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Vortex states in nanoscale superconducting squares: The influence of quantum confinement
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Bogoliubov—de Gennes theory is used to investigate the effect of the size of a superconducting square on the
vortex states in the quantum confinement regime. When the superconducting coherence length is comparable
to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence
on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex
combinations, and states comprising giant antivortices, were found as ground states and their stability was found
to be very sensitive on the value of k&, the size of the sample W, and the magnetic flux ®. By increasing the
temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional
mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to
the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the
whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement
favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core—unattainable

in the GL domain.
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I. INTRODUCTION

Vortex states in mesoscopic superconductors have been
extensively studied in the past two decades, both theoretically
and experimentally.'~>” Two main interactions have been found
to govern vortex behavior in a mesoscopic system. The first
one is the vortex-vortex interaction, which causes vortices to
form Abrikosov triangular lattices in bulk type-II supercon-
ductors. The second one is the interaction between vortices
and sample boundaries, which makes vortex configurations
strongly dependent on the size and geometry of mesoscopic
samples, whose dimensions are of the order of the penetration
depth A or the coherence length £. For example, in square
mesoscopic samples, vortex configurations try to best match
the C4 symmetry. When there is only one vortex in the sample
(L =1 state where L is the winding number or vorticity),
the vortex always sits in the center of the sample in order to
balance the boundary effect from all sides. For the L = 2 state,
two vortices sit on the diagonal such that the vortex-vortex
separation is maximal in order to minimize the intervortex
interaction. A giant vortex with L = 2 can be induced when
the boundary confinement pushes two single vortices together,
as predicted theoretically? and observed experimentally.'>282°
For the L = 3 state, because of its incompatibility with the
fourfold symmetry, the theory predicts that the ground state
corresponds to an antivortex sitting at the center surrounded
by four vortices.’*3! In short, the symmetry of the sample
largely determines the vortex configurations when the size of
the superconductor is reduced.

However, the properties of nanoscale superconductors,
whose sizes are of the order of the Fermi wavelength Af,
are very different from those of mesoscopic superconduc-
tors. This is because the distance between electronic levels
becomes comparable to the superconducting energy gap due
to quantum confinement.’> As a consequence, the number
of Cooper pairs is suppressed which leads to the quantum
size effect (QSE),**° quantum size cascades,’® the shell
effect,’” and inhomogeneous spatial distribution of the order
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parameter.>* The latter is the most important for the present
work because it is expected to strongly influence the vortex
states in nanoscale superconductors. A similar behavior was
shown for an isolated vortex core, where oscillations of the
order parameter on the order of the Fermi wavelength were
predicted.®

Inhomogeneous superconductivity has been studied in
various systems in the last decades and shows more com-
plex behavior than homogeneous ones. It is known that
vortices tend to migrate and get pinned in areas where
superconductivity is suppressed.’® The reason is that it is
more favorable energetically for a vortex to suppress the
superconducting order parameter in a region where it has
already been suppressed, although sometimes vortices can be
pinned where the gap is large.*’ Some three-dimensional (3D)
samples can also be treated as inhomogeneous systems.*!=+/
For example for a 3D tip geometry, an asymmetric L = 1
vortex state can be the ground state because the thick region
prevents the vortex from penetrating it.*> In multilayered
superconductors, vortices enter first and reside favorably in
the weak layers. Then, vortices will penetrate into the strong
layers only after weak layers become saturated and various
vortex clusters and asymmetric vortex states are induced.
Also, the fabrication of antidots in superconductors results in
a spatially varying superconducting energy gap with a barrier
at the interfaces. In these systems, the combination of the
giant-vortex, multivortex, and antivortex states can be found as
ground state, which depends strongly on the detailed geometry
of the antidots.*$->°

For conventional superconductors, k&) & 10% (kp is the
Fermi wave vector and &, is the BCS coherence length),
systems of size comparable to Ay will not be large enough to
host a vortex (being much smaller than the coherence length).
However, materials with small coherence lengths, e.g., high-T,
cuprate superconductors, will have kr&) ~ 1-4 and therefore
in such systems it is possible to obtain vortex states in the quan-
tum confinement regime. Another such system is a graphene
flake deposited on top of a superconductor. Because of the
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proximity effect, Cooper pairs will diffuse in graphene.’'->*

In graphene the scattering length is large; therefore such a
system is in the clean limit. More importantly, near the Dirac
point, the Fermi wavelength is very large and can be easily
manipulated by doping. In other words, kr&; can be tuned,
which will allow for different vortex patterns to be realized in
the graphene flake in the quantum confinement regime, but for
more accessible sample sizes (even above 100 nm). A similar
configuration was also recently proposed by Knopnin et al. in
Ref. 55. Yet another system where effects of quantum confine-
ment on vortex matter can be probed systematically are the
optically trapped cold gases,’® which are nowadays extremely
controllable.

For studying such nanoscale systems, microscopic
Bogoliubov—de Gennes (BdG) theory is required. Previous
works used the BAG method to focus on isolated single
vortex lines**%9-62 and giant vortices®*** and to describe the
local density of states modifications due to vortex-vortex and
vortex-boundary interactions,®~%8 but are in the mesoscopic
limit as opposed to the nanoscale limit considered here.
Although Refs. 27 and 69 studied the ground state vortex
states in a mesoscopic-nanoscopic crossover region by solving
the BAG equations self-consistently, quantum confinement
effects do not play any role. Recently, we investigated’ the
vortex states in nanoscale superconducting squares. We found
unconventional vortex states in the quantum limit due to
shape-induced resonances in the inhomogeneous Cooper-pair
condensate. Vortex-antivortex structures, asymmetric vortex
states, and vortex clusters were found as ground states over a
wide range of parameters. They are distinct from previous
results obtained in mesoscopic superconductors using the
Ginzburg-Laudau (GL) theory. However, there are still several
aspects that remained unclear. For example, how does the
size of the sample affect the vortex states in nanoscale
superconductors? Under which conditions does one recover
the conventional GL results? Why are the antivortex states
more stable in the nanoscale limit while giant vortex states are
unfavorable? How do the vortex states change if temperature
is increased?

