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High-temperature noncollinear magnetism in a classical bilinear-biquadratic Heisenberg model
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Motivated by the magnetically driven high-temperature ferroelectric behavior of CuO and the subsequent
theoretical efforts to understand this intriguing phenomenon, we study a bilinear-biquadratic Heisenberg model
on a two-dimensional square lattice, which possesses some of the key features of the models proposed for CuO.
We use a combination of variational calculations and classical Monte Carlo simulations to study this model at
zero and finite temperatures. We show that the biquadratic coupling plays a crucial role in selecting the magnetic
ground state. More importantly, a noncollinear magnetic state is found to be stable at finite temperatures. Our
study demonstrates that higher-order interaction terms are of crucial importance if the stronger interactions
together with the lattice geometry combine to generate a near degeneracy of magnetic states.
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I. INTRODUCTION

Materials exhibiting more than one ferroic ordering phe-
nomena in a single phase are defined as multiferroics.1 Over
the last few years, magnetoelectric multiferroics have received
a special attention from solid-state and materials researchers
for the exciting possibility of designing powerful memory
devices, where an electrical writing and a nondestructive
magnetic reading is allowed.2–5 It was soon realized that
there is a scarcity of materials that simultaneously exhibit
ferroelectricity and ferromagnetism.6,7 In fact, it appeared
that a ferroelectric order rarely coexists with any long-range
magnetic order.8,9 This was attributed to the fact that ferro-
electric materials typically have a d0 electronic configuration,
whereas it is the partial filling of d levels that is responsible
for magnetism in a large number of compounds. Following
this observation researchers started to search for materials that
are exceptions to this rule. Over the course of last decade, the
original definition of magnetoelectric multiferroic order has
been extended to include materials which exhibit ferroelectric
order together with any long-range magnetic order.10 Within
this new definition of multiferroics, a large class of new
multiferroic compounds have been discovered, which range
from transition-metal oxides to organic crystals.11–17 On the
theoretical side, many new mechanisms were proposed that
allow the ferroelectric order to coexist with a magnetic
order.18–21

For practical applications, the multiferroic phase should
be stable at room temperature, and the coupling between
ferroelectric and magnetic order parameters should be strong.
Although, the most well known multiferroic, BiFeO3, has large
magnetic and ferroelectric ordering temperatures, the coupling
between the two order parameters is rather weak.22 This is due
to the fact that the magnetism in BiFeO3 comes from the
Fe, whereas ferroelectricity arises due to off centering of the
Bi ions. On the other hand, strong magnetoelectric coupling
was discovered in some systems with a spiral-type long-range
magnetic order, where the ferroelectricity is induced by the
spin-spiral states.23 Therefore, one way of ensuring a strong
coupling between magnetic and ferroelectric order parameters
is to look for materials where ferroelectricity emerges as a
consequence of some magnetic order, such as the spin-spiral
states. There are various mechanisms that can lead to the

existence of such magnetic states, e.g., magnetic frustration
in strongly correlated Mott insulators, the Dzyaloshinskii-
Moriya (DM) interactions, etc.24,25 Typically, such spin-spiral
states are stable only at low temperatures. Cupric oxide
(CuO) emerges as a promising candidate, which possesses the
two main features of an ideal multiferroic: (i) high ordering
temperature and (ii) magnetism induced ferroelectricity.26–28

A number of theoretical investigations have been reported
since the discovery of high-temperature ferroelectricity in
CuO.29–32 It has been established that the magnetic interactions
in CuO are rather complicated, and lead to competing ground
states. There is still no consensus on the experimental values of
the various exchange parameters.33–35 Similarly, the outcome
of the theoretical calculations of the exchange parameters
depend on the details of the method used.29,32,36 Nevertheless,
most theoretical models point to a near degeneracy of magnetic
states in this system. Giovannetti et al. proposed that the
competition between a small uniaxial anisotropy and weak DM
interactions leads to the observed experimental behavior of the
ferroelectric polarization.29 The model was further improved
by Jin et al. by explicitly including the lattice parameters
in the microscopic Hamiltonian.30 Both these studies point
towards a crucial role played by entropic effects in stabilizing
the noncollinear magnetic phase at high temperatures.

In this work we explore some features of the magnetic
ordering phenomena in CuO without taking into account the
detailed crystal structure of the material. In order to keep the
scope of this work general we use a simple two-dimensional
(2D) square lattice with nearest- and next-nearest-neighbor
magnetic exchange couplings. The model does not include an
explicit symmetry-breaking term such as a DM interaction,
however it includes higher-order spin-spin interaction terms.
Although the strength of the higher-order terms is much weaker
than the Heisenberg exchange terms, the former become im-
portant due to near degeneracy of states in the pure Heisenberg
model. We present extensive Monte Carlo simulation results
on a 2D bilinear-biquadratic (BLBQ) Heisenberg model.
We find that the biquadratic coupling drives a first-order
phase transition between a collinear up-up-down-down type
antiferromagnet (denoted as EAF) and a spiral antiferromagnet
at low temperatures. At finite temperatures the noncollinear
phase is found to be more stable compared to the collinear
phase. This leads to a sequence of phase transitions from a
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high-temperature paramagnetic state to a noncollinear state,
and finally to a collinear EAF phase at low temperatures. This
is precisely the behavior reported in the experimental studies
of CuO. We find that a pure electronic Hamiltonian is sufficient
to describe the magnetism in CuO provided higher-order
interaction terms are taken into account. While our model study
is of general importance for magnetic materials and models,
the conclusions are of particular relevance to the magnetic and
ferroelectric ordering phenomena in CuO.

