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Fokker-Planck approach to the theory of the magnon-driven spin Seebeck effect
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Following the theoretical approach by J. Xiao et al. [Phys. Rev. B 81, 214418 (2010)] to the spin Seebeck effect,
we calculate the mean value of the total spin current flowing through a normal metal/ferromagnet interface. The
spin current emitted from the ferromagnet to the normal metal is evaluated in the framework of the Fokker-Planck
approach for the stochastic Landau-Lifshitz-Gilbert equation. We show that the total spin current depends not
only on the temperature difference between the electron and the magnon baths, but also on the external magnetic
field and magnetic anisotropy. Apart from this, the spin current is shown to saturate with increasing magnon
temperature, and the saturation temperature increases with increasing magnetic field and/or magnetic anisotropy.
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I. INTRODUCTION

If two ends of a conductor are held at different temperatures,
electrons from the hot end diffuse towards the cold one.1 This
phenomenon, discovered by Seebeck, is the basis for various
thermoelectric charge-transport effects and plays a key role
in the development of energy-saving technologies. With the
emergence of spintronics as a new area of mesoscopic physics,
whose main objective is to utilize the electron spin in device
operations, spin-related thermoelectricity has become of high
interest.2 Even though the generation of electromotive force
by a temperature gradient has been known for a long time, the
spin analog of the Seebeck effect, known as the spin Seebeck
effect (SSE), was discovered only very recently.3 In the latter
experiment, a temperature gradient along a ferromagnetic slab
generated a pure spin current over a long distance, much longer
than in typical injection experiments, where spin current (and
also spin voltage) disappears over distances longer than the
spin-diffusion length.3 The SSE was observed not only in
metallic ferromagnets (such as Co2MnSi)4 or semiconducting
ferromagnets (e.g., GaMnAs),5 but also in magnetic insulators
LaY2Fe5O12

6 and (Mn,Zn)Fe2O4.7 Explanation of the effect
observed experimentally in insulating magnets cannot rely on
conduction electrons and requires a more general approach.

The Seebeck effect is usually quantified by the Seebeck
coefficient S which is defined as the ratio of the generated
electric voltage �V to the temperature difference �T , �V =
−S�T . The magnitude of the Seebeck coefficient S depends
on the scattering rate and the density of electron states at the
Fermi level, and thus it is different in different materials. In
the case of SSE, the spin voltage is formally determined by
μ↑ − μ↓, where μ↑(↓) are the electrochemical potentials for
spin-up and spin-down electrons, respectively. Usually, the
density of states and the scattering rate for spin-up and spin-
down electrons are different, which results in different Seebeck
constants for the two spin channels. Therefore, in a metallic
magnet subjected to a temperature gradient, the electrons
in different spin channels generate different driving forces,
leading to a spin voltage that drives a nonzero spin current.

In this paper we study the spin current flowing through
the normal metal/ferromagnet interface due to the thermal
bias applied to the system. We consider the system and the
model studied recently by Xiao et al.8 However, we use a
different approach and also consider in detail the influence of
an external magnetic field and of the magnetic anisotropy. As in
Ref. 8, we assume that the electron-phonon interactions in both
normal-metal and ferromagnetic subsystems are predominant,
as compared to the interface effects. Therefore, the phonon
and electron reservoirs in both normal metal and ferromagnet
thermalize internally before the thermal equilibrium between
the ferromagnet and normal metal appears. In terms of the
local temperature, which is based on the hierarchy of relaxation
times, this means that the temperatures of the phonon (T p

N(F ))
and the electron (T e

N(F )) baths are equal in both the normal
metal (N ) and the ferromagnet (F ), T

p

N = T e
N = TN , T

p

F =
T e

F = TF . However, there is a difference in temperatures of
the subsystems, TN �= TF , which is externally controlled.
This difference drives the SSE. The interaction between the
normal-metal and the ferromagnet subsystems is mediated via
the magnon bath. The temperature of the magnon bath deviates
from the temperature of the electron and the phonon baths,
T m

F �= TN and T m
F �= TF .

