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Magnetic interactions in an ensemble of cubic nanoparticles: A Monte Carlo study
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The ensemble of spatially disordered and randomly oriented spherical monodispersed single-domain magnetic
nanoparticles with cubic anisotropy was studied by the Monte Carlo method. In the presence of dipole-dipole
interactions, the effect of both particle volume and interparticle separation was investigated with respect to the
characteristic parameters of hysteresis loops and zero field cooled and field cooled magnetization curves. The
coercive field and remanent magnetic moment were shown to depend strongly on the dimensionless parameter
β = kBT /(K1V ) (T temperature, V particle volume, K1 cubic anisotropy constant). It was revealed that strong
dipole-dipole interactions suppress both the coercive field and the remanent magnetic moment of densely packed
nanoparticles. Yet, the effect quickly diminishes with the increasing interparticle distances and becomes rather
insignificant for separations exceeding three particle diameters. The blocking temperature was found to be weakly
affected by dipolar interactions, but mainly governed via β, i.e., by the nanoparticle volume and the strength of
crystalline anisotropy. The role of dipole-dipole interactions on magnetic properties of nanoparticles was further
elucidated by a comparison of the simulation results for a single cluster with an infinite periodic arrangement of
such clusters.
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I. INTRODUCTION

Ferromagnetic nanoparticles and their assemblies belong
to systems intensively investigated for many years now. It
is mainly due to the expectations that research in this field
will result in new technologies ranging from new magnetic
materials to new methods in cancer diagnostics and treatment.
In particular, nanocomposites with ferromagnetic nanoclusters
embedded in a semiconductor matrix are promising candidates
for information storage and spin electronics applications. Such
ferromagnetic nanocomposites can be produced by controlling
the aggregation of magnetic cations in semiconductors, e.g.,
to mention ferromagnetic MnAs dots embeded in GaAs,
obtained by thermal annealing of Ga1−xMnxAs epilayers,1–3

MnN dots in the GaN lattice,4 or FeN dots in MOVPE-grown
(Ga,Fe)N.5,6 A correct understanding of magnetic properties
of rocks containing fine ferromagnetic inclusions is also of
great importance in paleomagnetic studies.7

However, despite constant progress in both experimental
and computational techniques, assemblies of ferromagnetic
nanoparticles embedded in a nonmagnetic host are not fully
understood yet. An interplay of many different phenomena
related to the size, shape, and crystal structure of particles7–16

results in crystallographic, shape, and surface anisotropy of
each particle’s magnetic properties. Additionally, due to weak
but long-range dipole-dipole interactions between atomic
magnetic moments, only the smallest particles occur to be
magnetic single domains (e.g., for fcc-Co particles8 with
diameters below, roughly, 20 nm). Furthermore, dipole-dipole
interactions between magnetic moments of particles contribute
also to the bulk magnetic properties of any macroscopic
assembly of ferromagnetic nanoparticles. As a rule, theoretical
models of composite materials concentrate on effects most
important in the investigated context, and in order to simulate
properties of systems of single-domain ferromagnetic particles
Monte Carlo simulation techniques are most often used.17–21

In this way, e.g., systems of noninteracting (no dipole-

dipole interactions present) particles with cubic magnetic
anisotropy17,18 and systems of interacting particles but with
simple uniaxial anisotropy19–25 had been investigated.

The aim of this work is to investigate in a systematic way
the role of the size of particles and their concentration for
magnetic properties of a monodispersed assembly of single-
domain particles with full cubic crystallographic anisotropy
and interparticle dipole-dipole interactions taken into account.
Within the same Monte Carlo scheme, experiments on zero
field cooled (ZFC) and field cooled (FC) samples are simulated
to estimate blocking temperatures Tb; then, with temperature
set constant, hysteresis curves are simulated to find saturation
and remanent magnetic moments Ms and Mr , respectively, as
functions of the size and concentration of particles. To better
understand the role of interparticle dipole-dipole interactions,
results obtained for a single cluster of particles are compared
to those for an infinite, periodic system of such clusters. In the
last case, Ewald summation techniques are used to properly
account for the infinite range of dipole-dipole interactions.19–21

In this way, we model an infinite heterogeneous medium
that consists of randomly distributed ferromagnetic particles
embedded in a nonmagnetic host. Furthermore, for each
considered configuration of particles, all the calculations
are repeated with the particle-particle distances multiplied
by the same factor: we start with configurations in which
closest particles touch each other (we assign the scaling factor
s.f. = 1 to this case) then use factors 2 and 8 (s.f. = 2 and
8, respectively) to rescale the distances. In this way, we are
able to compare properties of systems that differ solely in
concentration of ferromagnetic particles. All presented results
are averages over 20 independently obtained configurations.

To demonstrate the results of our model and to be as close
to experimental results as possible, the values of anisotropy
parameters as for the bulk fcc-Co are chosen. We assume all
particles to form homogeneously magnetized single domains.
Although our model is still too simple to directly compare
its quantitative outcome with experimental data, the main
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trends observed in experiments are correctly reproduced. Our
results indicate that by changing the size and concentration
of ferromagnetic particles, it should be possible to change the
system from hard to soft magnet.

The paper is organized as follows. In Sec. II A, the physical
content of the considered model is presented and the values
of anisotropy constants are discussed. In Sec. II B, the details
of the Monte Carlo procedure applied are described, while
Sec. II C presents the Ewald summation techniques used.
Section III contains results of the calculations. First, in
Sec. III A, we present simulations for a single nanoparticle.
These, on the one hand, provide a good reference for subse-
quent discussions of results for systems of such noninteracting
particles and, on the other hand, since in this case analytical
results are known,26 serve as additional tests of our numerical
procedures. Section III B contains results of simulations for
single clusters and infinite, periodic systems of such clusters.
Section IV summarizes the conclusions.

II. COMPUTATIONAL DETAILS

A. Model

Superparamagnetic cobalt nanoparticles are a complex
system in which many interactions of various types can be
observed. For this reason, the Monte Carlo (MC) technique
is the method of choice as an efficient tool for simulations of
systems with multiple degrees of freedom, for which analytical
calculations could not be performed. In order to reduce
the level of complexity, some assumptions concerning the
investigated objects must be made. First, cobalt nanoparticles
are assumed of spherical shape with a well-defined uniform
diameter and to be homogeneously magnetized. Only single-
domain nanoparticles with coherently rotating magnetic mo-
ments are considered. Therefore, the total magnetic moment
of each nanoparticle can be treated as a point dipole located
at the center of the particle. The magnitude of such a
dipole is assumed to be equal to the magnetic moment of a
bulk, uniformly magnetized piece of fcc-Co with a volume
equal to that of the considered nanoparticle. Moments of
nanoparticles are allowed to rotate according to the forces
acting in the medium, whereas the particles themselves stay
motionless.