The rest of the paper is organized as follows. In Sec. II
we describe possible extensions of the standard Heisenberg
model for spin-1/2 and spin-1 magnetic moments. We discuss
the relevance of these models and their relation with each
other in the classical limit. Section II ends with a description
of the variational, and Monte Carlo (MC) simulation methods
used in this work. Section III begins with a discussion of
the ground-state phase diagrams of the two models using
variational calculations. Next, a comparison between varia-
tional calculations and MC simulations at low temperatures
is presented. Finally, the finite-temperature behavior of the
BLBQ model is discussed. The main focus is on the presence of
a noncollinear magnetic phase with finite electric polarization
at high temperatures. Conclusions are presented in Sec. IV.

II. MODEL AND METHOD

We begin with a Heisenberg Hamiltonian on a square lattice
given by

H0 = J1

∑
〈ij〉

Si · Sj + J2a

∑
〈〈ij〉〉a

Si · Sj + J2b

∑
〈〈ij〉〉b

Si · Sj .

Here, J1 denotes the nearest-neighbor (nn) Heisenberg ex-
change coupling and J2a , J2b are the next-nearest-neighbor
(nnn) couplings as shown in Fig. 1(a). The single and double
angular brackets denote the sum over nn and nnn sites, respec-
tively. The subscripts a and b on the summation indices specify
the two inequivalent nnn directions. For most spin systems
with square lattice geometry, one is typically interested in
the parameter regime given by, |J2a| ∼ |J2b| � |J1|. However,
another interesting limit of this model is realized when J2a

and J2b have opposite signs and are much larger in magnitude
compared to |J1|. The corresponding model for Ising spins was
recently analyzed by A. Kalz and G. Chitov, and the existence

FIG. 1. Schematic representation of various interactions that
constitute the model Hamiltonians H1 and H2 discussed in the text.
(a) The nearest-neighbor, and the next-nearest-neighbor Heisenberg
exchange couplings on a square lattice, (b) the four-spin ring-
exchange coupling in Hamiltonian Eq. (2), and (c) the biquadratic
coupling in Hamiltonian Eq. (3).

of an unusual topological floating phase was reported.37 It is
easy to see that in this limit, the magnetic system gets divided
into two sublattices, which interpenetrate each other. J2a and
J2b ensure that each sublattice has a well defined order at
low temperatures, but the nn Heisenberg coupling J1 is not
sufficient to generate a long-range magnetic order. Therefore,
in this parameter regime higher-order spin-spin interaction
terms become relevant. Interestingly, the magnetic model
for CuO corresponds to a similar sublattice order in three
dimensions where each sublattice has a well defined order but
the magnetic ground state is degenerate and additional weaker
couplings, such as the magnetocrystalline anisotropy and
the Dzyaloshinskii-Moriya (DM) interaction, are considered
important. However, the higher-order spin-spin interactions
should be given equal importance in this regime. Proceeding
with this viewpoint, our first extension of the Heisenberg
Hamiltonian H0 is achieved by including a four-spin ring-
exchange interaction, leading to the Hamiltonian,

H1 = H0 + K
∑

[ijmn]

[(Si · Sj )(Sm · Sn)

+ (Si · Sn)(Sj · Sm) − (Si · Sm)(Sj · Sn)]. (1)

In the above, K denotes the strength of the ring-exchange
coupling involving four sites [see Fig. 1(b)]. Starting with
a one-band Hubbard model at half-filling, the second-order
perturbation theory in hopping leads to the Heisenberg
exchange.38 If we go beyond the second order, the next
contribution is from the fourth-order term leading to the
ring-exchange coupling.39 Therefore, H1 is the microscopic
Hamiltonian for spin-1/2 moments on a square lattice. If the
magnetic moments are spin-1, then the next order term is a
biquadratic one involving two sites.40 Note that a biquadratic
coupling term in the effective classical action can also arise as a
result of quantum fluctuations even in a spin-1/2 system.41 We
define our second Hamiltonian, H2, by including a biquadratic
term to H0. The Hamiltonian is given by

H2 = H0 + K ′ ∑
〈ij〉x

(Si · Sj )2. (2)

Here, K ′ is the coupling strength of the biquadratic interaction,
which we have taken to be present only on the nn bond along
the x direction [see Fig. 1(c)].