As shown in Ref. 8, two different spin currents con-
tribute to the total spin current flowing through the normal
metal/ferromagnet interface. One of them is the spin current
emitted from the ferromagnet to the normal metal due to the
thermally activated magnetization dynamics in the ferromag-
net. This spin current is referred to as the spin-pump current,
�Isp. The second contribution to the total spin current has the
opposite nature and flows in the opposite direction—from
normal metal to ferromagnet. This contribution follows from
the thermal noise in the normal metal and will be referred to
as the spin-torque current, �If l . In order to evaluate the spin
current flowing through the interface between normal metal
and ferromagnet, Xiao et al.8 used the linearized Landau-
Lifshitz-Gilbert (LLG) equation and found that the spin current
is proportional to the difference in the temperatures of the
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magnon system T m
F and electron subsystem in the normal

metal T e
N . Here we address this problem using a different

method, which is based on the Fokker-Planck equation for
the stochastic LLG equation. We also distinguish between the
influence of magnetic anisotropy and external magnetic field
on the spin Seebeck effect. As in the linearized approach the
role of magnetic anisotropy is similar to that of an external
magnetic field and can be described by some effective field,
this is not the case when fluctuations are large. We demonstrate
that the spin current obtained within the framework of the
linear response theory is a particular case of the result obtained
using the Fokker-Planck approach, and corresponds to the
low-temperature approximation for the magnon temperature.
Apart from this, we show that the spin current saturates with
increasing magnon temperature, and the saturation tempera-
ture increases with increasing magnetic field and/or magnetic
anisotropy.

The paper is organized as follows. In Sec. II we describe the
model. The Fokker-Planck equation is solved in Sec. III, where
two cases are distinguished: (i) the case with dominant external
field, and (ii) the case where the uniaxial magnetic anisotropy
field is dominant. Our summary and final conclusions are in
Sec. IV.

II. GENERAL BACKGROUND

We consider a ferromagnetic metallic layer which is in
direct contact with a nonmagnetic metallic layer. Magnetiza-
tion dynamics of the ferromagnet will be described by the
LLG equation in the macrospin approximation.9–11 Following
Xiao et al.,8 we assume that strong electron-phonon interaction
assures local thermal equilibrium between electrons and
phonons in both ferromagnetic and normal-metal layers, T p

F =
T e

F = TF , T
p

N = T e
N = TN . However, the magnon temperature

in the ferromagnetic layer is different from the corresponding
temperature of electrons, T m

F �= TF .8

At finite temperatures, the thermally activated magnetiza-
tion dynamics in the ferromagnet gives rise to a spin current
emitted from the ferromagnet to the normal metal. This
effect is known as the spin pumping.12–14 The corresponding
expression for the spin current density reads8

�Isp = h̄

4π
[gr �m(t) × �̇m(t) + gi �̇m(t)], (1)

where gr and gi are the real and imaginary parts of the dimen-
sionless spin mixing conductance of the ferromagnet/normal
metal (F |N ) interface, while �m(t) is a dimensionless unit
vector along the magnetization direction.

In turn, the thermal noise in the normal-metal layer leads
to the spin current flowing from the normal metal to the
ferromagnet,12

�If l(t) = −MsV

γ
γ �m(t) × �h′(t), (2)

where Ms is the saturation magnetization, V is the total
volume of the ferromagnet, and γ is the gyromagnetic factor.
Apart from this, �h′(t) is the random magnetic field with the
following correlation function in the high-temperature limit,
kBT � h̄ω0,

〈γ h′
i(t)γ h′

j (t ′)〉 = σ ′2δij δ(t − t ′) (3)

for i,j = x,y,z. Here, ω0 is the ferromagnetic resonance
frequency, σ ′2 = 2α′γ kBTN/MsV , and α′ = γh̄gr/4πMsV

is the magnetization damping constant related to the spin
pumping. Using Eqs. (1) to (3), the total average spin current
flowing across the interface can be written in the form

〈 �Is〉 = MsV

γ
[α′〈 �m × �̇m〉 + γ 〈 �m × �h′〉], (4)

while the magnetization dynamics is described by the stochas-
tic LLG equation,

�̇m = −γ �m × (Heff ẑ + �h) + α �m × �̇m, (5)

where Heff is the effective magnetic field which consists of the
external constant magnetic field H0 oriented along the z axis
and magnetic anisotropy field, HAmz, with HA = 2K1/Ms and
K1 being the anisotropy constant. For K1 > 0 the magnetic
anisotropy is of easy-axis type, while for K1 < 0 it is of easy-
plane type. Apart from this, in the above equation ẑ is the unit
vector along the z axis, �h is the total random field, while α is
the total magnetic damping constant.8 This constant includes
the contributions from the bulk damping constant α0 associated
with the lattice random field h0 and from the damping constant
α′ associated with the contact to the normal metal [random field
�h′(t)].