The Hamiltonian of the described system consists then of
three terms:

H = HB + Hanis + Hdip. (1)

The first term HB describes interactions of the moments of
particles with external magnetic field and is given by

HB = −
N∑

i=1

�mi
�B, (2)

where the sum runs over all N nanoparticles with magnetic
moments �mi acted upon by external magnetic field �B. Model
nanoparticles are considered to have crystallographic structure
of bulk fcc-Co. Thus, the second term in the Hamiltonian,
which denotes energy of interactions of magnetic moments
with crystalline lattice, is given by the expression relevant for

the cubic anisotropy:

Hanis = V

N∑
i=1

[
K1

(
α2

1iα
2
2i + α2

1iα
2
3i + α2

2iα
2
3i

)

+K2
(
α2

1iα
2
2iα

2
3i

)]
. (3)

In the above formula, α1i , α2i , and α3i denote the direction
cosines of the vector of magnetic moment in the reference
frame constituted by three equivalent perpendicular crys-
tallographic axes [100], [010], and [001]. K1 and K2 are
cubic anisotropy constants of the first and the second order,
respectively, and V is the volume of a single nanoparticle.
It is known that K1 and K2 strongly depend on temperature,
however, very little suitable data can be found in the literature
on this topic. K1 and K2 values at T = 0 K extrapolated
from experimental results are both negative and amount to
K1 = −9.0 × 105 erg/cm3 and K2 = −2.0 × 105 erg/cm3.27

At the same time, some sources cite only the absolute value
of the cubic anisotropy constant of the first order being equal
to either K1 = 2.6 × 106 erg/cm3 (Refs. 9 and 28) or K1 =
2.7 × 106 erg/cm3 (Refs. 9 and 17) (giving no information
about the temperature to which these values refer). Herein, we
accept the negative sign of both constants and use higher value
K1 = −2.7 × 106 erg/cm3 in order to strengthen the effects
of cubic symmetry. To simplify our model, we neglect effects
due to the surface anisotropy of magnetization. In the case of
nanoparticles with very small diameters, magnetic moments
of atoms located near the surface make a considerable part
of the magnetic moment of the whole particle and may be
canted due to the interactions on the surface that are different
than in the bulk of the considered material. For fcc-Co
nanoparticles, surface contribution to the anisotropy energy
increases significantly9 when the diameter decreases below
5 nm and may raise the value of the anisotropy constant 2–3
times.27,29 As stated above, these effects are not included in our
model. What regards K2, the above-quoted extrapolation to 0 K
is used in the calculations for any T . As a consequence of these
assumptions, each particle has four easy axes of magnetization
coinciding with the family of equivalent 〈111〉 crystallographic
directions of fcc-Co and three difficult axes along 〈100〉-type
directions.

The last term in Eq. (1) describes dipolar interactions
between magnetic moments of individual nanoparticles. If �mi

and �mj are magnetic moments, whose positions are designated
by vectors �ri and �rj , then Hdip is a sum of dipolar interactions
of moments present in the system:

Hdip = μ0

4π

N∑
i<j

�mi �mjr
2
ij − 3( �mi�ri)( �mj �ri)

r5
ij

, (4)

where rij is the distance between the ith and j th particles and
μ0 is the magnetic permeability of the free space. Computation
of the energy of dipolar interactions is substantially more time
consuming than computations of energy for the other two
types of interactions included in the Hamiltonian. For this
reason, a commonly applied approach is to take into account
only dipole-dipole interactions within a certain shell of nearest
neighbors or disregard them completely, which allows us to
perform calculations for larger systems. In the simulations
presented in this work, the infinite range of dipole-dipole
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interactions is fully taken into account at the expense of
restricting the size of the investigated model system to only
27 nanoparticles in the central cell. For this set of particles,
periodic boundary conditions are applied to model an infinite
medium, while dipole-dipole interactions are accounted for
using the procedure of Ewald summation30 described further
in the text.

B. Monte Carlo method

Monte Carlo simulations were carried out using the stan-
dard METROPOLIS algorithm31,32 applied to a cluster of 27
randomly displaced superparamagnetic fcc-Co nanoparticles.
To produce spatial configuration, the following procedure
was implemented: first positions of the nanoparticles were
chosen randomly subject to the requirement that the surface
of each nanoparticle must touch the surface of at least
one other particle. Such a cluster of particles is achieved
in a procedure of placing the center of a nanoparticle in
a randomly selected point of a unit cube surrounding the
origin of the coordinate system, and subsequently scaling
the nanoparticle’s coordinates so that it stops overlapping
any of the previously introduced particles. The orientation
of crystallographic axes of each of the particles is then
chosen randomly. We assign the scaling factor equal to one
(s.f. = 1) to the obtained configuration. Less concentrated
arrangements are obtained via multiplying all the coordinates
of nanoparticles by a suitable number larger than one (i.e.,
changing the scaling factor to s.f. > 1). In Fig. 1, we show
one of the generated configurations for s.f. = 1 [Fig. 1(a)] and
s.f. = 2 [Fig. 1(b)] with red arrows indicating orientations of
crystallographic axes of the type 〈100〉. Once the positions
of particles and orientations of their crystallographic axes
are chosen, they remain constant within the Monte Carlo
run.