H1 (H2) is the spin Hamiltonian containing interaction
terms up to fourth order for spin-1/2 (spin-1) magnetic
moments. However, in the classical limit these two models
have many similarities. This is particularly easy to recognize
when J2a and J2b are stronger couplings compared to J1. The
term inside the square brackets in Eq. (2) can be rewritten
as [(Si · Sj )(Sm · Sn) − (Si × Sj ) · (Sm × Sn)]. Now given that
the nnn couplings are much stronger, at low temperatures Si

(Sj ) is either parallel or antiparallel to Sm (Sn), depending on
the sign of J2a (J2b). Making the substitutions Sm → Si and
Sn → Sj , we can rewrite H1 as

H1 = H0 + K
∑
〈ij〉

[(Si · Sj )2 − (Si × Sj )2]. (3)

We finally note that (Si × Sj )2 = |S|4 − (Si · Sj )2, and
therefore the two models H1 and H2 are identical up to an
additive constant and the sign of the coupling constant. The
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equivalence of these two Hamiltonians is valid only in the
classical limit, and at temperatures scales much smaller than
the nnn coupling strengths.

The BLBQ Heisenberg model has been well studied as
a quantum spin-1 Hamiltonian on various lattices.42–44 The
model has also been studied recently in the classical limit,45

where the focus was on the existence of noncoplanar phases,
and the ground-state degeneracies on a triangular lattice. There
is also a study on pyrochlore lattice in the context of Cr
spinels and their magnetic properties.46 In addition, there have
been numerous studies trying to understand the properties of
quantum spin chains using a variety of theoretical methods.47

In this paper, we study the BLBQ Heisenberg Hamiltonian as
a candidate for noncollinear magnetism at high temperatures
in systems where the pure Heisenberg term leads to degenerate
ground states.

In the next section we compare the classical ground-state
phase diagrams of the two Hamiltonians, H1 and H2. The para-
meters of the models are, J1, J2a , J2b, and K(K ′). Since we
are interested in the regime where nnn couplings are stronger
than nn ones, we set J2a = 1 as our energy scale, and all other
couplings and energies are therefore expressed in terms of J2a .
In order to compare the ground-state phase diagrams of the
two models described by H1 and H2, we use a variational
scheme. We consider planar spiral spin states with spiral
wave vector q = (qx,qy). The orientation of the magnetic
moment at lattice site ri is given by, Si = |S|( cos(q · ri),
sin(q · ri),0). Such spiral states contain the conventional
magnetically ordered states, such as the ferromagnet, staggered
antiferromagnet, stripe-type antiferromagnet and orthogonal
state as limiting cases (see Fig. 2). We minimize the total
energy of a general spiral state for different values of model
parameters. In addition, we include two more states in our
minimization scheme. These are the so-called flux state and

FIG. 2. Schematic view of various magnetically ordered states
considered in the variational calculations. A general spiral phase
is not shown here. The ferromagnet, antiferromagnet, stripe, and
orthogonal phases are limiting cases of spiral states with qx = qy = 0
(FM), qx = qy = π (AFM), qx = 0,qy = π (stripe), and qx = qy =
π/2 (orthogonal). The flux phase and the up-up-down-down type
antiferromagnet, EAF, do not belong to the set of spiral states.

the up-up-down-down type antiferromagnet (EAF) state (see
Fig. 2). We make use of MATHEMATICA for performing the
variational minimization described above.

Classical Monte Carlo simulations are employed for the
finite-temperature study of the BLBQ Hamiltonian.48 The
standard Markov chain Monte Carlo method is used with
the METROPOLIS algorithm for configuration updates.49 Single-
spin update moves are performed by randomly selecting a pair
of polar and azimuthal angles for a given spin. The move is
accepted with the Boltzmann probability e−�E/(kBT ), where
�E is the energy difference between the new and the old
configurations, T is the temperature and kB is the Boltzmann
constant. Following the standard practice in such simulations,
we set kB = 1 so that the temperature scales become equivalent
to the energy scales. Each spin is updated Neq ∼ 106 times
for the purpose of thermalization of the system. Thereafter,
we begin to compute physical quantities, which are averaged
over Nav ∼ 106 further update steps. Most of the results are
presented on a square lattice with 1202 spins. However, the
stability of results is checked on lattice sizes varying from 802

to 2002 for selected parameter values.

III. RESULTS AND DISCUSSIONS

A. Ground-state phase diagrams

We begin by presenting the classical ground-state phase
diagrams for the Hamiltonian Eq. (2). Due to the presence of
a four-spin interaction term, the standard method of Luttinger
and Tisza for finding the ground states of a classical spin
Hamiltonian does not work.50 Therefore, we rely on variational
calculation for determining the ground-state magnetic phases
of the model. We consider the general spiral states, the up-up-
down-down type antiferromagnetic (EAF) state and the flux
state, as described in the previous section. We also allowed
for spiral states with a finite ferromagnetic moment, but such
phases were not stable for any combination of the parameter
values explored. A schematic view of the different ordering
patterns considered in our variational calculations is shown in
Fig. 2. The phase diagrams are obtained by minimizing the
energy of the system over these states. As mentioned earlier,
we set J2a = 1 as the reference energy scale. Therefore the
free parameters to be explored are J1, J2b and K .