We assume that the random contributions from the unrelated
noise sources are independent and therefore the correlation
function for the total random magnetic field can be factorized
in the following form:

〈γ hi(t)γ hj (t ′)〉 = σ 2δij δ(t − t ′), (6)

where σ 2 = 2αγ kBT m
F /MsV , and αT m

F = α0TF + α′TN .

III. FOKKER-PLANCK EQUATION
AND THE SPIN CURRENT

In Ref. 8, the stochastic LLG equation was linearized near
the relevant equilibrium. Here, to evaluate the mean current
〈 �Isp〉 for the stochastic LLG, we derive the Fokker-Planck
equation for the distribution function f ( �m,t). The derivation
procedure follows Ref. 15 and is outlined in the Appendix. As
a result, one finds

∂f

∂t
= 1

1 + α2

∂

∂ �m
{

( �m × �ωeff) f + α �m × ( �m × �ωeff) f

− σ 2

2(1 + α2)
�m ×

(
�m × ∂f

∂ �m
)}

, (7)

where �ωeff = γHeff ẑ = (0,0,ωeff), with ωeff = γHeff .
The stationary solution of Eq. (7) for the distribution

function has the form

f ( �m) = Z−1 exp

(
β

∫
�ωeff · d �m

)
,

(8)

Z =
∫

exp

(
β

∫
�ωeff · d �m

)
d3 �m,

where we introduced the following notation: β = 2α(1 +
α2)/σ 2 ≈ 2α/σ 2 = MsV/γ kBT m

F . The limits of weak and
strong magnetic anisotropy are of particular interest. There-
fore, in the following we will consider both situations
separately, and start with the case of a weak anisotropy field.
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A. Weak magnetic anisotropy

In the case of weak magnetic anisotropy, when the external
magnetic field is dominant, ω0 = γH0 � ωp = γHA, the
effective field in Eq. (8) is �ωeff = (0,0,γH0). Using Eqs. (1)
and (8) we find the mean values of the magnetization
components:

〈mxmy〉 = 〈mxmz〉 = 〈mymz〉 = 0,

〈mx,y〉 = 0, 〈mz〉 = L(βω0),
(9)〈

m2
x,y

〉 = 1

βω0
L(βω0),

〈
m2

z

〉 = 1 − 2

βω0
L(βω0),

where L(x) = coth x − 1
x

is the Langevin function, which has
the asymptotics L(x) ≈ x/3, x � 1. Then, taking into account
Eq. (9), one finds the mean value of the spin current,

〈Isz〉 = MsV

γ

{
α′ω0

(
1 − 〈

m2
z

〉) − γ 〈(mxh
′
y − myh

′
x)〉}. (10)

The last term in Eq. (10) can be evaluated using the linear-
response theory, i.e., by linearizing the LLG equation in
the vicinity of the equilibrium point, 〈mz〉 = L(βω0). After
straightforward but laborious calculations one obtains

〈mxh
′
y − myh

′
x〉 = σ ′2

γ
〈mz〉. (11)

Combining Eqs. (10) and (11) one can write the final result for
the spin current density in the form

〈Isz〉 = 2α′kBL

(
MsV H0

kBT m
F

)(
T m

F − TN

)
. (12)

We see that the average spin current depends on two physi-
cal parameters: (i) the ratio, MsV H0/kBT m

F of the magnetic en-
ergy in the external field to the thermal energy corresponding to
the magnon temperature, and (ii) the difference between the
magnon temperature and the temperature of the electron-
phonon bath in the normal metal, (T m

F − TN ). The depen-
dence of the average spin current on the field is factorized
in the Langevin function, Eq. (12). Therefore, introducing
the notation 〈Isz〉0 for the mean spin current calculated
in the linear response approach, 〈Isz〉0 = 2α′kB(T m

F − TN ),8

one can rewrite Eq. (12) in the compact form as 〈Isz〉 =
L(MsV H0

kBT m
F

)〈Isz〉0.