One Monte Carlo step (MC step) consists of consecutive,
independent, small random deviations of magnetic moments
of all particles; after each deviation acceptance conditions
are checked according to the prescription of the METROPOLIS

algorithm. Random deviation of a magnetic moment is
obtained by rotating its vector by 2◦ in a randomly chosen
direction. The described procedure allows us to accomplish an
arbitrary orientation of a magnetic moment with respect to the
global reference frame without favoring any special one. After
the values of the external magnetic field and temperature are
set, 10 000 MC steps are performed to thermalize the system
and then the next 10 000 MC steps are used to calculate the

FIG. 1. (Color online) The example of both simulated positions
and crystallographic frame orientations for 27 nanoparticles for two
different scaling factors. Next, further averaging is taken over 20
independent spatial configurations of nanoparticles.

average value of the magnetic moment of the system. With
this choice, we, in a sense, mimic the actual experiments in
which constant thermalization and measurement times are kept
after each change in the external parameters (i.e., temperature
or magnetic field). No special procedure is utilized in order
to assure the acceptance of a certain percentage of MC steps
since at the temperatures high enough (especially for smaller
particles) an arbitrary small deviation of a magnetic moment is
accepted with a probability almost equal to 1, and similarly, at
higher magnetic fields almost no deviations from the direction
of the external field are accepted. According to the results of
prior tests published elsewhere,33 the number of 10 000 MC
steps of thermalization and subsequent averaging, although not
sufficient to attain equilibrium, is certainly enough to obtain
stable values of blocking temperature (Tb) and parameters of
hysteresis loops such as remanent magnetic moment (Mr ) and
coercive field (Bc).

For a given spatial configuration of a system of nanoparti-
cles (Fig. 1) and their magnetic moments, each MC simulation
such as calculation of a FC/ZFC curve or hysteresis loop is
independently performed 10 times (one individual simulation
is called a MC cycle) and then additional averaging over
these 10 MC cycles is also performed. Further averaging is
taken over 20 independent spatial configurations of nanopar-
ticles. Such a procedure is applied for simulations of all
the FC/ZFC curves and hysteresis loops as it allows for
smooth computed curves and eliminating effects related with
particular configurations in our rather small system of 27
particles.

C. Ewald summation: An infinite, periodic system

Long-range interactions such as those present in a system
of magnetic dipoles are difficult to handle in numerical
calculations and substantially increase computational cost
due to quadratic growth of the number of interactions with
the number of interacting objects. Nevertheless, limiting
calculations to a small system including only 27 nanoparticles
is a solution carrying the risk of severe underestimation of the
role of dipolar interactions and causing effects associated with
a limited size of a system to show up. Therefore, an attempt
to take into account long-range dipole-dipole interactions
is made by means of a standard method known as the
Ewald summation.30 This technique introduces periodicity,
which in the case of superparamagnetic nanoparticles is
not a characteristic of a system. In this method, a cluster
of nanoparticles is put into a supercell being a cube with
a minimal edge length sufficient to accommodate a given
cluster. The initial supercell, marked by vector �n = [0,0,0],
is surrounded with a lattice of identical cells called supercell
images (denoted by vectors �n = [nx,ny,nz]) which create
spherical layers. In practice, only a limited number of such
layers can be used. Moreover, different spatial configurations
of nanoparticles correspond to supercells of slightly distinct
sizes, thus averaging over 20 of them additionally weakens
possible effects caused by artificially implemented periodicity.

Using Ewald summation, we pursue estimating the energy
of interactions of magnetic moments present in a central
supercell with one another and with the moments placed in
the supercell images. The exact expression for this energy is
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MAGDALENA WOIŃSKA et al. PHYSICAL REVIEW B 88, 144421 (2013)

the following:

E = 1

2

μ0

4π

∑
�n∈Z3

′ N∑
i,j=1

( �mi �mj

|�rij + �nL|3

− 3[ �mi(�rij + �nL)][ �mj (�rij + �nL)]

|�rij + �nL|5
)

, (5)

where the second sum runs over dipole moments in the
central supercell, the first sum over vectors �n with integer
coordinates includes all the supercells (the prime indicates
that for �n = [0,0,0] the term i = j is not present in the sum),
�mi and �mj are magnetic moments, and the vector �rij is their
relative position within the central supercell. �nL = [nx,ny,nz]
symbolizes the position of a certain supercell, while L is the
length of its edge. As was already noted, the first sum has to be
limited to a certain precisely defined number of vectors, which
could cause the emergence of effects associated with forming
a surface and appearance of a demagnetizing field. To prevent
this behavior, the energy of dipole-dipole interactions must be
supplemented with the term Esurf responsible for interactions
of the system with external continuum surrounding the finite
system of spherical layers and characterized by magnetic
permeability of the investigated medium.

The essence of Ewald summation is splitting the energy
of dipolar interactions into a short- and a long-range part (Er

and Ek , respectively). The first one is a series which can be
summed in the direct space and the second one is convergent
after transformation to the reciprocal space and in this manner
can be summed more effectively. The final expression for the
energy of dipole-dipole interactions derived in the formalism
of Ewald summation30,34,35 consists of four components:

E = Er + Ek + Eself + Esurf . (6)

The term Eself in this formula is responsible for subtraction
of the energy of self-interaction of the dipoles which must
be included in Ek before subjecting this component to Fourier
transformation to the reciprocal space. We present the resulting
expressions for individual components of the Ewald sum in the
form derived from the paper by Wang and Holm:36

Er = 1

2

μ0

4π

∑
�n∈Z3

′
N∑

i,j=1

{ �mi �mjB(|�rij + �nL|) − [ �mi(�rij + �nL)]

× [ �mj (�rij + �nL)]C(|�rij + �nL|)}, (7)

Ek = μ0

2L3

∑
�l∈Z3,�l �=0

N∑
i,j=1

1

l2
e−( πl

αL
)2

(�l �mi)(�l �mj )e2πi
�l�rij
L , (8)

Eself = − 2α3

3
√

π

μ0

4π

N∑
i=1

m2
i , (9)

Esurf = μ0

2(1 + 2μ)L3

N∑
i,j=1

�mi �mj . (10)

Functions B and C used in Eq. (7) are defined in the following
way:

B(r) = 1

r3

(
erfc(αr) + 2αr√

π
e−α2r2

)
, (11)

C(r) = 1

r5

(
3 erfc(αr) + 2αr√

π
(3 + 2α2r2)e−α2r2

)
, (12)

where erfc(x) := 2√
π

∫ ∞
x

e−t2
dt is the complementary error

function. Vectors �l introduced in Eq. (8) denote positions
of supercells of the reciprocal space. The coefficient α is a
parameter which can be adjusted to make Ewald summation
optimal for the considered system.36 In this work, the standard
value α = 5

L
was chosen.30 Two other parameters responsible

for convergence and efficiency of calculations are summation
cutoffs in the direct and reciprocal space. In most cases,
limiting summation to the central supercell (�n = [0,0,0])
for Er and summing over 100–200 vectors �l for Ek is
sufficient.30 In this work, a few values of cutoff coefficients
were investigated, however, the quoted minimal values turned
out to be the best compromise between accuracy and speed of
calculations.