The energy per spin for various ordered magnetic states for
the Hamiltonian Eq. (2) is given by the following equations:

EEAF = −J2a + J2b − K, (4)

ESpiral = J1(cos qx + cos qy) + J2a cos(qx + qy)

+ J2b cos(qx − qy) + K[cos2 qx + cos2 qy

− cos(qx + qy) cos(qx − qy)], (5)

EFlux = −J2a − J2b − K. (6)

In Fig. 3, we show the J1-J2b phase diagrams for two values
of the ring-exchange coupling strength K . The different phases
are indicated with acronyms in the figure. For negative values
of K , all ground-state phases are of spiral type. The region
denoted as Spiral in the phase diagram consists of spiral phases
with qx = qy . The FM state is continuously connected to AFM
via the spiral states. For positive values of K , the flux state and
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FIG. 3. (Color online) J1-J2b ground-state phase diagram of
the Hamiltonian H1 for the ring-exchange coupling values, (a)
K = −0.2 and (b) K = 0.2. For K = −0.2 and J2b < 0, the FM
phase continuously evolves to a staggered antiferromagnetic phase
via spin-spiral magnetic states with the wave vector following the
condition qx = qy .

the EAF state occupy a considerable region of the parameter
space. The boundaries between the spiral phase and the EAF
phase are first order in nature since the order parameter of
one phase is not continuously connected to that of the other.
The two most relevant phases are the EAF and the orthogonal
(spiral with qx = qy = π/2) phase. These are the 2D analogs
of the collinear AF1 and noncollinear AF2 states observed in
CuO.26 In Fig. 4, we show the K-J2b phase diagrams at two
values of the nearest-neighbor coupling J1. The four stable
phases are almost symmetrically placed in four quadrants for
a small value of J1. Increasing J1 leads to an enhanced stability
of the spiral phase.

Having discussed the phase diagrams for the Hamiltonian
with ring-exchange coupling, we now turn to the BLBQ Hamil-
tonian specified by Eq. (3). The expressions for energy per spin
of different ordered states is given by the following equations:

EEAF = −J2a + J2b + K ′, (7)

ESpiral = J1(cos qx + cos qy) + J2a cos(qx + qy)

+ J2b cos(qx − qy) + K ′ cos2 qx, (8)

EFlux = −J2a − J2b. (9)

FIG. 4. (Color online) K-J2b ground-state phase diagram of the
Hamiltonian H1 for two values of the nn Heisenberg exchange
coupling, (a) J1 = 0.2 and (b) J1 = 0.8.

FIG. 5. (Color online) J1-J2b ground-state phase diagram of the
Hamiltonian H2 for two values of the biquadratic coupling strength,
(a) K ′ = −0.2 and (b) K ′ = 0.2. Note the similarity with the phase
diagram shown in Fig. 3.

Once again, we use a variational approach to obtain the
phase diagrams. The model parameters in this case are J1, J2b,
and K ′. In Fig. 5, we show the J1-J2b phase diagrams at two
values of the biquadratic coupling strength K ′. The different
phases are again indicated with acronyms in the figure. There
is a remarkable similarity between these phase diagrams
and those shown in Fig. 3. Both sets of phase diagrams
contain identical phases with almost identically located phase
boundaries, except for a relative sign between the couplings
K and K ′ for negative J2b as discussed in Sec. II. Once again,
the relevant phases having collinear and noncollinear magnetic
orders are part of the ground-state phase diagram.

To complete the comparison we present the K ′-J2b phase
diagram for two values of J1 in Fig. 6. Once again the phase
diagrams contain the same four phases as shown in Fig. 4. In
addition, increasing J1 leads to an expansion of the stability
regime for the spiral states. Note that spin nematic states can
exist for large value of biquadratic couplings, however this
parameter regime is beyond the scope of the present work.
Moreover, such states cannot be captured within the methods
used here.51

The variational results highlight the rich behavior of the
models H1 and H2 in terms of the presence of a variety of
phases and phase boundaries. The results further suggest that
while the form of higher-order spin-spin interactions arising

FIG. 6. (Color online) K ′-J2b ground-state phase diagram of the
BLBQ Hamiltonian H2 for, (a) J1 = 0.2 and (b) J1 = 0.8. Similarity
with the phase diagrams shown in Fig. 4 is apparent.
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from a strong-coupling expansion is different for spin-1/2 and
spin-1 magnetic moments, their classical versions lead to phase
diagrams with strong similarities. Given that the BLBQ Hamil-
tonian has a simple form with each term containing pairwise
interactions between spins, we select H2 for finite-temperature
studies. We now proceed to study H2 in more detail. Our
main aim is to understand the finite-temperature behavior of a
Heisenberg model whose ground-state degeneracy is lifted by
a higher-order spin-spin coupling term.