In the limit of a low magnon temperature, H0/T m
F > kB

MsV
,

we have 〈Isz〉 ≈ 〈Isz〉0. This means that the spin current
calculated using the Fokker-Planck approach, without a lin-
earization of the system, gives the same result as that obtained
in the linear response. The physical reason for this is clear.
Indeed, in the case of a strong magnetic field, the magnetization
vector tends to be aligned along the field direction, and
nonlinear effects in the magnetization dynamics related to large
deviation from the equilibrium are less relevant. However, in
the opposite case, corresponding to the high magnon temper-
ature, H0/T m

F < kB

MsV
, and strong magnetization fluctuations,

the nonlinear effects in the magnetization dynamics are much
more important. Consequently, the spin current is different
from 〈Isz〉0 and reads 〈Isz〉 = 2

3α′MsH0(1 − TN/T m
F ). We see

that the maximum value of the spin current corresponds to the
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H0 11.4 Oe

FIG. 1. (Color online) Dependence of the spin current 〈Isz〉 on
magnon temperature T m

F for the following parameters (Ref. 8):
Ms = 800 G, V = 1.6 × 10−18 cm3, TN = 293 K. The parameters
correspond to Py = Ni80Fe20 alloy (Ref. 8). The spin current is
measured in units of α′kB and is shown for different amplitudes of
the magnetic field. The dotted (green) line corresponds to the linear
response theory.

hot magnon bath and saturates at 〈Isz〉 = 2
3α′MsH0. In turn,

the spin current from linear response theory increases linearly
with the magnon temperature.

The dependence of the spin current on the magnetic
field and magnon temperature is plotted in Figs. 1 and 2.
In particular, in Fig. 1 the dependence of the total spin
current on the magnon temperature is plotted for different
values of the external magnetic field. The dotted (green) line
corresponds to the linear response theory, whereas all other
curves correspond to the Fokker-Planck approach. We note
that in contrast to the linear response theory, the Fokker-Planck
approach leads to the spin current that saturates for high
magnon temperatures. This, in turn, means that the linear
response is valid only in a narrow range of the magnon
temperatures. Note that all the curves cross the same point
for T m

F = 0 as there are then no thermal fluctuations in the
magnon system, and thus the only contribution comes from
thermal noise in the nonmagnetic film. Deviation from the
description based on the linearized model is especially large
for small magnetic fields and appears already at low magnon

200 400 600 800 1000
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TF
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TF
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TF
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FIG. 2. (Color online) Dependence of the ratio 〈Isz〉/〈Isz〉0 on
the magnetic field H0 for the following parameters (Ref. 8): Ms =
800 G, V = 1.6 × 10−18 cm3. The parameters correspond to the
Py = Ni80Fe20 alloy (Ref. 8). Different curves correspond to different
values of the magnon temperature.
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temperatures (see the curve for H0 = 11.4 Oe in Fig. 1). In
this case, the saturation of the spin current also appears at
low temperatures. For higher magnetic field, the deviation
is smaller and appears at higher magnon temperatures. This
behavior is reasonable as the fluctuations at low magnetic
fields are larger, and therefore difference between linearized
model and description based on the Fokker Planck equation
appears at lower magnon temperatures. Obviously, the curves
also cross at the point corresponding to T m

F = TN , where the
spin current vanishes. This directly follows from Eq. (12).
In the nonlinear regime L(MsV H0

kBT m
F

< 1) ≈ MsV H0
3kBT m

F

and for spin

current we have 〈Isz〉 = 2α′MsV H0
3T m

F

(T m
F − TN ). Consequently

the magnon temperature T m
F for which we observe saturation

of the spin current 〈Isz〉 = 2
3α′MsV H0 basically is defined by

the following inequalities: T m
F > MsV H0

kB
,T m

F > TN .
Figure 2 shows the dependence of the ratio 〈Isz〉/〈I0〉

on the magnetic field for different values of the magnon
temperatures T m

F . This figure clearly shows that the saturation
field increases with increasing the magnon temperature. Apart
from this, it is interesting to note that 〈Isz〉/〈I0〉 tends to
zero in the limit of zero magnetic field. This behavior can be
accounted for by noting that ω0 → 0 for zero magnetic field,
so the zero-field magnetic fluctuations are large. In this limit
the description based on the linearized model gives finite spin
current, while that based on the Fokker-Planck equation gives
vanishing spin current.