In Eq. (10), μ denotes relative magnetic permeability of
the studied medium. This quantity, though initially unknown,
can be estimated iteratively in the course of simulations
(in the absence of external magnetic field) as it is related
to the standard deviation sM describing magnetic moment
fluctuations by the following formula:

μ = 1 + μ0s
2
M

3kT L3
, χm = μ − 1, (13)

s2
M = 〈M2〉 − 〈M〉2, �M =

NMC∑
i=1

�Mi (14)

in which k is the Boltzmann constant, T is temperature, χm is
magnetic susceptibility, L symbolizes the edge length of the
supercell, and �Mi is the total magnetic moment of the system
in the ith MC step included in averaging (1 � i � NMC, for
number of NMC MC steps). According to literature,30,36 the
best preliminary assumption is μ = ∞, eliminating Esurf . It
turns out that in the case of the studied system of cobalt
nanoparticles, one can confine to the first three terms of Eq. (6)
since the contribution of Esurf to the total energy is insignificant
and can be disregarded.

III. RESULTS

A. Single ferromagnetic nanoparticle

Before presenting the results for a many-particle system,
a single nanoparticle, the simplest model allowing us to
eliminate the influence of interparticle magnetic dipolar
interactions, was considered. Such a simplified model is a
good starting point for further considerations of changes in
properties of a system after including dipole-dipole interac-
tions. It also would be compared to analytical calculations
(results based herein on Boltzmann distribution), which serve
as a confirmation of correctness of the chosen model.

Simulation of each ZFC curve was always preceded by
cooling the system in zero magnetic field from 400 to 2 K.
Then, the external magnetic field was turned on and the
temperature increased from 2 to 400 K with a 1-K step in
order to calculate the ZFC curve. The simulation of the FC
curve was performed in the following way: the magnetic field
was switched on and remained constant while the temperature
was decreased stepwise from 400 to 2 K with a 1-K step. To
calculate hysteresis loops, we started from B = 0 T. Then,
the magnetic field was ramped up to B = 6 T, subsequently
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FIG. 2. (Color online) Simulations for a single nanoparticle averaged over 500 000 MC steps. Results shown are for particle diameter
d = 3, 6, and 11 nm and three different orientations of magnetic field along the crystallographic directions [100], [110], and [111]. Left panel:
FC/ZFC curves for B = 0.01 T. Right panel: hysteresis loops of a single nanoparticle versus magnetic field B for T = 2 K. Black curves
represent the corresponding equilibrium values obtained analytically on the basis of Boltzmann distribution.

was decreased stepwise to B = −6 T, to be finally increased
again to B = 6 T. Such a simulation was performed at a fixed
temperature and with a step in magnetic field value adjusted
to provide more accurate sampling in the region of magnetic
moment flipping (step = 0.05 T for |B| > 0.5 T, step = 0.01 T
for 0.05 T < |B| < 0.5 T, step 0.001 T for |B| < 0.05 T). Tb

was read from a FC/ZFC plot as the lowest temperature at
which FC and ZFC curves match each other and Mr is read
as the magnetic moment of a sample attained in a hysteresis
loop, when the external magnetic field is reduced to zero.

Figure 2 presents both results of FC/ZFC simulations (at
0.01 T) and hysteresis curves (at 2 K) calculated for a single
nanoparticle in magnetic field. The particles of diameters
d = 3, 6, and 11 nm are presented. The vector of external
magnetic field was aligned in three special crystallographic
directions: [100] (maximum of the energy of the anisotropy
Eanis), [110] (saddle point of Eanis), and [111] (minimum
of Eanis). The number of MC steps was set to NMC =
500 000 and averaging over 100 MC cycles was performed
in order to make the curves smoother. The obtained curves

are compared to analytical calculations of magnetic moment
at a given temperature and magnetic field obtained from
the Boltzmann distribution. The Boltzmann distribution gives
information about an equilibrium average value of magnetic
moment along the direction of magnetic field, not about local
energetic minima and nonequilibrium phenomena; therefore,
ZFC curves or hysteresis loops can not be obtained in this way.

It can be observed that the FC curve closely follows the
curve representing analytical calculations on the basis of the
Boltzmann distribution. Blocking temperature Tb does not
change with the direction of magnetic field for particles of
diameters 3 and 6 nm. Only for the largest nanoparticles con-
sidered (11 nm), Tb grows slightly with the external magnetic
field vector changing from the hard to the easy direction of
magnetization. It is probable that just in the case of 11-nm
nanoparticles, the changes of Eanis with rotation of magnetic
moments are large enough (compared to kBT ) to cause this
slight difference in Tb. Another remarkable observation is the
upward shift of the maximum of FC curve when magnetic
field is rotated from the hard to the easy axis of magnetization.
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The ZFC curve simulated for a single particle meets the FC
curve at lower Tb than it is observed in the case of simulations
for 27 noninteracting nanoparticles (cf. Sec. III B1). This
effect is not attributed solely to the increased number of MC
steps (in comparison with the further described system of 27
nanoparticles, for which averaging is over 10 000 MC steps
and 10 MC cycles), as preceding tests proved that for a single
nanoparticle this value is still too low to cause decrease of
blocking temperature as large as observed in our simulations.
It could rather be explained by the fact that in an assembly
of 27 nanoparticles, orientations of crystallographic axes are
distributed randomly and Tb corresponds to the temperature at
which the most strongly blocked magnetic moment overcomes
the anisotropy barrier. However, the presence of other moments
(i.e., neighboring magnetic particles), which can be unblocked
more easily, pushes the FC curve to higher values (as it can be
concluded from Fig. 2) making the conditions of free rotation
harder to fulfill for the most strongly blocked moments. As a
consequence, blocking temperature in an assembly of particles
grows.

