/Ts T dependence of the shoulder implies that

near Ts , �s ∝ (Ts − T )0.75. To incorporate this detail into the
T dependence of the shoulder band gap we replace t = T/Tc

in the BCS gap function δBCS(t) with

y(t) = 1 − 1 − t√
1 + t(1 − t0)/(1 − t)

; (9)

t0 is a crossover temperature such that for t 
 t0, δBCS(y(t)) →
δBCS(t) while for t � t0, δBCS(y(t)) ∝ (1 − t)0.75.

Three-gap fits are shown in Fig. 20 for x = 0.2–0.8. For x �
0.4 the fits were made by following the doping dependence of
the fit parameters down from higher x, with the shape of the
knee and main peak below Tp providing good constraints on
the range of possible values. For x = 0.9 and 1.0, where no
clear evidence for a shoulder is seen and the knee is below our
base temperature, a two-gap fit has been applied. Although
γ (T ) for these two samples is still large at 2 K, our plots of
S/T in Fig. 5 and published data for γ (T ) below 2 K for x = 1
(Ref. 42) show that γn(0) is small in each case. We note that
there is considerable evidence for nodes on the Fermi surface
of KFe2As2,30,62 but because the knee gap is small this effect
does not alter our results significantly. Overall, the quality of
the fits using this model is excellent. The region immediately
above the main peak is not quite reproduced since we have
not included the fluctuation component diverging towards Tp

from above in the fits.
Figure 21(a) shows the systematic doping dependence

of the SC gap magnitudes for each band extracted from
the fits. All three gaps show a roughly parabolic doping
dependence between x = 0.2 and 0.6 with a maximum near
x = 0.4, before tailing off more gradually at higher doping.
The T dependence of the three gaps for x = 0.5 is shown in
Fig. 21(b), which displays behavior typical of the dopings
where a shoulder anomaly is present. The knee and main
peak gaps can be understood in terms of the two-coupled-gap
model proposed by Suhl et al.51 and Kogan et al.52 When the
interband coupling in this model is sufficiently large, both gaps
approach Tc smoothly, as is the case for �k and �p leading
to the broad specific heat anomaly at Tk and the sharp peak
at Tp discussed above. As discussed in the previous section,
the shoulder gap has an unconventional T dependence near
Tc,s . It remains to be seen whether a three-band coupled-gap
model can give rise to such an effect. Sign changes in the
gaps and frustration effects may play a key role, and we
would welcome input from theorists on this matter. Dias and
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FIG. 20. (Color online) (a)–(h) Normal (dotted line) and superconducting state (magenta line) fits to the zero-field electronic specific
heat data (black line) calculated from a three-band α model, where the shoulder is modeled by a single gap �s with an initial (T − Ts)0.75

dependence. The individual contributions from each band (gray lines) are shown for x = 0.6 in panel (e). Residuals (blue line) are also shown.

Marques63 have already demonstrated some of the unusual T

dependencies that can arise from a frustrated multiband model.
A further curious result of our analysis is that the shoulder
gap �s(0) appears to be smaller than the main peak gap
�p(0), even though Tc,s > Tc,p [see Fig. 21(b)]. Interestingly
it has been demonstrated that such behavior can arise from
the self-consistent BCS gap equation for dx2−y2 + idxy

64 or
dx2−y2 + is65 symmetries. Moreover an intermediate s + is

symmetry has been proposed in Ba1−xKxFe2As2 for x between
0.4 and 1.0.66–68 We therefore propose that this feature may
signify the presence of mixed or unusual competing order
parameters.