B. Strong magnetic anisotropy

In the presence of a magnetic anisotropy, the situation is
more complicated. Now, �ωeff = ωeff(mz)ẑ, where ωeff(mz) =
γHeff = γ (H0 + HAmz). The stationary solution to Eq. (7) is

f = Z−1
a exp

[
2α

σ 2

(
ω0mz + ωpm2

z

2

)]
, (13)

where Za = ∫
exp[ 2α

σ 2 (ω0mz + ωpm2
z

2 )]d3 �m is a normalization
factor, and ωp = γHA. Using Eq. (13) and calculating the spin
current we find

〈Isz〉 = α′kB

{
T m

F A
(
1 − 〈

m2
z

〉)
+ 2T m

F B
(〈mz〉 − 〈

m3
z

〉) − 2TN 〈mz〉
}
. (14)

Here, the mean values 〈mz〉, 〈m2
z〉, and 〈m3

z〉 are given by

〈mz〉 = eA sinh(A)√
BG(A,B)

− A

2B
;

〈
m2

z

〉 = − 1

2B
+

(
A

2B

)2

+ eA[2B cosh(A) − A sinh(A)]

2B3/2G(A,B)
;

〈
m3

z

〉 = 3

4

A

B2
−

(
A

2B

)3

+ eA[−2AB cosh A + (A2 − 4B − 4B2) sinh(A)]

4B5/2G(A,B)
.

(15)

The following notation has been introduced in the above equa-
tions: A = MsV H0

kBT m
F

, B = K1V
kBT F

m
, and G(A,B) = e2AF (A+2B√

B
) −

F (A−2B√
B

), where F (x) = exp(−x2)
∫ x

0 exp(y2)dy is the

500 1000 1500 2000
H0 Oe

1

2

3

4

5

Isz Α′kB

HA 1000 Oe

HA 600 Oe

HA 100 Oe

HA 4000 Oe

FIG. 3. (Color online) The dependence of spin current 〈Isz〉 on
the field H0 for the following parameters (Ref. 8): T m

F = 293 K,
TN = 290.07 K, �T = T m

F − TN = 2.93 K, 4πMs = 4000 G, V =
1.6 × 10−18 cm3. These parameters correspond to manganese spinel
ferrite films (MnFe2O4; Ref. 17). The spin current is measured in
units of α′kB . Different curves correspond to different values of HA.

Dawson function.16 The above formula, Eqs. (14) and (15),
will be now used to calculate the influence of magnetic
anisotropy on the asymptotic behavior of the average spin
current.

The effect of magnetic anisotropy is demonstrated in Fig. 3,
where the spin current is shown as a function of the external
field for the indicated values of HA. It is evident that for the pa-
rameters assumed in Fig. 3 the magnetic anisotropy magnifies
the spin current for HA > 0 (easy-axis anisotropy). This be-
havior is qualitatively similar to that observed for external field
H0. The difference comes from the fact that the effective role of
anisotropy depends on the magnetization—the anisotropy field
changes sign when the mz component is reversed. One may
also say that the effect of magnetic anisotropy adds to the effect
of magnetic field. In turn, the easy-plane anisotropy (HA < 0)
reduces the spin current, i.e., reduces the effect of external
field. Generally, the spin current saturates with increasing H0.
However, in the presence of easy-axis (easy-plane) magnetic
anisotropy, the saturation is reached at H0 lower (larger) than
in the absence of the magnetic anisotropy.

IV. SUMMARY AND CONCLUSIONS

We have studied the spin Seebeck effect in a system
consisting of normal-metal and ferromagnetic films subjected
to a temperature gradient. Using the Fokker-Planck equation
we have derived analytical expressions for the averaged spin
current flowing through the interface between the layers. This
current consists of two parts: The first part is the spin current
which occurs due to the thermally activated magnetization
dynamics in the ferromagnetic layer, 〈Isp〉. The second part,
〈If l〉, flows in the opposite direction and arises from thermal
fluctuations in the normal metal.