In order to answer these questions, in this paper, we
study vortex states in nanoscale superconducting squares
systematically. Vortex states for different sample sizes, kr&y
parameters, and temperatures 7 are investigated and the
stability of the symmetry-induced vortex/antivortex molecules
is discussed. More unconventional states, very different from
the ones obtained within GL theory, are found. This study is
therefore fully complementary to what is known for vortex
matter in superconductors.

The paper is organized as follows. In Sec. II, we introduce
the theoretical approach, i.e., the BdG approach for a square
geometry. In Sec. III, we present the inhomogeneous super-
conducting state in the absence of the magnetic field in order
to better understand the QSE in nanoscale superconductors.
In Sec. IV, the ground states and metastable states are studied
at zero temperature and the sample size dependence of the
vortex states is discussed. In Sec. V, the finite-temperature
ground states are studied. In Sec. VI, we discuss the generation
of vortex/antivortex molecules and study the structure of
the vortex core. Finally, we summarize our findings in
Sec. VIL
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II. THEORETICAL FORMALISM

In the presence of a magnetic field, the Bogoliubov—de
Gennes (BdG) equations read
("),
Un(r)

He  AD)\[(ua® _
AF* —H ) \v, ()

where u,, (v,) are electron-like (hole-like) quasiparticle eigen
wave functions and E,, are the quasiparticle eigen energies. The
single-electron Hamiltonian reads H, = 5~ (¥ — 4)? — Ej
with Er being the Fermi energy and A the vector potential
(we consider a gauge such that V - A = 0). Furthermore, we
take the electron band mass to be isotropic (i.e., my = m, =
m, = m) and a circular Fermi surface. The pair potential is
determined self-consistently from the eigen wave functions
and eigen energies:

AF) =g ) un(FrPIl =211, ©))

E,<E.

where g is the coupling constant, E, is the cutoff energy, and
fo=[1+exp(E,/kgT)]"" is the Fermi distribution function
at temperature 7.

We consider now a two-dimensional superconducting
square with the size W. The confinement imposes Dirichlet
boundary conditions [i.e., u,(¥) = 0, v,(¥) = 0, 7 € 3S] such
that the order parameter vanishes at the surface. In an
extreme type-II superconductor (and/or very thin sample), it
is reasonable to neglect the contribution of the supercurrent to
the total magnetic field. In this case, the free energy”®>° of the
system is given by

F =Y QE,fy +ksTLfyIn f, + (1 = f)In(1 = £,)])

+ /dr [—22 Eloal> +2A() Y ujva[1 — 2]

—g Y wva(1=2£)> upvil —2f,,/)] 3)

where the spatial dependence of u,, and v, is implicit.
In order to solve Egs. (1) and (2) numerically, we expanded
the wave functions u, and v, as

1 (F) ujJ,
(rn)= > ‘/’f*’”(x’y)(v%i ]’>’ @

j/\‘jy€N+ jxjv

where the basis set
2 X\ L .y
Qix,jy(X,y) = W sin n]XW sin n]yW 5)

is the basis eigen states of the Hamiltonian H, in the absence
of the magnetic field. The corresponding eigen energies
of such states are 7 ; = %(%)z(jf + jyz) — Ep. Through
comparison with results obtained by using the finite-difference
method, we found that the results are converged when we
include the states with energies as large as ®/®y + 5 times
the cutoff energy E, ie., T; ; € (®/Po+5) x [-E., E.],
where @ is the flux quantum and ® the flux through our
sample.
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TABLE 1. The parameters of the considered sample. Coupling
constant g = 0.4343 and Ey is measured from the bottom of the
quadratic band.

Sample 1 11 111
Er/Fo 4 9 25
E./F, 30/ 30/ 50/
Ao/ Foy 1.245 1.85 3.14
kr&o 2.04 3.09 5.07

In our numerical investigations, we restrict ourselves to
the three materials (or samples) with parameters given in
Table 1. For convenience, we measure the distance in units
of the bulk coherence length at zero temperature &, and the
energy in units of Fy = h2/2m$§. Here, &y = hvp /7 Ay, where
vr is the Fermi velocity and Ay is the bulk value of the order
parameter at zero temperature. Note that Er and A are not
independent when Fj A(z) /EF up to a constant.

To find the different vortex configurations, which include
all stable states, we search for the self-consistent solutions
in the following two steps. (1) Global scanning: Starting
from any reasonable vortex state (usually, we start from the
Meissner state at ®/Py = 0), we slowly sweep up/down
the applied flux with regular intervals 0.1®, and recalculate
the superconducting states each time, until a new state is found.
Then, we repeat the sweeping process from the new state until
no new vortex configurations appears. (2) Special initial states:
Starting from usual states obtained in GL theory,'? we sweep
up/down the applied flux. If a new state appears, we repeat
step (1). In such a way, we are able to trace back and forth all
found vortex states in the whole region of their stability and
make sure that the usual GL states are always considered.