B. Comparison between variational and Monte Carlo results

The variational phase diagrams discussed in the previous
subsection show that the model contains a variety of phases and
phase transitions in the ground state. In order to ensure that we
have not missed any crucial magnetic state in our variational
setup, we verify the stability of some of these phases using
Monte Carlo simulations. The details of the method are given
in Sec. II. We present the Monte Carlo results on the BLBQ
Hamiltonian given by Eq. (3). Various quantities calculated in
the Monte Carlo simulations are defined in the following. The
total energy per spin, E = 1

N
〈H 〉, is computed by taking the

thermal average of the Hamiltonian over the Monte Carlo-
generated finite-temperature configurations. Here onwards,
the angular brackets denote thermal average, which for any
quantity X is defined as

〈X〉 = 1

Nav

Nav∑
α=1

Xα, (10)

where α denotes a single configuration with Xα being the value
of the quantity X for that configuration and Nav is the number
of MC steps over which the averaging is performed. In order
to characterize the various magnetic states, we compute the
spin-structure factor,

S(q) = 1

N

∑
ij

e−iq·(ri−rj )〈Si · Sj 〉, (11)

where ri denotes the real-space coordinate of the spin Si , N is
the number of total spins, and the sum is over all pairs of spins.
The spiral states are characterized by a peak in S(q) at a single
value of q. The corresponding value of q is the spiral wave
vector. In fact, the nn dot product is another useful quantity in
this context. We define a general Q average of the dot product
as

Dx(Q) = 1

N

〈∣∣∣∣∣
∑

i

eiQ·ri Si · Si+x̂

∣∣∣∣∣
〉

, (12)

where the vertical bars denote the absolute value, and Si+x̂ is
the nn spin of Si along x direction on the square lattice. One
can similarly define Dy(Q). If the system is in a spiral phase,
then Dx(Q) at Q = (0,0) (denoted as Dx(0) here onwards) is
finite and serves as an order parameter for the spiral state. The
x and y components of the spiral wave vectors can be directly
computed as qx/y = cos−1[Dx/y(0)]. Note that a canted state
will not be distinguished from a spiral by using only Dx/y(0),
therefore it is important to keep track of the spin-structure
factor S(q). In the EAF phase, Dx(0) = 0 in the same way as
the net magnetization is zero in the AFM.

We begin by taking a single scan along the J1 axis from the
phase diagrams presented in Fig. 5 at a fixed value of J2b = −1.
For K ′ = −0.2, the variational phase diagram suggests a
transition from a FM to AFM state via a spiral state and an EAF
state. On the other hand, for K ′ = 0.2 the EAF state does not
appear. We perform Monte Carlo simulations at constant low
temperature (T = 0.02) for the above choice of parameters.
We start with a FM state at J1 = −2 and increase the nn
coupling constant up to J1 = 2 in steps of 0.02. The energy
per spin and Dx(0) are tracked as a function of J1. We then
begin with an AFM state at J1 = 2 and trace back to J1 = −2.
Tracing forward and backward in J1 allows us to probe the
hysteresis behavior in the system. The results are presented
in Fig. 7. Since the order parameter for a spiral state does
not evolve continuously to that of an EAF state a hysteresis
is present in the computed physical quantities [see Figs. 7(a)
and 7(c)]. Indeed, according to the variational phase diagram
the regime of EAF state is between −0.6 < J1 < 0.6, which
is well captured by the Monte Carlo results. The EAF phase
is absent in the phase diagram for K ′ = 0.2, and therefore the
spiral state connects a FM [spiral with wave vector (0,0)]
continuously to an AFM [spiral with wave vector (π,π )],
hence no hysteresis behavior is found in Figs. 7(b) and 7(d).
In order to make these comparisons quantitative, we plot
Dx(0) obtained from variational calculations (blue circles in
Fig. 7). Monte Carlo simulations performed directly at low
temperature accurately capture the variational results.

The above checks confirm the validity of ground-state
phase diagrams obtained via the variational method. They also
serve as a benchmark for the efficiency of our Monte Carlo
simulations. In addition to the above checks, we also compared
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FIG. 7. (Color online) Energy per spin obtained via Monte Carlo
simulations, plotted as a function of the nn coupling strength J1 for
(a) K ′ = −0.2 and (b) K ′ = 0.2. Thermally averaged dot product
of neighboring spins, Dx(0) (defined in text) as a function of J1

for (c) K ′ = −0.2 and (d) K ′ = 0.2. The simulations are carried
out at J2b = −1 and at a fixed temperature T = 0.02, by increasing
(solid lines) and decreasing (dashed lines) the parameter J1. The
hysteresis in (a) and (c) is an indicator of a first-order phase transition,
whereas the absence of hysteresis in (b) and (d) suggests a smooth
crossover from FM to AFM via the spiral states. Circles in (d) are the
corresponding values obtained from variational calculations.
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TABLE I. Comparison of energy per spin obtained in variational
calculations and that obtained in Monte Carlo simulations at low
temperature (T = 0.005), for different choices of parameter sets.
The comparison shows that the variational scheme is able to
correctly describe the various ground-state phase boundaries within
the classical approximation.