In addition to the SC gap magnitudes, the three-band fits
reveal the doping dependence of the fractions of the DOS
contributed by each band gk , gp, and gs and their relative
contributions giγn(40 K) to the normal-state electronic term
γn(40 K). These quantities are shown in Fig. 22. Above
x = 0.2, the “knee” contribution gkγ (40 K) increases steadily,
characteristic of a hole-like band, and this band contributes
more than 60% of the DOS at high doping. Although we are
unable to resolve a third gap for x = 0.9 and 1 it is possible
that there are three gaps across the entire doping range. If this
is the case and if the shoulder and main peak bands contribute
roughly equally for x = 0.9 and 1, we obtain the dashed lines
shown in Fig. 22. Values of giγn(40 K) for the main peak

and shoulder bands are almost identical and relatively doping
independent up to at least x = 0.8, though their contribution
to the total DOS decreases with x.

It is important to assess the reliability of the parameters
deduced from the fits shown in Figs. 21 and 22. For the
“knee” band, the value of the gap �k(0) and the normal-state
DOS fraction gk can be determined with confidence from the
temperature and magnitude of the knee in γ (T ). The values
of �p(0) and �s(0) for the main peak and shoulder anomalies
depend on the assumption that distinct bands are responsible
for the peak and shoulder features in γ (T ). On that assumption,
fitting the strong positive curvature in γ (T ) below the peak
with the α model leads to the large (strong coupling) values
for the gap �p(0) and for αp shown in Figs. 21 and 22(a). It
should be noted however that α-model fits focusing primarily
on the peak region may overestimate �(0) and α for strong
coupling.60 This overestimate would have little effect on the
fit to γ (T ) at lower temperatures (Fig. 20) since γ (T ) is small
and insensitive to �(T ) when kBT 
 �(T ). The reliability of
the shoulder gap �s(0) depends somewhat on the validity of
the interpolation from the BCS to shoulder T dependencies
for �s(T ) discussed above, and is therefore difficult to assess.
We are confident however that the values of the DOS fractions
gi and the contributions to the normal-state γn(40 K) for all
three bands are reliable.

144502-14



ELECTRONIC SPECIFIC HEAT OF Ba1−xKxFe . . . PHYSICAL REVIEW B 88, 144502 (2013)

FIG. 21. (Color online) (a) Doping dependence of the knee, main
peak, and shoulder band superconducting gaps extracted from the
fits in Fig. 20. (b) Temperature dependence of the knee, main peak,
and shoulder band gaps employed in the three-band α-model fit for
x = 0.5. The dotted line shows the initial (1 − t)0.75 dependence of
the shoulder gap.

V. COMPARISON WITH BAND STRUCTURE

Studies of the Fermi surface (FS) of Ba1−xKxFe2As2 by
Shubnikov–de Haas oscillations and angle-resolved photoe-
mission spectroscopy have yielded the following observations.
In the SDW phase the Fermi surface consists of small pockets
of hole- and electron-like character.69,70 These are believed to
arise from band folding combined with finite kz corrugation.
In the tetragonal phase the FS is composed of three concentric
hole sheets at the � point71 [also seen in electron-doped
Ba(Fe1−xCox)2As2],72 and a propeller-like structure at the M

point made up of hole-like blades surrounding an electron-like
center.73–75 With increasing x the hole-like surfaces expand,
and the electron-like surface shrinks before disappearing near
x = 1.0.75 A small superconducting gap is observed on the
outer � pocket, while larger gaps are detected on the inner �

pocket(s) and M pockets.76,77 With these observations in mind
it is possible to assign our bands to particular FS sheets. The
knee band has a small gap and increases with doping, behavior
consistent with the outer � hole pocket. Note that this quasi-2D
sheet has a large value of m∗.36 The shoulder band has a
larger gap, and if this band vanishes above x = 0.8 it would be
consistent with the electron pocket at the M point. The main
peak band has the largest gap consistent with inner � hole
pockets. The increase in gp above x = 0.8, shown in Fig. 22,
suggests that this band also includes contributions from the