The minimum tolerance in the change of the order param-
eter between two steps in the self-consistent iteration is

max{]A'(x,y) — A7 (L))} < 1075, (6)

where A’ and A’~! are the order parameters at the ith and
(i — Dyth iteration. We use the absolute tolerance since the
relative tolerance can be abnormally high in the vortex core
where |A| — 0. This is quite strict when we compare to | Ag|
but is necessary in order to ensure the precision in finding
the true ground states in the BdG calculation. We show an
example of the evaluation of the vortex configuration for
sample IT and W /&y = 5 at flux &/ Py = 5. Based on the GL
theory, the ground state of L = 2 for such a system should be
the giant-vortex state or multivortex state (for larger squares)
where two vortices sit on the diagonal of the sample. We start
the calculation with the multivortex state as initial state. As
seen from Fig. 1, the vortices merge into a vortex-antivortex
molecule and the result converges quickly. The error between
each step reaches as low as 10~ ', However, the error increases
gradually when we continue the self-consistent procedure.
After the second-order phase transition, the new state with two
vortices sitting parallel to one of the sides has lower energy.
Finally, the symmetry of the state does not change and the
error is always around 10~'* which comes from nonphysical
factors, i.e., numerical accuracy.

In the calculation, we found some situations where results
do not converge and this usually comes from the change in the
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FIG. 1. (Color online) Error (solid line) and free energy (dashed
line) as a function of iteration steps for sample II for W/, = 5 at
®/Py =5and T/ T, = 0. Three insets show the initial, intermediate,
and final vortex configurations. The solid dots and open diamonds
in the insets indicate L = 1 vortex and L = —2 giant antivortex,
respectively.

number of the quasistates contained in the Debye window. To
avoid this, we set the smearing energy E for the quasistates.
Then, the self-consistent condition reads

AR =g Y un@®iAI =21 % fulEn — Eo),  (7)

E,>0

where f,(E, — Ec) = [1 + exp(£2=E<)] " is the Fermi distri-
bution function. The choice of Eg is empirical. It should be
enough small in order not to affect the results. Meanwhile, it
should be enough large to make the result converge through
the iteration. Our experience shows that Eg/Fy = 0.2267 is
suitable for our current work.

III. SPONTANEOUS INHOMOGENEOUS
SUPERCONDUCTIVITY INDUCED
BY QUANTUM CONFINEMENT

First, we study the spatial distribution of the order parameter
as a function of sample size in the absence of the magnetic
field since the vortex configurations will be strongly affected
by that distribution once the magnetic field is applied. In
Fig. 2 contour plots of the order parameter A(x,y) and the
corresponding diagonal profiles are shown for samples I-III
with different sizes. As expected, all the order parameters
are fourfold symmetric and show Friedel-like oscillations
in space which result in four well-defined peaks at each
corner. Hence, the superconductivity is inhomogeneous. For
example, Figs. 2(a)-2(c) show the results for sample I with
size W/& = 5,8,10, respectively. For W/& = 5, there are
three oscillations in the order parameter along the diagonal
and the resonant central peak prevents the vortex from sitting
here. However, the profile of the order parameter can be
changed dramatically when the size of the sample changes.
For W /&y = 8 [shown in Fig. 2(b)], we found that the central
peak disappears and a relatively flatter area generates in the
center. When W /&, is increased to 10, the flat area enlarges
and the Friedel-like oscillations can be neglected at the center
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FIG. 2. (Color online) Contour plots of the order parameter
A(x,y) with the corresponding diagonal profiles in the absence of
applied magnetic field. Panels (a)—(c) are for sample I with sizes
W /& = 5,8,10, respectively. Panels (d) and (e) are for sample II with
sizes 5y and 10&y, respectively. Panel (f) corresponds to sample II1
with size 5&.

when we compared it with oscillations near the boundary. This
indicates that the oscillations of the order parameter result from
the quantum confinement effect (or boundary effect).

In order to study the quantum size effect on the order
parameter, we show the amplitude of the order parameter in the
center of the sample |A.| and the spatially averaged value over
the whole sample |A,,| for the sample I with sizes W /&, =
5-20in Fig. 3. As seen, |A.| changes dramatically with W /&,
increasing and converge to A /Fy = 1.245 when W /&, > 15.
At the same time, the |A,| increases gradually with W /&,
increasing. In principle, both of the parameters will converge
as W — oo where the boundary effect can be totally neglected.
Since |A,.| and |A,, | show strong quantum size effect between
W /& = 5 and 10, we limit ourselves in the following sections
to study the samples for these particular size.

The profile of A is also strongly affected by kg&.
Figures 2(d) and 2(e) show results for sample II with size
W/& =5 and 10 and Fig. 2(f) is for sample Il with
size W/&y = 5. Comparing to sample I with the same size,
we found that the wave number and the amplitude of the
oscillations along the diagonal are larger. This indicates that the
superconducting order parameter shows more inhomogeneous
behavior with larger kp&p.
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FIG. 3. (Color online) Size dependence of the order parameter
in the center of the sample |A,| and the spatially averaged |A,,| for
sample L.

IV. VORTEX CONFIGURATIONS
AT ZERO TEMPERATURE

In this section, we consider the zero-temperature case for
which the system is always in the quantum limit (7 < 1/kg&p).
First, we study the sample I with size 10§, x 10£; and show in
Fig. 4 the free energy of the stable vortex states for flux &/ €
[0,20]. Different curves (colors) represent states with different
winding number L and the states among them which reached
the ground state are marked by dots. Vertical lines and shadows
show the flux range for each L state as the ground state. The
top dashed line stands for the free energy of the system in the
normal state when the coupling constant g is set to zero. When
compared with the GL theory,12 one of the differences is that
the free energy of the normal state depends on the magnetic
field while it is a constant in GL theory. The reason is that
the energy levels of the confined electrons are different for
different magnetic fields. In our case, the change of the energy
is relatively small when compared with the energy gap (energy
difference between the normal state and the superconducting
state) especially in weak fields. Although the shown energy
curves look conventional, there are significant differences with
the GL theory.?

By sweeping the magnetic field up and down, we can get
the full energy spectrum and the corresponding vortex states.
For a certain magnetic field, it is common to have more than
one converged solution. The lowest energy state is the ground
state while the states with higher energy are referred to as
metastable states. In Fig. 5, we show the contour plot of the
absolute value of the order parameter of the corresponding
ground states for various winding numbers.