In 2 K, the results of simulations of hysteresis loops are
in good agreement with analytical calculations on the basis
of Boltzmann distribution beyond the range of values of
B at which an open loop is observed. Coercive field and
remanence grow when the vector of magnetic field moves
from the position of the highest Eanis to the lowest. The
maximal value of the magnetic moment is achieved at lower
field if �B is closer to the easy axis of magnetization. For
particles with d = 11 nm (the corresponding Tb > 100 K �
2 K), hysteresis curves presented here are in accordance with
analytical calculations of Joffe and Heuberger26 for a system
of randomly oriented, noninteracting single-domain particles
with cubic anisotropy at T = 0 K. It can also be observed that,
like for a dilute assembly of 27 nanoparticles with negligible
dipolar interactions (cf. Sec. III B2), the reduced magnetic
remanence is almost independent of the size of a nanoparticle
at 2 K, which is consistent with the fact that in 0 K, magnetic
remanence of an assembly of noninteracting nanoparticles has
a certain constant value independent of the size.7,37

B. System of interacting ferromagnetic nanoparticles

In the following part of this paper we present FC/ZFC
curves simulated in B = 0.01 T and hysteresis loops collected
for a cluster of 27 identical fcc-Co nanoparticles. Our Monte
Carlo calculations were always organized in a way as close
to real experiments (cf., e.g., Ref. 38) as possible within
the model considered. To better investigate the role of
dipole-dipole interactions, we compare results for different
configurations for a single cluster with those for an “infinite
medium” obtained by applying periodic boundary conditions
and Ewald summations. Simulation of ZFC/FC curves and
hysteresis loops was always performed in a way already
described in Sec. III A for the case of a single ferromagnetic
nanoparticle. We consider various diameters of nanoparticles
and also various concentrations represented by a series of
different values of the scaling factor (s.f.). Several values
of temperature and external magnetic field were taken into
account. Parameters read from the resulting curves, such as
blocking temperature (Tb), remanent magnetic moment (Mr ),

FIG. 3. (Color online) ZFC/FC curves simulated at B = 0.01 T
for 6-nm nanoparticles and various scaling factors (s.f. = 1, 2, 8).
Single-cluster calculations are marked with “c” (solid lines), while
results for the infinite (i.e., periodic) system of such clusters are
marked with “p” (dashed lines). 27 nanoparticles, 10 000 MC steps.

and coercive field (Bc) are examined for different diameters (3,
6, and 11 nm), scaling factors (s.f. = 1, 1.2, 1.5, 2, 3, 4, 5, 6, 7,
8), and varying external magnetic field B (Tb) and temperature
T (Mr and Bc).

1. ZFC/FC experiment

Simulations for three characteristic values of scaling factor
are presented. These values of s.f. determine the diminishing
contribution of dipolar interactions to the overall energy
(s.f. = 1 corresponds to the strongest possible dipolar
interactions, s.f. = 2 refers to lower but still non-negligible
contribution, and finally for s.f. = 8 interactions of magnetic
dipoles can be disregarded). From Fig. 3 it can be noticed
that for the most sparsely distributed nanoparticles (s.f. = 8),
there is no visible difference between calculations with and
without applying periodic boundary conditions and Ewald
summation procedures (curves s.f. = 8,p and s.f. = 8,c,
respectively). In the case of higher concentrations, we observe
a general increase in magnetic moment of FC/ZFC curves that
follows adding periodic boundary conditions. The increase is
the stronger the more densely the particles are packed: for
periodic calculations with s.f. = 1, the magnetic moment
attained in 2 K becomes (respectively) twice as high and
half as much for nonperiodic calculations. At the same time,
increasing concentration causes lowering of the values of
magnetic moment of the simulated curves. One possible
explanation of this phenomenon is based on the analysis of
the influence of short-range dipolar interactions. The energy
associated with the short-range part of dipolar interactions
changes with an increasing scaling factor but is not effected
by using the Ewald sum as a cutoff radius in the direct space
used in the calculations rc = 0. In general, a system of Co
nanoparticles is characterized by ferromagnetic behavior and
additional long-range dipolar interactions added by the Ewald
sum strengthen its ferromagnetic properties. However, if we
consider a set of 27 nanoparticles, the influence of a limited size
of the system on the role of short-range interactions (surface
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FIG. 4. (Color online) ZFC/FC curves simulated at B = 0.01 T
for the concentration corresponding to s.f. = 8. Vertical arrows
indicate values of Tb for nanoparticles with diameters equal to 3,
6, and 11 nm. 27 nanoparticles, 10 000 MC steps.

effects) starts to become important. This effect is more intense
for smaller s.f. since in this case short-range interactions
are stronger. The other explanation can be the fact that the
stronger short-range dipole-dipole interactions block rotation
of moments of nanoparticles more effectively. Therefore, in
the course of FC/ZFC or hysteresis curve simulation the next
minimum to which a magnetic moment jumps after a series of
MC steps is more determined by short-range interactions than
by external magnetic field and, consequently, the magnetic
remanence of a system with stronger short-range interactions
is decreased.

The specified trends are well visible in Fig. 3 which depicts
FC/ZFC curves for various concentrations calculated with
and without using the Ewald summation procedure for 6-nm
particles. This figure also shows that the variability of blocking
temperature with the scaling factor is rather insignificant,
particularly if compared to a huge increase in Tb with the
particles’ size presented in Fig. 4.

Generally, for the lowest temperatures (i.e., below Tb), FC
curves are characterized by a high, roughly constant value of
magnetic moment and its drop before crossing the blocking
temperature. On the other hand, ZFC curves in 2 K start
from a low value of magnetic moment along the external
magnetic field, however, full thermalization to zero of this
component of magnetic moment is hardly ever successful.
The divergence from zero magnetic moment observed at low
T in the ZFC curve is larger for smaller nanoparticles (as even
in T = 2 K thermal motions of smaller particles are strong
enough to rotate their magnetic moments and induce a small
magnetization along the direction of external magnetic field)
and lower concentrations (since for higher concentrations the
short-range component of dipolar interactions is stronger and
causes stronger frustration in the system of magnetic moments,
which makes magnetization more susceptible to the influence
of external magnetic field in T = 2 K). Frustration of magnetic
moments makes the part of the ZFC curve for T < Tb less
smooth for s.f. = 1 than for s.f. = 2 or s.f. = 8, because of abrupt
changes of magnetization resulting from flips of individual

moments. At the blocking temperature, the maximum of the
ZFC curve is attained and then the FC and ZFC curves match
each other, and for T > Tb we observe only one curve which
describes freely rotating moments of a superparamagnetic
material. After reaching Tb, the magnetic moment of the
system starts to decrease with growing temperature. The
reduction of magnetization is the most rapid for particles with
smaller magnetic moments. Blocking temperatures for a given
particle size are very similar for different concentrations of
nanoparticles and for single clusters and infinite systems.