Energies ⇒
Parameters ⇓ EMC Evar

J1 = −0.1, J2b = +1.0, K
′ = −0.2 −2.195 −2.200

J1 = −0.1, J2b = −1.0, K
′ = −0.2 −2.195 −2.200

J1 = −1.5, J2b = −1.0, K
′ = −0.2 −3.167 −3.237

J1 = −0.1, J2b = +1.0, K
′ = +0.2 −1.995 −2.000

the energies obtained from the MC at low temperatures (T =
0.005) with those obtained in the variational calculations, for
different choices of parameters belonging to different ground
state magnetic phases. These energy comparisons are shown
in Table I.

The energies compare very well between the Monte Carlo
simulations and the variational calculations. We also verify
using the spin-structure factor S(q) that the ordered phases
obtained in the MC are same as those shown in the variational
phase diagrams for each choice of the parameter sets listed in
Table I.

Having established a correspondence between the vari-
ational results and the MC simulations for the ground-state
phase diagrams of H2, we now proceed to describe the finite-
temperature properties of the model using extensive Monte
Carlo simulations. In order to retain the focus, we again refer
to the similarities of the present model with those proposed
for CuO. Therefore, for the remainder of the paper we focus
on a parameter regime, which highlights this similarity.

C. Finite-temperature results: weakly coupled sublattices

If the hierarchy of the coupling strengths is such that
|J2a| ∼ |J2b| >> |J1| ∼ |K ′|, then it is easy to see that
the square lattice separates into two sublattices, which are
interpenetrating each other, but are weakly coupled. In fact,
for K ′ = 0 these sublattices are completely decoupled. While
this situation appears only a theoretical possibility in the
present model, as the nnn couplings are stronger than the nn
couplings, it can be realized in 3D oxide structures where
the strength and the sign of a superexchange interaction
crucially depends on the locations of the bridging oxygens
in the crystal structure. CuO presents one example, where
not only Cu-O-Cu superexchange is important but also the
Cu-O-O-Cu supersuperexchange contribution is significant.32

Such a decoupling into two sublattices has been highlighted in
tetragonal CuO, where the intrasublattice exchange parameters
are almost six times larger than the intersublattice couplings.56

We begin by analyzing the effects of biquadratic coupling
on the ground state in a simple variational picture. Let us
assume that the vector order parameters of the decoupled
sublattices make an angle θ with each other. This is schemat-
ically shown in Fig. 8 where solid (red) and dashed (blue)
lines highlight the two sublattices. Within each sublattice the
spins are arranged ferromagnetically along one diagonal and

FIG. 8. (Color online) A schematic view of the decoupled
magnetic sublattices that arise in the Heisenberg model given by
H0 in the limit of small nn coupling strength. Solid and dashed lines
indicate the two sublattices. One can easily check that the ground-state
energy does not depend on J1 when the order within each sublattice
is robust, hence any value of the angle θ between the sublattice order
parameters corresponds to a magnetic ground state. Note that θ = 0
and θ = π/2 correspond to the collinear EAF state and the orthogonal
spiral state, respectively.

antiferromagnetically along the other. The relative orientation
of the spins on two sublattices is parameterized by angle
θ . The ground-state energy of the system in the absence of
biquadratic couplings is independent of θ , and hence there
is a degeneracy of magnetic states in the system. The
additional energy contribution due to the biquadratic coupling
K ′ can be written as E(θ ) = K ′ cos2 θ . Minimizing the energy
by demanding dE/dθ = 0 and d2E/dθ2 > 0, leads to two
possible solutions: θmin = 0 for K ′ < 0 and θmin = π/2 for
K ′ > 0. Therefore the introduction of a biquadratic coupling
term lifts the degeneracy and stabilizes two specific phases,
the EAF state or the orthogonal spiral state, depending on the
sign of K ′. These two phases are analogous to the AF1 and
AF2 magnetic states of CuO. One of the interesting features
in CuO is the existence of a noncollinear AF2 magnetic state
at high temperatures. This magnetic state supports a finite
electric polarization due to its spiral nature and therefore is
responsible for the high-temperature ferroelectric behavior of
CuO. This is unusual as in most frustrated magnets, it is the
low-temperature phase that supports a noncollinear magnetic
phase and hence the ferroelectricity is observed only at low
temperatures. Given the similarity of the present model with
that of CuO, it is natural to ask if a spiral magnetic order exists
at high temperatures within the present model.

In order to answer this, we compute a quantity P , which is
proportional to the electric polarization induced via the inverse
DM mechanism,19 as a measure of the spiral nature of spin
states. Following Katsura et al. we define P as,19

P = 1

N

〈∣∣∣∣∣
∑

i

Pi

∣∣∣∣∣
〉

(13)
Pi = x̂ × (Si × Si+x̂),

where the vertical bars denote the magnitude of the vector
and the angular brackets denote thermal average. |Pi | can
be regarded as a local measure of P on a given bond
along the x direction originating at lattice site i. Instead
of introducing another name for P , we will refer to it as
electric polarization. Note that P is also related to the spin
current,57 as both quantities involve a cross product of the
spin vectors on neighboring sites. Temperature dependence
of the electric polarization P is shown in Fig. 9(a) for
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FIG. 9. (Color online) Temperature dependence of the electric
polarization P for different values of K ′ in the range, (a) K ′ < 0 and
(c) K ′ > 0. Temperature dependence of the order parameter Dx (π ) for
the collinear magnetic state EAF for various values of K ′ in regimes,
(b) K ′ < 0 and (d) K ′ > 0. Results are obtained on 120 × 120 lattice,
with J1 = 0.1 and J2b = −1. Note the difference in scale on the y

axis in (d).