As can be seen from Fig. 4, the system favors states with
winding numbers L = 1, 4, 8, and 9 because they have rela-
tively large ground-state flux range (excluding the Meissner
state). From Fig. 5, we observe that these states have fourfold
symmetry which is compatible with the sample geometry. One
interesting feature of this system is the richness of metastable
states. These states appear for all winding numbers L except
L = 0 and 1. The number of metastable states reaches a peak
for L =4 and equals 11. From the free energy curves, we
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FIG. 4. (Color online) Free energy as a function of the magnetic flux through sample I with size 10§, x 10&y. Different colors indicate the
different winding numbers L and the shaded area indicates the flux range over which the vortex state with winding number L is the ground
state. The vortex configurations of the ground state marked by solid squares are shown separately in Fig. 5 and the corresponding free energy
curves are marked by dots. The inset zooms in the region where L = 5 and 6 are the ground states.
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FIG. 5. (Color online) Contour plot of the amplitude of the order
parameter for the ground states marked by solid squares shown in
Fig. 4. L = 10(«) and 10(B) are for flux &/P, = 18.2 and 18.7,
respectively. Darkest areas indicate the positions of vortices. Note
that at the center an antivortex (for L = 7) or a giant vortex [for L =
10(B)] can spontaneously form. Note also that for some vorticities
two different ground states are found (at different magnetic fields).

notice that the energy difference between the ground state
and the metastable states can sometimes be very small. This
makes the ground state difficult to find in simulations unless
we sweep the field up and down many times. We also note that
most metastable states are focused at lower magnetic fields
from the corresponding ground-state flux range. The reason
is that vortices get easily stuck at the boundary due to the
pronounced oscillations of the order parameter. For the same
reason, their stability range is narrower due to asymmetry.

The number of metastable states decreases for higher L. In
this case, the shorter distances between vortices cause strong
interaction between them. This limits the choice of stable
positions for vortices and therefore the number of metastable
states is lower. Due to this reason, metastable states are less
favorable for smaller samples because of easy saturation with
vortices. For example, no metastable states were found in
sample I with size W /&, = 5.

A. Ground states

Next we discuss the ground-state configurations for dif-
ferent vorticities in more detail. For the L = 1 state, shown
in Fig. 5, the vortex sits at the center of the sample which
is compatible with the conventional picture. Although such
result is observed for different parameters of the sample, the
state with diagonal location of the vortex can also be found in
some cases.”’ It is clear that the order parameter around the
vortex core is suppressed and the profile shows the competition
between C4 symmetry and Cwo. This means that the vortex has
long-range (longer than &) interaction with other objects such
as the other vortices and/or boundaries.

By increasing the flux to ®/®y = 5.24, the ground state
shifts from L =1 to L =2 and two vortices sit along the
diagonal. This again coincides with the result from GL theory,
and results from the competition between the confinement
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imposed on vortices by the Meissner currents and the vortex-
vortex repulsion. In this case, these effects can be clearly
seen from the profile of the order parameter, especially from
the suppressed area around the vortices. The vortex-vortex
interaction suppresses the order parameter mostly in the area
between them. This cannot be found in GL theory because the
order parameter is always smooth and changes slowly in space.
The state with L = 3 shown in Fig. 5 becomes the ground state
when the field applied flux is between ®/ Py = 6.9 and 8.12.
It resembles the multivortex state obtained within GL theory
where the three vortices are at the apices of a equilateral trian-
gle. However, the perpendicular bisector of the triangle always
coincides with one of the diagonals of the square sample in
GL theory while it is parallel to one of the edges in our case.
This is because the gridlike pattern in the inhomogeneity of the
order parameter imposes preferential positions for the vortices
inside the square. The state L = 4 has a similar feature but the
configuration is compatible with the GL result.

From these states, we conclude that when the GL vortex
configuration, which minimizes the vortex-vortex and vortex-
boundary interactions, matches the oscillation pattern due to
quantum confinement, then the state has a wider flux stability
range.

Two ground states, L = 5(«) and L = 5(8), are found for
L =5 in the flux ranges ®/®y = 10.48-10.78 and 10.78—
11.62, respectively. Both of them have a pentagonal vortex
configuration. This is because the particular shape resonance
at the considered field causes the order parameter to be peaked
at the center. Therefore, it costs energy for vortices to sit in the
center of the sample. For the same reason, the ground states
L = 6(x) and L = 6(8) do not have vortices in the center.
Moreover, when L > 6, vortices start to be compressed in the
sample. If they do not form giant vortices, they will be very
close to each other and form stringlike structures [see L = 6(«)
state].

States with L =7, L =8, L =9, and L = 10(8) shown
in the panels of Fig. 5 have a common feature, as all of them
keep the fourfold symmetry. L = 7 contains a antivortex at the
center while L = 9 and L = 10(B) have a single vortex and a
giant vortex with 2d at the center, respectively. The state with
L =7 is the only ground state which contains an antivortex.
The antivortex is closely surrounded by four vortices and forms
the core structure for L = 7. The outer shell is formed by the
remaining four individual vortices sitting at four corners. States
with L = 8 and L = 9 contain vortex dimers, i.e., two vortices
close to each other at each corner. The fourfold symmetry
makes both former states have a larger ground-state flux range.
L =10(B) also keeps the C, symmetry but the energy is
sometimes even higher than the state L = 10(«w), which has
only C, symmetry. The reason is that the giant-vortex costs
extra energy.