FIG. 22. (Color online) The parameters extracted from the fits
in Fig. 20. (a) Ratio of superconducting gap magnitude to onset
temperature for the knee (k), main peak (p), and shoulder (s) bands.
(b) The fraction gi of γn(T ) contributed by each band. gr is an
ungapped fraction of γn, included to model the residual γ (0). (c)
The band fractions multiplied by γ (40 K). Dotted lines in (b) and (c)
show the behavior if the main peak and shoulder bands contribute
roughly equally to γn.

hole-like blades at the M point. However, it is also possible
that for x = 0.9 and 1.0 both the main peak and shoulder
bands continue to make an approximately equal contribution
to γn (dashed lines in Fig. 22). At x = 0.4, Tc, �rms, and the
superconducting condensation energy are maximal [Figs. 10
and 19(a)]. At this particular doping we note that the three
bands contribute equal fractions to the DOS. If ∇εk is similar
for each band, this would imply that the hole and electron
pockets are roughly the same size, and support the hypothesis
that Tc in this system is governed by the degree of Fermi
surface nesting.78–80

In Fig. 23 we show a temperature-doping phase diagram
comprised of the magnetostructural transition temperature T0

and onset temperatures of the three SC gaps, overlaid on a
false-color plot of γ (x,T ). For x < 0.3, the superconducting
phase competes with, and ultimately succumbs to, a decrease
in spectral weight due to increasing gapping in the SDW
phase. An analogous situation occurs in the pseudogap phase
of the high-Tc cuprates.81 At higher dopings, x > 0.4, the
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FIG. 23. (Color online) The doping dependence of the magne-
tostructural transition temperature T0, and onset temperatures of the
SC gaps of each band, overlaid on a false-color plot of the electronic
specific heat. Subscripts k, p, and s correspond to the knee, main
peak, and shoulder features, respectively.

superconducting transition temperatures and condensation
energies fall in the presence of an increasing normal-state
γ . Interestingly, in overdoped cuprates where Tc is less than
optimal, γ is also large.82 The observed fall in Tc despite the
presence of a growing DOS indicates that the DOS might not
be the dominant factor governing Tc. It is possible in the case
of BKFA that the fall in Tc with x is driven by increasingly
poor FS nesting as the hole pockets expand and the electron
pocket shrinks.

VI. SUMMARY

In summary, using a high-resolution differential tech-
nique we have determined the electronic specific heat γ

of Ba1−xKxFe2As2 with x = 0 to 1.0, from 2 K to 380 K
and in magnetic fields 0 to 13 T. In the SDW phase the
low-temperature normal-state values of γn are reduced relative
to their values at high temperature by factors of 10, 5, and 2 for
x = 0, 0.1, and 0.2, respectively, reflecting partial gapping or
reconstruction of the Fermi surface. Near optimal doping γn is
practically T independent. As x increases to 1.0 an increase in
γn with x at low T is accompanied by a corresponding decrease
at high T , consistent with a substantial renormalization of the
effective mass as seen experimentally by de Haas–van Alphen
studies for x = 1.36

In the superconducting state we have observed a new
feature. In addition to the well-known knee and peak features
that are typically associated with two distinct bands and SC
gaps, we have identified a shoulder feature above the main peak
with an abrupt onset temperature Tc,s . Our attempts to explain
this feature in terms of doping inhomogeneity fail to withstand
rigorous analysis on several levels. In particular, the extent
of inhomogeneity implied by the breadth of the shoulder is
inconsistent with x-ray diffraction spectra and is contradicted
by the consistently sharp transitions of the main peak. Hence
we conclude that the samples are spatially homogeneous and
instead attribute the shoulder to a third band and SC gap. The
anomalous

√
1 − T/Tc,s dependence of γ (T ) in the shoulder

region and the absence of a mean-field jump at Tc,s await
theoretical treatment. An analysis of Gaussian fluctuations

above the main peak yield superconducting coherence lengths
ξab ∼ 20 Å and ξc ∼ 3 Å. It is possible that the separate
onset temperatures of the shoulder and main-peak gaps
signify the presence of mixed or unusual competing order
parameters.