For a given configuration of particles, in the case when the
closest particles touch each other (s.f. = 1), all three parts of
the Hamiltonian of the system [cf. Eq. (1)] are proportional to
the volume V of a single particle. Only the Hdip term decreases
with increasing value of s.f. (i.e., particle-particle distance). On
the other hand, at temperatures high enough, the considered
system of single-domain particles behaves like a paramagnet
obeying the simple Curie law. Therefore, the natural graphical
method to demonstrate the role of interactions present in a
system of nanoparticles is based on the analysis of the product
of temperature and magnetic moment (derived from FC/ZFC
simulation) versus temperature with both quantities displayed
as reduced variables, where reduced blocking temperature is
kBTb/2|K1|V , V is volume of a nanoparticle, and K1 denotes
the first anisotropy constant of fcc-Co. It allows us to determine
when the dependence of magnetic moment of a sample starts
to follow the simple Curie law, as in a paramagnetic material.
Such a graph is presented in Fig. 5. In reduced variables, results
of calculations for the same concentration but different sizes
(and in the same ranges of nonreduced temperatures) appear
as fragments of the same curve. Curves for 11- and 6-nm
nanoparticles are superimposed on the curve for the diameter
3 nm and the limits of this superposition (corresponding to
T = 400 K) are marked by vertical lines. Separate curves
are observed only when scaling factors are different. The
most characteristic feature of such a curve is its horizontal

FIG. 5. (Color online) The product of reduced FC/ZFC magnetic
moment and reduced temperature (M/Ms · kBT /2|K1|V ) vs the
reduced temperature. Curves for diameters 11 and 6 nm superimposed
on curves for 3-nm nanoparticles (limits of superposition correspond-
ing with T = 400 K are marked by vertical lines). Tints of magenta:
s.f. = 1, tints of green: s.f. = 2, tints of blue: s.f. = 8. 27 nanoparticles,
10 000 MC steps.
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FIG. 6. (Color online) Plot of reduced blocking temperature
(TbkB/2|K1|V ) in B = 0.01 T versus scaling factor (s.f.). Sizes of
nanoparticles: 3, 6, and 11 nm. 27 nanoparticles, 10 000 MC steps.

course for temperatures high enough to make the role of
anisotropy and dipole-dipole interactions nonsignificant and so
that magnetic moments could rotate freely as in a paramagnetic
material. Such a phenomenon, despite high fluctuations, can
be observed for all concentrations considered. As it can be
seen, the reduced temperature at which the curve for s.f. = 8
becomes approximately horizontal (if the noise is disregarded)
is only slightly lower than that for s.f. = 2. For the most
sparsely packed nanoparticles, dipole-dipole interactions are
negligible and the temperature at which ZFC/ZFC curves start
to resemble a simple Curie law as for a paramagnetic material
should be the lowest. For s.f. = 2, this temperature is only
slightly higher because dipolar interactions are still quite weak.
However, as far as the highest concentration is concerned,
flattening of the curve is observed at a significantly higher
temperature owing to the stronger role of dipolar interactions.
According to the curves in Fig. 5, in the range of temperatures
considered in this paper (T < 400 K), it is impossible to
observe Curie-type character of FC/ZFC curves for 11-nm
particles and for 6-nm particles in the case of s.f. = 1.

Figure 6 presents how the reduced blocking temperature
depends on the concentration for nanoparticles with diameters
of 3, 6, and 11 nm in the external magnetic field B = 0.01 T.
As a general rule, variation in the Tb with the scaling factor
is rather small compared to the changes caused by increasing
nanoparticles’ size. Therefore, scaling of Tb and presenting its
reduced value is necessary to highlight the variability of this
parameter for smaller nanoparticles. It also allows us to reveal
the different character of the dependence of Tb for s.f. � 2
observed for calculations for a single cluster and for infinite
medium (i.e., with and without periodic boundary conditions
and Ewald summation procedure). In the case of an infinite
system, a slight increase of blocking temperature with the
decreasing concentration (i.e., growing s.f.) can be observed
for s.f. � 4 for nanoparticles of diameter, respectively, 3, 6,
and 11 nm. Simultaneously, in simulations for a single cluster
of particles of sizes 6 or 11 nm, there appears a small minimum
of Tb for s.f. = 1.5 with Tb decreasing between s.f. = 1 and
1.5 and further increasing between s.f. = 1.5 to 3 and then
leveling off. For the smallest nanoparticles, Tb is constant for

s.f. � 2, then slightly grows and again remains constant in spite
of the decreasing concentration. Although there appear certain
tendencies in the dependence of Tb on concentration, it must
be stressed that in nonreduced variables these tendencies can
be noticed only for the largest particles, while the influence of
particles’ size on Tb prevails in all the remaining trends. This
suggests that when the system of magnetic nanoparticles with
cubic anisotropy is dilute enough, the energetic contribution
due to magnetocrystalline anisotropy is dominant in the case
of blocking of magnetic moments and surpasses the influence
of dipolar interactions substantially while, as stated above,
the effects of dipole-dipole interactions are visible only for
s.f. � 3.

Blocking temperatures decrease rather fast with increasing
magnetic field and in most cases for B = 0.2 T blocking is
not observed. The values of the blocking temperature for
a given size of nanoparticles for various concentrations are
quite similar, which confirms the dominating influence of
magnetocrystalline anisotropy on superparamagnetic behavior
of Co nanoparticles. The manifestation of negligible impact
of dipolar interactions in systems with low concentrations is
the fact that for s.f. = 8, plots of reduced Mr and Bc versus
reduced temperature are approximately identical as well as Tb

for different magnetic fields.

2. Hystereses

Typical hysteresis loops calculated at T = 2 K are presented
in Figs. 7 and 8. For larger scaling factors, the increase of Bc

with growing size becomes more significant, while for Mr the
tendency is rather opposite, as it can be concluded from Fig. 7.
The contribution of more long-range dipole-dipole interactions
in an infinite system results in a visible broadening of the loops
for s.f. lower or equal to 2 (the effect strengthens with growing
concentration) and renders the growth of magnetic moment
in a hysteresis loop with the increase of magnetic field faster
(Fig. 8). In the case of s.f. = 2, hysteresis loops become much
broader compared to s.f. = 1 and the effect of applying periodic
boundary conditions for this concentration is rather small.