negative values of K ′. The Monte Carlo results are consistent
with the variational analysis and P indeed vanishes at low
temperatures. The high-temperature behavior is intriguing:
there is a window in temperature where P becomes finite,
indicating the existence of a noncollinear magnetic state at
finite temperatures. Interestingly, the temperature range of
stability of the noncollinear magnetic state increases upon
decreasing the magnitude of K ′. This suggests that the
noncollinear phase may be entropy driven, as a large negative
K ′ favors the collinear state and hence competes with the
noncollinear state at high temperatures, narrowing the window
of stability of the later state. We also notice that the electric
polarization shows large fluctuations, which is the origin of
relatively large error bars in Figs. 9(a) and 9(c).

Recalling the definition Eq. (13), we note that Dx(Q) at
Q = (π,π ) [denoted as Dx(π )] is an order parameter for the
EAF phase. Si · Si+x̂ represents the local degree of collinearity
between neighboring spins along the x direction. Note that in
the EAF phase, the dot product between neighboring spins
have a perfect staggered order. This motivates the use of
Dx(π ) as an order parameter for the EAF phase, much like
the staggered magnetization is an order parameter for the
AFM state. The temperature dependence of Dx(π ) is plotted
in Fig. 9 (b) for K ′ < 0. The ground state is collinear as the
order parameter rises smoothly to its maximal value upon
reducing temperature in our simulations. The temperature
at which Dx(π ) shows an abrupt rise, correlates well with
the temperature at which the electric polarization begins to
fall. Therefore, the temperature dependence of P and Dx(π )
can be used to assign characteristic temperatures at which
the collinear and the spiral magnetic orders set in. Next, we
study the behavior of the model for positive values of K ′.

In agreement with the variational results, the ground state
supports a noncollinear order [see Fig. 9(c)]. P = 1 indeed
corresponds to the orthogonal magnetic phase where neigh-
boring spins point at an angle of 90◦ to each other. Therefore
the transition between a collinear and noncollinear magnetic
orders as a function of K ′ is well captured in our simulations.
However, the finite-temperature behavior of the model is quite
different for positive K ′. The electric polarization shows a
nonmonotonic dependence on temperature, which is similar
for different values of K ′. Upon increasing temperature
P decreases smoothly from its maximum value and then
shows a weak rise before decreasing again. The collinear
order parameter does not show any considerable rise in
the intermediate temperature range. For N = 1202, we find
that Dx(π ) ∼ 0.02 in the high-temperature PM state. The
maximum value of Dx(π ) in Fig. 9(d) is only about two times
larger. This is in sharp contrast with the behavior of spiral order
parameter P , which in the negative K ′ regime shows a value
about 30 times larger than that in PM state [see Fig. 9(a)].
Clearly, the collinear state is only energetically stable and
exists at finite temperatures only when K ′ < 0. Therefore, our
results suggest that the noncollinear phase at high temperatures
is stabilized by entropic effects. This is in agreement with
previous material-specific models for CuO.29,30 However, our
results show that these results are a general feature of a model
where the standard Heisenberg term leads to a degeneracy
of magnetic states, and the ground-state selection relies on
weaker higher-order couplings. One clear advantage of the
BLBQ model is that the competition is only between EAF and
orthogonal spiral states. This is unlike the models invoking
DM coupling and magnetocrystalline anisotropy where it is
possible to stabilize a spiral phase with arbitrary q depending
on the relative strengths of the DM coupling and anisotropy.29

One of the advantages of the real-space approach is that we
can investigate the spatial character of the finite-temperature
noncollinear magnetism. For this purpose, we plot the real-
space snapshots of the local collinear and noncollinear order
parameters, Si · Si+x̂ and Pi . For K ′ < 0, the ground state is the
up-up-down-down type antiferromagnet which corresponds to
θ = 0 in Fig. 8 (denoted as EAF). The real-space pattern
at finite temperature (T = 0.4) show regions with strong
noncollinear spin order [see Fig. 10(a)]. For K ′ > 0, the
ground state supports a perfect orthogonal spiral order, where
neighboring spins make an angle of π/2 with each other.
At finite temperatures, regions with weak spiral order are
present as inferred from the real-space distribution of Pi [see
Fig. 10(b)]. Figures 10(c) and 10(d) show the corresponding
snapshots of the collinear order, Si · Si+x̂ . Collinear order is
absent at T = 0.4. While we only show Pi and Si · Si+x̂ for
a single configurations here, we have verified that these are
typical configurations for T = 0.4. These real-space patterns
also highlight the asymmetry with respect to K ′ that we
discussed earlier. While at low temperatures the sign of
K ′ decides the nature of the ordered magnetic state, at
finite temperatures it is the noncollinear state that dominates
irrespective of the sign of K ′. At finite temperatures there
are many different configurations of spins that are involved
in the final thermal average. The electric polarization shows
strong fluctuations at intermediate temperatures as we noticed
in Figs. 9(a) and 9(c). However, the energy as a function
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FIG. 10. (Color online) Real-space patterns of local measures
for noncollinear and collinear orders, Pi (upper row) and Si · Si+x̂