The doping dependence of the three gaps and bands was
extracted via the application of a three-band α model. The
SC gaps, Tc, and the condensation energy are all maximal
at x = 0.4 and the evolution of the bands is consistent with
changes in the Fermi surface observed by ARPES. At this
doping the three bands contribute equal fractions to the density
of states. Finally, the sublinear magnetic field dependence of γ

at low T for x = 0.3 to 0.5 points towards an unusual pairing
symmetry such as s± wave. This important point needs more
detailed analysis, though ideally the field dependencies should
be determined at lower temperatures.
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APPENDIX: ESTIMATE OF THE DOPING
INHOMOGENEITY REQUIRED TO EXPLAIN

THE SHOULDER FEATURE

To explain the shoulder feature on this interpretation
requires a broad spread of local doping with probability
P (x) between x1 and x2. The corresponding spread of local
Tc’s has a probability distribution P (Tc) = P (x)/|dTc/dx|
between Tc,min and Tc,max. For a parabolic dependence Tc(x) =
Tm{1 − [(x − xm)/w]2} peaking at xm, we have |dTc/dx| =
(2Tm/w2)|x − xm| and P (Tc) = P (x)/

√
1 − Tc/Tm. The con-

tribution to the specific-heat coefficient γsn = γs − γn is given
by

γsn =
∫

γsn(T/Tc)P (Tc)dTc, (A1)

where for simplicity we assume that the function γsn(T/Tc)
representing the unbroadened mean-field transition has a
discontinuous jump �γ at Tc and is zero for T > Tc. Since
only those regions with local Tc greater than T contribute to
the integral in Eq. (A1), the lower limit is Tc,min if T < Tc,min

and T if Tc > Tc,min. If xm for optimum Tc lies within the
range x1 to x2 and Tc(x) is parabolic through xm, then P (Tc) =
P (x)/

√
1 − Tc/Tm, which diverges at Tm. Close to Tm Eq. (A1)

gives γsn(T ) = �γ 2wP (xm)
√

1 − T/Tm in agreement with
the observed T dependence for x = 0.5 and 0.6. If xm lies
outside the range x1 to x2 and if P (Tc) ∝ (1 − Tc/Tc,max)n,
Eq. (A1) gives γsn(T ) ∝ (1 − T/Tc,max)n+1 where we identify
Tc,max with Tc,s . In all cases we expect a significant reduction
in slope dγsn/dT when T increases through Tc,min due to
the reducing superconducting volume fraction. This is not
observed in our data.

The range of the broad distribution can be estimated as
follows. Ignoring the small variation through the “knee”
feature, the slope dγns/dT increases continuously up to the
main peak (Figs. 17 and 18). Since there is no reduction of

144502-16



ELECTRONIC SPECIFIC HEAT OF Ba1−xKxFe . . . PHYSICAL REVIEW B 88, 144502 (2013)

slope anywhere below Tp we conclude that Tc,min ∼ Tp and
thus x1 ∼ x0, the nominal doping. For samples exhibiting an
A

√
1 − T/Tm dependence between Tp and Tm the range must

extend at least from the nominal x0 to xm with a significant
probability P (xm) ∝ A. Unless P (x) drops discontinuously
to zero at xm, which seems unlikely, we require that the
spread extends an equal range on the opposite side of xm to
avoid a slope change above Tp. So Tc(x1) ∼ Tc(x2), making a
minimum total range �x ∼ 2|x0 − xm|.

Thus to explain our data the doping inhomogeneity would
have to extend over the range x0 to 2xm − x0 with width �x ∼
2|x0 − xm|. Not only is this range very wide, but it only appears
to exist on one side of the nominal doping x0 (always towards
xm). Contrary to the expectation that the distribution P (x)
should be reasonably symmetric around x0 and have a mean
value x = x0, we find instead that it would have to be very
asymmetric, extending from x0 to well beyond xm, with a
mean doping substantially different from x0.
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