FIG. 7. (Color online) Hysteresis loops simulated in T = 2 K,
s.f. = 8, infinite system. Sizes of nanoparticles: 3, 6, and 11 nm. 27
nanoparticles, 10 000 MC steps.
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FIG. 8. (Color online) Hysteresis loops simulated in T = 2 K for
11-nm nanoparticles and various scaling factors (s.f. = 1,2,8). Single-
cluster calculations are marked with “c” (solid lines) and results for an
infinite system are marked with “p” (dashed lines). 27 nanoparticles,
10 000 MC steps.

The temperature T = 2 K is low enough to observe
hysteresis in the case of all the particle diameters and scaling
factors discussed in this work. Nevertheless, for nonperiodic
calculations and s.f. = 1 in the case of the smallest nanoparti-
cles coercive field and remanence are so low that hysteresis can
hardly be noticed (Figs. 9–12). For diameters 6 and 11 nm,
Bc and Mr are slightly larger, and their increase depends on
concentration. The coercive field Bc is calculated according
to the following procedure: in the course of hysteresis loop
simulation, when magnetic field is decreased, at some value of
magnetic field, the magnetic moment of the system changes
sign from positive to negative. We denote by B− the zero
of a straight line going through the following points: the
last point for which the magnetic moment is positive and
the first point for which the sign of the magnetic moment
is negative. Similarly, when the magnetic field is increased,
the total moment of the system changes its sign from negative
to positive and B+ symbolizes the zero of a line going through

FIG. 9. (Color online) Plot of reduced remanence (Mr/Ms) in
T = 2 K versus scaling factor (s.f.). Sizes of nanoparticles: 3, 6, and
11 nm. 27 nanoparticles, 10 000 MC steps.

FIG. 10. (Color online) Plot of coercive field (Bc) at T = 2 K
versus scaling factor (s.f.). Sizes of nanoparticles: 3, 6, and 11 nm.
27 nanoparticles, 10 000 MC steps.

the last point with negative and the first point with positive
magnetic moment. The coercive field Bc is then calculated
as Bc = (B+ − B−)/2, and it can be slightly negative in the
simulations in which the hysteresis loop does not open. Taking
into account more long-range interactions makes Mr and Bc

for 3-nm nanoparticles and s.f. � 2 larger (Figs. 9 and 10). As
far as larger particles are concerned, the parameters Mr and Bc

change less significantly; the most visible effects in this case
are slightly steeper fragments of a hysteresis curve associated
with magnetic moment flipping.

Figures 9 and 10 present, respectively, how the reduced
magnetic remanence Mr/Ms (Ms , saturation magnetic mo-
ment) and coercive field Bc at the temperature of 2 K
depend on concentration for nanoparticles with diameters 3,
6, and 11 nm. It can be seen that s.f. = 2 corresponds to
the lowest concentration for which there occur differences

FIG. 11. (Color online) Plot of reduced remanent magnetic
moment Mr/Ms versus reduced temperature kBT /2|K1|V . Sizes
of nanoparticles: 3, 6, and 11 nm. S.f. = 1,2,8. Single-cluster
calculations are marked with a solid cyan line and periodic system
calculations are marked with a dark blue dashed line. For a given
diameter, consecutive points are marked for the values of nonreduced
temperatures in the sequence 2, 10, 50, 100, 200, and 300 K. 27
nanoparticles, 10 000 MC steps.
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FIG. 12. (Color online) Plot of coercive field (Bc) versus reduced
temperature kBT /2|K1|V . Sizes of nanoparticles: 3, 6, and 11 nm.
S.f. = 1,2,8. Single-cluster calculations are marked with a solid cyan
line and periodic system calculations are marked with a dark blue
dashed line. For a given diameter, consecutive points are marked for
the values of nonreduced temperatures in the sequence 2, 10, 50, 100,
200, and 300 K. 27 nanoparticles, 10 000 MC steps.

between the results for a single cluster and for an infinite
system. These discrepancies, although not very large, are
better visible for larger nanoparticles and in the case of higher
concentrations, that is, for systems with stronger contribution
of the dipole-dipole interactions to the overall energy. For a
3-nm nanoparticle, there is a small difference between the
results obtained for an infinite system and for a single cluster.
When the diameter increases to 6 or 11 nm, allowing for more
long-range dipole-dipole interactions by means of periodic
boundary conditions and the Ewald summation procedure
causes a slight increase of remanence and coercive field for the
cases of s.f. � 2. A similar phenomenon has been observed
in calculations for systems of magnetic particles with uniaxial
anisotropy.39,40

Both Mr and Bc strongly increase with growing s.f. for
s.f. � 3 with slightly higher values of Mr and Bc for an
infinite system than for a single cluster of nanoparticles, as
the consequence of including additional long-range dipolar
interactions. For lower concentrations, i.e., for s.f. � 3, no
further increase of Mr and Bc with s.f. and no differences
between periodic and nonperiodic computations are observed.
The dependencies of Mr or Bc versus s.f. are quite similar for
large-size nanoparticles, while for the smallest nanoparticles a
small minimum appears on the plot of Bc for s.f. = 1.2. Due
to the temperature T = 2 K chosen for our calculation, we
observe size dependence of both Mr/Ms and Bc on particle
size. This temperature is close to (but smaller than) Tb for 3-nm
particles and much smaller than TB values for the larger ones.

It was shown7,21,37 that for an assembly of noninteracting
superparamagnetic particles with cubic anisotropy and K1 < 0
in zero temperature Mr = 0.866. In the case of s.f. = 8 and
T = 2 K, variation of Mr for nanoparticles with various sizes
becomes very small and magnetic remanence takes values in
the range of 0.825–0.844, approaching the specified limit of
Mr = 0.866. It may also be noticed that remanence decreases
with growing concentration. This effect is rather modest if the

cases of s.f. = 8 to 2 are compared, but much more pronounced
as far as s.f. = 1 is concerned. As it was already stated, this
decrease is ascribed to the increasing contribution of the short-
range part of dipolar interactions. Similarly, the growth of Mr

and Bc for s.f. � 2 after applying periodic boundary conditions
can be attributed to the long-range part of the dipole-dipole
interactions taken into account by Ewald summation.