In order to visualize the changes in the ground states
when key parameters change, we plot the phase diagram for
samples I-IIT for W /&, = 5-10 and ®/®, = 0-10 in Fig. 6.
Different shadings of blocks in Fig. 6 indicate different vortex
types. The plain white background represents conventional
multivortex states as found within the GL theory, while the
blue background with the square grid represents giant vortices,
also compatible with the result obtained from GL theory.
Asymmetric vortex states attained only by BdG theory are
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FIG. 6. (Color online) Phase diagram for samples I-III. Different
shadings of the background indicate different types of vortex states.
Black (blue) dots indicate vortices and diamonds indicate antivor-
tices in the schematic diagrams of vortex configurations (bottom
figures). The symbols are larger when vortices contain multiple flux
quanta.

represented by a yellow background with horizontal grid
pattern. States containing parallel vortex chains, represented
by the orange background with vertical grid pattern, and part of
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the vortex-antivortex molecules represented by the pink (gray)
background, are new compared to GL theory.

We can conclude from Fig. 6 that the quantum size effect is
important not only for the transition field and the stability range
of the different vortex states, but also for the vortex configu-
rations. The reason is that the oscillation patterns of the order
parameter are very sensitive to kr&y and may cause totally
different behaviors even for two samples of identical size.

As can be seen from Figs. 6(a) and 2(b), the vortex phase
transition fields vary greatly with sample size W except for the
phase boundary between L = 0 and L = 1 state. All the phase
boundaries oscillate with W. We find that some samples favor
vortex states with even winding number L while other disfavor
them. For example, sample I with W/&, = 5 favors the L =2
state whereas the one with W /&, = 7 disfavors L = 4 to the
point of nonexistence. When W becomes large, the transition
fields start to converge and the flux stability range of each L
state will be roughly one flux quantum.

When compared to samples I and II, sample III (with
large kr&q) shows a more conventional picture. Moreover, the
phase transition field increases only slightly with increasing
W. It means that for large kr&p, the quantum size effect
on the transition field, at least when winding number L is
small, can be neglected. Nevertheless, a plethora of different
vortex configurations is found. For example, an asymmetric
L =1 state is found in all three samples. Moreover, sample |
always shows asymmetric states when W /&, < 6. One other
interesting phenomenon is that, for L = 2, sample II can host
all five types of vortex states with W increasing.

From the phase diagram in Fig. 6, we notice that nanoscale
superconductors favor antivortices and disfavor giant vortices.
For example, the giant vortex state appears for L = 2 in sample
II with W/&, = 7. Based on GL theory, only smaller samples
will exhibit a giant-vortex configuration. However, when
W /& < 7, the two individual vortices form an asymmetric
vortex state. On the other hand, we find that the probability
of forming antivortices is much higher than in GL theory. In
the GL case, antivortex states usually appear for L = 3 when
four vortices are at the four corners and surround a centered
antivortex. Usually the distance between vortices and the
antivortex is small (Iess than &). In the BAG calculation, at least
two more antivortex states can be found. One is still the L = 3
state and the antivortex is still at the center but four vortices
are at the edges instead of the corners. This configuration was
first presented by us in Ref. 57 where we showed that the size
of the vortex-antivortex (V-aV) molecule is larger than the one
obtained with GL theory. The other antivortex state appears for
L = 2. In this case, the four vortices still sit at four corners but
the centered antivortex carries two flux quanta; e.g., it is a giant
antivortex. Due to the strong vortex-antivortex interaction, the
size of such V-aV molecule is small.

B. Metastable states

Next we will briefly discuss the metastable states of this
system. To do this, we start from sample I with W /&, = 10.
Metastable states are important in the BdG formalism because
the energy difference between the ground and the metastable
states can be very small. This suggests that these states could
be easily found in experiments. Alternatively, some metastable
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FIG. 7. (Color online) Free energy curves of states with L =2
in sample I with size W /&, = 10 (top panel) and the corresponding
contour plots of the order parameter (bottom panel). Note that the
contour plot of the ground state L = 2(e) is shown in Fig. 5. The
inset shows the energy difference between the ground state L = 2(e)
and the metastable states L = 2(f) and L = 2(g) at higher field.

states can become ground states as the parameters are
changed.

All six found metastable states for L = 2 and their free
energy curves are shown in Fig. 7. The state L = 2(f) is
similar to the ground state L = 2(e), but rotated over 45°;
hence their free energies are very close to each other. Actually,
the difference in the orientation of the vortex pattern always
results in a small difference in energy. State (f) is not obtained
within the GL theory. In our case, due to the shape-resonant
inhomogeneity of the order parameter, the rotation of the
vortex pattern to the ground-state configuration is prevented
by the spatial oscillations of the order parameter.

The metastable state L = 2(g) is only stable at higher field
and its free energy is very close to the ground state L = 2(e).
Therefore we zoomed on the energy difference in the inset of
Fig. 7. From the figure, one sees that the energy of the L = 2(g)
state is lower than the ground state, L = 2(e), when the applied
flux is larger than ®/®y = 7.3. In fact, the state can exist even
up to ®/Py = 10. From the vortex configuration shown in
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Fig. 7, we find that this state is a giant vortex. Such a state
has been predicted by the GL theory because the magnetic
field pushes the two vortices towards each other and makes
them merge into a giant vortex. Usually, the phase transition
between the multivortex state and the giant-vortex state is
continuous (second order). However, the barrier induced by
the inhomogeneity of the order parameter leads to a first-order
phase transition in our case. One more difference between the
BdG giant vortex and the one in GL theory is its core structure.
Due to the shape resonances, the contour plot of the core shows
a diagonal cross shape while the giant-vortex core in the GL
case is always circular. Furthermore, the giant-vortex state in
our results has two allotropes: see state L = 2(c), compared to
the state L = 2(g). The L = 2(g) state exists up to higher field
while L = 2(c) only exists in lower field. Hence, the size of
the giant vortex seen in L = 2(c) is larger than the one seen in
L = 2(g). Another difference between them is the orientation
of the core. L = 2(g) has diagonal cross shape while the state
L = 2(c) has edge cross shape.