We have considered two special cases—with and without
magnetic anisotropy. The obtained analytical results describe
the dependence of the mean spin current on the external
magnetic field and the magnetic anisotropy field, and on
the difference between the magnon temperature and the
temperature of the electron-phonon bath in the normal metal.
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The dependence of the spin current on the thermal gradient was
already analyzed in Ref. 8, where the corresponding stochastic
Landau-Lifshitz-Gilbert equation was linearized. However,
the dependence on magnetic anisotropy was not considered
there. We have shown that the magnetic field enhances the
spin current, which should be observable experimentally.
In the absence of the anisotropy, the dependence of spin
current on the magnetic field is factorized by the Langevin
function, Eq. (12). In the limit of a low magnon temperature,
H0/T m

F > kB

MsV
, the spin current calculated using the approach

based on the Fokker-Planck equation (without linearization of
the Landau-Lifshitz-Gilbert equation) gives the same result
as that obtained in the framework of linear response theory.
From the physical point of view this result is rather clear.
In the case of a strong magnetic field, the magnetization vector
tends to be aligned along the field and the nonlinear effects in
the magnetization dynamics concerning large deflection from
the equilibrium position are less relevant. However, in the
opposite case corresponding to the high magnon temperature
H0/T m

F < kB

MsV
and larger fluctuations of the magnetization

vector, nonlinear effects in the magnetization dynamics are
more important. Consequently, the behavior of the spin current
is different from that found in the linear response description.
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APPENDIX: DERIVATION OF THE FOKKER-PLANCK
EQUATION

For the derivation of the Fokker-Planck equation we follow
Ref. 15 and use the functional integration method in order to
average the dynamics over all possible realizations of the ran-
dom noise field. First, we rewrite Eq. (5) in the following form:

�̇m = − 1

1 + α2
�m × [ �ωeff + �ζ (t)]

− α

1 + α2
�m × ( �m × �ωeff), (A1)

where �ωeff = γHeff ẑ = (0,0,ωeff), and �ζ (t) = γ �h(t) is
a random Langevin field with the following correlation
relations:

〈�ζ (t)〉 = 0,

〈ζi(t); ζj (t ′)〉 = 2αγ kBT F
m

MsV
δij δ(t − t ′) ≡ σ 2δij δ(t − t ′).

(A2)

We introduce the probability distribution for the random
Gaussian noise �ζ :

F [�ζ (t)] = 1

Zζ

exp

[
− 1

σ 2

∫ +∞

−∞
dτζ 2(τ )

]
, (A3)

where Zζ = ∫
D�ζF is the noise partition function; D�ζ denotes

the functional integration over all realizations of �ζ (τ ). For all
n we have ∫

D�ζ δnF [�ζ ]

δζα1δζα2 . . . δζαn

= 0. (A4)

Using Eq. (A3), the average of any noise the functional A[�ζ (t)]
can be written as

〈A[�ζ ]〉ζ =
∫

D�ζA[�ζ ]F [�ζ ]. (A5)

Using the identity δζα (τ )
δζβ (t) = δαβδ(τ − t) and (A4) and (A5) for

n = 1,2, it is easy to obtain the correlation relations (A2).15

The Fokker-Planck equation corresponding to Eq. (A1) can be
written for the distribution function as

f ( �M,t) ≡ 〈�π (t,[�ζ ])〉ζ , �π(t,[�ζ ]) ≡ δ( �M − �m(t)) (A6)

on the sphere | �M| = 1. Taking into account the relation15

�̇π = − ∂ �π
∂ �M �̇m and the equation of motion (A1) we deduce the

following Fokker-Planck equation:

∂f

∂t
= 1

1 + α2

∂

∂ �m {( �m × �ωeff)f + [ �m × ( �m × �ωeff)]f

+ �m × 〈�ζ (t)�π(t,[�ζ ])〉}. (A7)

To calculate 〈�ζ (t)�π(t,[�ζ ])〉 we use the standard procedure,15

which yields

〈�ζ (t)�π(t,[�ζ ])〉 = − σ 2

2(1 + α2)
�m × ∂f

∂ �m. (A8)

Inserting Eq. (A8) into Eq. (A7) we find the Fokker-Planck
equation, Eq. (7).
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