3. Universal dependence

In the graphs presenting reduced Mr and Bc versus
KBT/2|K1|V (Figs. 11 and 12) reduced temperature is
used since in reduced variables curves for various sizes of
nanoparticles should overlap. For clarity, all the calculated
results are presented only for the 11-nm particles and the values
computed for larger reduced T for smaller nanoparticles are
not displayed. Mr and Bc were determined for such values
of reduced T which correspond in turn to 2, 10, 50, 100,
200, and 300 K. The description of the calculations is made
with reference to the values of nonreduced temperature and
the points not displayed in the graphs are also considered.
In each of the two figures, both periodic (dark blue dashed
line) and nonperiodic calculations (cyan solid line) are shown.
In fact, in the graphs of reduced Mr and Bc versus reduced
T , computational points for 3- and 6-nm particles lie on the
relevant curves connecting the points obtained for 11-nm
particles. Unlike for blocking temperature, in the case of
reduced Mr , there is a certain increase of values of this quantity
after including more dipole-dipole interactions by introducing
periodic boundary conditions (Fig. 11). This increase is visible
for both s.f. = 2 and for the highest achievable concentration
corresponding to s.f. = 1. In the case of s.f. = 8, using periodic
boundary conditions and Ewald summation technique has no
influence on the values of Mr , which is the next proof for the
statement that the concentration of nanoparticles is low enough
to treat them as a system of noninteracting magnetic dipoles.

The coercive field (Bc) shown in Fig. 12 varies as a function
of temperature in a similar manner to magnetic remanence.
It also grows after adding periodic boundary conditions or
increasing interparticle distances. The width of a hysteresis
loop diminishes significantly with the increase of temperature.
The temperature at which Bc and Mr become close to zero is
dependent on the nanoparticles’ size determining the blocking
temperature at which hysteresis vanishes. In the case of the
diameter equal to 3 nm, starting from the temperature of about
10 K, Mr and Bc amount to zero. For a larger diameter of
6 nm, hysteresis is not observed from the temperature of 50 K.
In the case of the largest, 11-nm nanoparticles, free rotation of
magnetic moments is observed when the temperature reaches
200 or 300 K. The temperature at which Mr and Bc become
equal to zero is barely dependent on the scaling factor: only
if s.f. = 8 these two quantities fall to zero at slightly higher
temperature. It can be concluded that by manipulating the size
of nanoparticles or their concentration, one can regulate their
hysteresis loop and create a material with adjustable magnetic
properties.

IV. CONCLUSIONS

Monte Carlo simulations of FC/ZFC curves and hys-
teresis loops were presented for a system of ferromagnetic
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nanoparticles. Monodispersed, uniformly magnetized, spheri-
cal nanoparticles with cubic anisotropy, randomly distributed
and interacting with one another by dipole-dipole interaction,
were assumed. Calculations were performed, for example,
of fcc-Co nanoparticles. The main goal of the described
study is to determine the influence of magnetic dipole-dipole
interactions on magnetic properties of the model system at
finite temperatures. Calculations were performed for a single
cluster of 27 nanoparticles with varying interparticle distances,
which allows modification of the strength of magnetic dipolar
interactions from corresponding to a densely packed, strongly
interacting system up to well-separated noninteracting parti-
cles. On the other hand, application of periodic boundary con-
ditions by using Ewald summation allowed us to account for
the role of long-range magnetic dipolar interparticle interac-
tions. The magnetic field dependence of blocking temperature
and the temperature dependence of magnetic remanence and
coercive field, as well as variability of these parameters with
changing diameter and concentration of nanoparticles, was
also investigated. In order to make a reference to a physical
theory, Monte Carlo simulations for a single nanoparticle
were supplemented with relevant analytical curves obtained
on the basis of Boltzmann distribution. Such calculations
performed in the absence of interparticle interactions are also
helpful in the description of the remaining contributions to
the total energy of a system. The most important observation
is the increase of reduced magnetic remanence and coercive
field with growing nanoparticle diameter and/or decreasing
concentration of nanoparticles. The last feature reflects the
importance of dipole-dipole interparticle interaction for dense
systems (s.f < 3). Consequently, it is predicted that by
manipulating the size and/or concentration of nanoparticles,
one should be able to obtain nanoparticle systems with tailored
properties from hard to soft magnets. Next, the importance of
long-range magnetic dipole-dipole interactions is confirmed,
as it was observed that applying periodic boundary conditions
increases magnetic moment and widens hysteresis loops in
the systems with non-negligible interparticle dipole-dipole
interactions. On the other hand, increase of short-range
dipole-dipole interactions (by making the system more dense
and shortening interparticle distances) leads to the opposite

effect, i.e., decrease of magnetic moment and coercive field.
In the case of concentrations for which magnetic dipolar
interactions can be neglected, application of periodic boundary
conditions has no effect and reduced magnetic remanence
at low temperatures approaches the 0-K limit described in
the literature.37 As far as blocking temperatures are con-
cerned, variation of concentration or application of periodic
boundary conditions results in small and irregular changes,
while increasing the size of nanoparticles considerably raises
Tb. It can be thus affirmed that blocking temperature is
predominantly influenced by magnetocrystalline anisotropy
and hardly affected by interparticle interactions. It is obvious
that the presented model, although advantageous as compared
to previous ones, is still too simplified to be directly compared
to any experimental results. In order to use it for such a
purpose, additional effects should be included, i.e., proper
distribution of nanoparticle sizes in a sample or decrease of
magnetic moment of a nanoparticle due to surface effects.
It should be also noted that the investigated system is quite
small and the parameters of Monte Carlo simulations are
rather suited for the purpose of saving computational time,
not for achieving high accuracy of calculations. Considering
the discrepancy among values of anisotropy constants for
fcc-Co found in the literature, the values used in this work
are unlikely to provide a correct fit of computational results
to the experimental data for this particular system. However,
the presented simulations allow us to predict some general
properties of the system without attempting to estimate them
quantitatively. For this purpose, the chosen set of parameters
seems to be sufficient. In the literature, there are several
examples of theoretical investigations of systems of interacting
magnetic particles with uniaxial anisotropy.21,41 However,
according to our knowledge, similar computational studies
for a system with full cubic anisotropy and interparticle
interactions at finite temperature have not been published yet.
We believe that the reported results can be of interest from both
a theoretical and an experimental point of view and that they
can be supportive in the interpretation of magnetic behavior of
systems with cubic magnetocrystalline anisotropy. They can
be also inspiring in engineering new nanocomposite magnetic
materials.
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