The other three metastable states L = 2(a), L = 2(b), and
L =2(d) are observed only in lower field. They have in
common the fact that at least one vortex is stuck at the
boundary since the Meissner current pushes the vortex outward
at low fields. It is obvious that they have lower energy when

-97.3
-97.4

-97.5
o

FIG. 8. (Color online) Free energy curves of states with L = 3 in
sample I with size W/&, = 10 and the corresponding contour plots
of the order parameter. The contour plot of the ground state L = 3(g)
is shown in Fig. 5.
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the applied field is lower. The energy of state L = 2(a) is
always lower than the one of state L = 2(b) because of
the longer distance between the vortices. As is usual in
mesoscopic superconductors, vortices in these states avoid
being located at the very corners of the sample, due to strong
local superconductivity there.

For the L = 3 metastable states, the results are summarized
in Fig. 8. The state L = 3(h) is a V-aV state and exists only in
higher field while the giant vortex L = 3(c) only exists in
lower field. Note again that the energy of the giant-vortex
states is much higher than the other metastable states with
three single vortices. L = 3(f) has lowest energy for L = 3
around ®/®, = 6, when there is one vortex located at the
boundary. States L = 3(b) and L = 3(a) follow when the field
decreases and there are two and three vortices stuck at the
boundaries, respectively. States L = 3(d) and L = 3(e) are
disfavored and have higher energy due to the close distance
between vortices. Note again that no vortex sits at the corners
in this states.

States with L = 4 show a wide ground-state flux range and
11 different metastable states, which is the largest variety of
all L vortex states. From Fig. 9, we find that the metastable
states concentrate around the applied flux ®/®y = 6.5.

g L=4(a)
—— L=4(b)
1| —— L=4(c)
——+— L=4(d)
1] —%—L=4(e)
] £ L=4(f)

—4— L=4(g)
1| —%— L=4(h)
—4A— L=4(j)
1] —=—1=4¢)
1| — L=4(k)
—— L=4(l)

L=4(a) L=4(b) L=4(c)
. . . 0.5
0
L=4() L=4(i) L=4()

FIG. 9. (Color online) Free energy curves of vortex states with
L = 4 in sample I with size W/&, = 10 and the contour plots of the
order parameter of selected vortex states. Inset shows details of the
free energy curve around ®/®, = 6.5. The contour plot of ground
state L = 4(k) is shown in Fig. 5.
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For low fields, we conclude again that vortices are close to
the surface and these states are always the lowest energy state
for a given L state at low fields. States L = 4(b) and L = 4(c)
have C4 symmetry and all of the four vortices are trapped
close to the boundary. Please note that in the state L = 4(a)
four vortices sit at the corners. This kind of state is rare in the
BdG results because corners give the highest potential energy
contribution for vortices. From the free energy curve of the
state L = 4(a), we can find that the slope of the energy curve
is opposite to the other L = 4 states [such as L = 4(b)] in
this field range. This indicates that vortices are repelled by
the Meissner current in order to balance the inward force the
vortices experience from the corner. When the field is too low, a
vortex is expelled from the sample and the state jumpstoa L =
3 state. The vortex configuration L = 4(f) has been found
experimentally in conventional mesoscopic superconductors’
but was a result of the presence of pinning sites. This state
cannot be obtained in plane squares within the GL theory.
Another state to notice is L = 4(i) whose energy curve does
not cross any other L = 4 curve. When the superconductor is
in this state and the field is swept down, this state will be the
first to jump to the L = 3 state. This is understandable from
the vortex configuration of L = 4(i) because the vortex at the
corner is easily expelled when the field is lowered.

At high fields only one metastable state exists, L = 4(I).
It can be seen as the state obtained after a 90° rotation of the
ground state, L = 4(k). This is a consequence of the fact that
the inhomogeneous pattern of the order parameter changes
with field. At such a high field, the corner vortex position in
state L = 4(k) becomes unstable, which forces the vortices
to sit at the edges, similar to the L = 4([) case. At the same
time, the strong field pushes vortices closer together so that
the distance between vortices in L = 4(l) is shorter than the
one in the ground state L = 4(k).

V. VORTEX STATES AT FINITE TEMPERATURE

So far, all our calculations were done at zero temperature,
T/T. =0, where T, is the bulk critical temperature at zero
flux ®/®dy = 0. In what follows, we investigate the effect of
temperature on the vortex configuration. First, we show all the
vortex states for the flux range /P € [0,10], for sample I
with size W/& = 10at T/ T, = 0.6 where the system is not in
the quantum limit since T/7T, > 1/kg&y. The corresponding
free energy curve as a function of flux is presented in Fig. 10.
Contrary to the results for 7/7, = 0, which were shown in
Fig. 4, the figure looks more conventional (similar to the
results obtained by GL theory in Ref. 12) and there is only
one stable state for each winding number L. Moreover, only
giant-vortex states are found in this case for L > 2. For the size
of the square sample considered here, W ~ 10&, GL theory'?
predicts that multivortex states should exist. Here we find
instead that multivortex states are absent since & increases
as temperature increases.

In order to see how temperature affects the coherence
and the profile of the superconducting order parameter, we
show the order parameter for ®/®y =4 and L =1 in
Fig. 11. The diagonal profile of |A| at T/T, = 0 shows the
strongest Friedel-like oscillations. As temperature increases
to T/T, = 0.2, the profile is similar to the one obtained
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L=0

FIG. 10. (Color online) Free energy as a function of the magnetic
flux through the square sample I for size W /&, = 10and T/ T, = 0.6.

at zero temperature, but with less oscillations at the vortex
core. Both cases are in the quantum limit and the order
parameter shows rapid variation in the core. When temperature
reaches T7/T, = 0.6, we find that both the average and
the oscillations of the absolute value of the order parameter
are suppressed which indicates that the vortex states become
more conventional. Finally, the order parameter is smooth at
T/T. = 0.8 and the GL results are approached.

As seen from the Fig. 11, the coherence length, which
represents the vortex core radius, increases with increasing
temperature. As defined by Kramer and Pesch,”! we calculate
the coherence length & as

1 A(r)

— = lim ,
.‘;:1 r—0 ”AO

®)

where r is the distance to the vortex core. We plot in Fig. 12
(£0/&1)* as a function of temperature, T/ T,. As discussed in
Ref. 61, & can be described by £(T) o< (T. — T)~"/> when T

IAIF,
05 1 15
| — )
TIT =0
c

10 T/T =0.6

FIG. 11. (Color online) The diagonal profile of the order param-
eter for sample I with size W /&, = 10 for ®/®y =4 and L =1 at
different temperatures. The corresponding contour plots of the order
parameter at 7/7T, = 0 and T/ T, = 0.6 are also shown.
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FIG. 12. (Color online) Temperature dependence of (&)/&,)* for
sample I with size W/& = 10 and /Py = 4.

is close to 7. (T /T, > 0.5 in our case). In the intermediate
temperature regime, there is a substantial suppression of
the coherence length because of the bound states. At low
temperature, the shrinkage of the coherence length stops and
saturates when the system is in the quantum limit. Note that
& at T/T. = 0.6 is around three times larger than the one at
zero temperature. This explains why only giant vortex states
can be found at such temperatures.

Figure 13 shows the order parameter for samplel at7 /T, =
0.6 for L = 2 in panel (a) and L = 3 in panel (b), respectively.
Both are giant-vortex states and the C4 symmetry grid pattern is
strongly suppressed. As can be seen from the figure, the vortex
cores show perfect circular symmetry, which is in agreement
with the results from GL theory. Of course, the size of the
vortex core shown in panel (b) is larger than the one shown in
panel (a) because its vorticity is larger.

Finally, we end this section with the 7-® phase diagram
for lower fields for sample I with W /&, = 5. This is shown in
Fig. 14. The thick black curve indicates the phase boundary
between the superconducting and the normal state. When the
system is in the quantum limit, for these parameters, only
unconventional vortex states, such as asymmetric L = 1 and
L =3 states and edge-parallel L = 2 states, are found as
ground states. When temperature increases, the vortex states

jA/F, © 05 1 1.5

FIG. 13. (Color online) The contour plots of the order parameter
for sample I with size W/, =10 at T/T. = 0.6 for (a) L = 2 and
(b) L =3.
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FIG. 14. (Color online) Temperature-flux phase diagram for
sample I with size W/&, = 5. The vortex configurations of areas
(i)—(iii) are shown as insets in the upper right corner.

become conventional and the C4 symmetry of the states is
always preserved. Note that the asymmetric L = 1 state
goes through a continuous phase transition to the symmetric
L =1 state, which means the vortex moves gradually as the
temperature changes. However, for higher winding numbers,
the system usually goes through a first-order phase transition.
For example, the phase transition between the parallel-vortex
state and the giant-vortex state of L = 2 is of first order. This
is different from the GL result, where vortices merge into a
giant vortex through a continuous phase transition.”” For the
L = 3 state, we note that the ground-state flux range for the
fourfold-symmetric V-aV state is larger than the asymmetric
one due to the compatibility of its symmetry with the geometry
of the sample.

Concluding this section, higher temperature (1) makes
vortex states look more conventional (closer to the GL results),
(2) smoothens the order parameter, (3) suppresses the influence
of the oscillation of the order parameter, and (4) increases the
superconducting coherence length £. As a consequence, the
number of metastable states is also lowered. The effect of
temperature is very different (more complex) from the effect
obtained by simply changing the effective size of the sample
as is usually done within the GL theory.

VI. GIANT ANTIVORTEX AND THE STRUCTURE
OF THE VORTEX CORE

In this section, we discuss the appearance and stability of
antivortex states in the BAG theory in order to explain the
existence of the giant antivortex. Actually, such a state was
already found in Ref. 31 through the linear GL method by
introducing artificial pinning.

From the phase diagram shown in Fig. 6, we found that
antivortex states are surprisingly stable within BdG theory.
This is due to the fact that the grid pattern oscillation of
the order parameter gives an additional contribution to the
symmetry of the vortex states and therefore, in a square
sample, the C4 symmetry is enhanced. The other reason to
form an antivortex is that the oscillations induced by the order
parameter are seen in the vortex core where the order parameter
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FIG. 15. (Color online) Diagonal profile of the order parameter
for different vortex states in the GL theory. Blue thick curves represent
the order parameter. All the phases have been adjusted such that on the
diagonal the order parameter is real. The horizontal line indicates
the zero of the order parameter and a vortex appears when it intersects
the order parameter. Panels (a) and (c) represent multivortex states.
Panels (b) and (d) show giant-vortex states, and (e) shows a vortex-
antivortex configuration.

S @0 e

is already suppressed. These oscillations can easily lead to a
shift in the phase of the order parameter by 7 and, thus, result
in the formation of vortex-antivortex molecules.

In order to explain this, we first discuss briefly the vortex
profile in the GL theory. Figure 15 shows a schematic diagram
of the vortex states for different winding number L in GL
theory. The diagonal profiles of the order parameters vary
smoothly in space and the vortex emerges where the order
parameter vanishes. Note that the phase of the order parameter
is adjusted such that along the diagonal the order parameter
is real. Panel (a) from Fig. 15 shows the simplest case when
only one vortex sits at the center. As can been seen from
the figure, the order parameter changes sign, which indicates
the 7 phase shift of the order parameter. The profile is an
odd function and A(r) ~ r near the vortex core. Panels (b)
and (c) from Fig. 15 show the diagonal profiles for L = 2.
Both profiles are even functions due to the 2w phase shift
between the opposite corners. The order parameter exhibits
A(r) ~ r? property. When there is only one root, as can be
seen from panel (b), the vortex is a giant one. When there
are two roots, as shown in panel (c), the configurations are
multivortex states. Similarly, the profiles of the order parameter
shown in panels (d) and (e) from Fig. 15 for L = 3 show a
A(r) ~ r3 spatial dependence. One root means that we have
a giant-vortex state whereas three roots represent a vortex-
antivortex configuration. Note that, in order to generate the
central antivortex, the order parameter has to oscillate around
the center of the square.

Now let us move to nanosize superconductors where the
BdG theory has to be used and the spatial oscillation of the or-
der parameter cannot be neglected. As can be seen from Fig. 16
the oscillation plays an important role in generating vortices,
especially when the value of the order parameter is comparable
to the amplitude of the oscillation. For instance, panels (a)

PHYSICAL REVIEW B 88, 144501 (2013)
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FIG. 16. (Color online) Similar to Fig. 15 but now for the BAdG
theory. Panels (a) and (b) show the symmetric and asymmetric L = 1
vortex states, respectively. Panels (c) and (d) show the giant-vortex
and vortex—giant-antivortex L = 2 states, respectively. Panels (e) and
(f) show the giant-vortex and vortex-antivortex L = 3 configurations,
respectively.

and (b) from Fig. 16 show the symmetric and the asymmetric
L =1 vortex states. The reason for the appearance of the
asymmetric vortex state is the fact that the order parameter has
an odd number of oscillations across the diagonal. Thus, the
vortex cannot sit at the center. For the L = 2 states, panel (c)
shows a giant vortex state where the sign of the profile of the or-
der parameter is always positive across the diagonal. However,
due to the oscillations, the case shown in panel (d) of Fig. 16
can easily exist and shows a giant antivortex (L = —2) at the
center. Further, the configurations show a large diversity for a
fixed winding number L. When L = 2, the configuration can
bel +1,2+0,3 — 1,4 — 2, and so on. Panels (e) and (f) from
Fig. 16 are for L = 3 states. Apparently, they are similar to the
GL case shown in Fig. 15, but the probability of the occurrence
of the V-aV state is much larger than in GL case. The reason
is that the result with one root is just a special case while the
general case shows oscillations at and around the vortex core.

The V-aV molecules do not only exist for smaller winding
number L, but they can also appear for large L in the BdG
results. Figure 17 shows an example for sample III with
W /&=T at &/ Py = 20 and with a winding number L = 12.

AJF. © 1 2 2n
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(c)

FIG. 17. (Color online) Vortex state for sample Il with W /&, = 7
at &/ P, = 20 with winding number L = 12. Panels (a) and (b) show
contour plots of the order parameter and its phase, respectively. Panel
(c) shows schematically the vortex configuration. Dark (blue) dots
and open diamonds indicate vortices and antivortices, respectively.
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We find that vortices concentrate in the central dark (blue)
area where the order parameter is strongly suppressed. From
the phase of the order parameter, which is shown in Fig. 17(b),
the total winding number L = 12 is found but it is difficult
to distinguish each vortex. After a careful analysis, we plot a
schematic diagram of the vortex configuration in Fig. 17(c).
The dark (blue) dots and open diamonds indicate vortices
and antivortices, respectively. As can be seen, the lattices of
vortices and antivortices are nested within each other. Since
antivortices attract vortices, all the vortices (24 vortices and
12 antivortices) can be condensed in the cental area of the
sample. This picture becomes more accurate when kr&y is
large. The stronger the oscillations of the order parameter the
more V-aV pairs are generated. However, the size of the V-aV
pair can only be of the order of the Fermi wavelength. Thus,
it will be very hard to detect them in experiments. This is why
these states are mostly treated as a giant vortex in conventional
superconductors. In other words, the suppressed central area
of the order parameter, after coarse graining, will look like a
giant vortex with L = 12.

VII. CONCLUSION

To summarize, we investigated the vortex states in a
nanoscale superconducting square for different sizes W,
parameters k&g, and temperatures 7. First, we found that the
inhomogeneous pattern of the order parameter in the absence
of magnetic field strongly depends on kr&p and the size W.
This oscillation pattern will give an additional contribution
to competing effects that determine the vortex configurations
when the field is applied. Due to the inhomogeneous order
parameter induced by the quantum topological confinement,
samples with different k&) and W will favor different winding
numbers L.

We find unconventional vortex states such as asymmetric,
edge-parallel, and vortex-antivortex states as the ground state
of our nanoscale system. These were never seen in the
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Ginzburg-Landau approach. The inhomogeneous pattern of
the order parameter, especially the strong oscillation at the
boundaries, causes additional potential wells for vortices
which in turn generates a lot of metastable vortex states.
Furthermore, in the quantum limit, nanosize superconductors
favor vortex-antivortex molecules while disfavoring giant-
vortex states.

We observe that vortex ground states and the phase
transition fields are very sensitive to changes in the parameter
kr&o, size W, and temperature 7'. This is a direct consequence
of the quantum size effect. However, this effect is suppressed
when the size W is large or when temperature is high. In this
case most metastable states become unstable and the ground
states become compatible with GL theory.

For high magnetic fields, vortex-antivortex pairs can be
easily found when k& is large because the absolute value of
the order parameter becomes smaller than the amplitude of its
oscillations. However, detection of such states is beyond the
current experimental abilities.

The peculiar vortex states uncovered in the present work
should be observable in superconducting systems where kr&y
is small. Such systems could be high-7, superconducting
nanograins for which the coherence length is small or cold-
atom condensates with small kg, i.e., large Fermi wavelength.
Of special interest could be hybrid systems made of supercon-
ducting substrates and graphene sheets for which the Fermi
wavelength is highly tunable near the Dirac point. Future
work could also address the fundamental vortex-vortex and
vortex-antivortex interactions for systems with a small k&,
for which the oscillations of the order parameter on the order
of A become important.
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