(lower row), for K ′ = −0.005 [(a) and (c)] and K ′ = 0.005 [(b) and
(d)] at intermediate values of temperature T = 0.4. These are single
configurations that contribute to the averages plotted in Fig. 9.

of temperature (not shown) behaves smoothly with error
bars less than the typical symbol size in our figures. Strong
fluctuations in electric polarization with weak fluctuations
in total energy indicate an unusual energy landscape in
configuration space where many different configurations are
present within a narrow energy range, and the system easily
accesses these configurations. This explains why the spiral
order wins over collinear order at finite temperatures: the
availability of many different magnetic configurations with
finite electric polarization increases the entropy of the system.
Therefore, the system prefers to visit such configurations more
often leading to a finite electric polarization. This highlights
a key role of entropy in stabilizing the noncollinear magnetic
order at finite temperatures. Moreover, our results suggest that
the finite-temperature spiral phase is inhomogeneous. This
compares favorably with recent experimental investigations,
where the presence of an inhomogeneous ferroelectric phase
in CuO has been reported.52

We summarize the results discussed in this section in
a finite-temperature phase diagram. The Mermin-Wagner
theorem prohibits a long-range magnetic order at finite
temperatures for a classical continuous-spin model in 2D.53,54

However, some of the magnetic phases discussed here break
a discrete symmetry in addition to a continuous symmetry.
In particular, the EAF state and the spin-spiral state both
break the spatial inversion symmetry of the lattice. There-
fore, finite-temperature phase transitions are allowed even
in two dimensions for such magnetic phases.55 While we
have not carried out a thorough finite-size scaling analysis,
numerical simulations on finite lattices can be used to identify
characteristic temperatures at which the correlation length

-0.04 -0.02 0 0.02 0.04
K’/J

2a

0

0.2

0.4

0.6

T/J
2a

PM

EAF

Spiral

Inhomogeneous
Spiral

FIG. 11. (Color online) Temperature versus K ′ phase diagram for
J2b = −1 and J1 = 0.1. The inhomogeneous spiral phase consists of
islands of spiral phase coexisting with paramagnetic regions.

for a particular magnetic order exceeds the system size.
The temperature dependence of Dx(π ) and P (as shown in
Fig. 9) is used to identify such characteristic temperature
scales for collinear EAF and spiral orderings, respectively.
These are brought together as a phase diagram in Fig. 11.
The ordering between the PM and the inhomogeneous spiral
phase is independent of K ′. This corresponds to the onset
of ordering of the two sublattices (see Fig. 8), which is
decided by the strengths of the couplings J2a and J2b. The
inhomogeneous spiral phase corresponds to a state where PM
regions coexist together with regions supporting large values
of electric polarization. Upon reducing temperature further, the
system orders into a collinear or noncollinear state depending
on the sign of K ′. The similarity of our results with those
obtained on material-specific models for CuO is apparent.29,30

The experimental situation of CuO is captured well in our
model if we assume a small negative value of the biquadratic
coupling K ′, where a window of stability of the noncollinear
state exists between the collinear EAF and the fully disordered
PM state. Our results suggest that this intermediate spiral
phase contains inhomogeneities with patches of spiral patterns
coexisting with magnetically disordered regions.

IV. CONCLUSIONS

We use a combination of variational calculations and Monte
Carlo simulations to study a classical spin model on a 2D
square lattice with nearest-neighbor and next-nearest-neighbor
Heisenberg exchange interactions and nearest-neighbor bi-
quadratic interactions. Motivated by the existence of a non-
collinear magnetic state at high temperatures in CuO,26 we
study this model in a specific parameter regime where the
nnn couplings are inequivalent and are much larger than
the nn exchange interactions. In this limit, the system is
decoupled into two sublattices and leads to a situation where
even a weak biquadratic coupling is vital in selecting the
ground-state magnetic order. We also compare the ground
states of the BLBQ model with those of a model containing
a four-spin ring-exchange coupling. It is the ring-exchange
coupling that is physically relevant for a spin-1/2 system such
as CuO. However, we demonstrate that the classical versions
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of the quantum models for spin-1/2 and spin-1 have strong
similarities in the parameter regime considered here. The
finite-temperature study of the BLBQ model using Monte
Carlo uncovers an inhomogeneous noncollinear magnetic
state. The T -K ′ phase diagram of the model captures the main
features of the phase diagrams reported in material-specific
models for CuO, which considered the role of DM coupling
and weak anisotropy. The present work helps in understanding
the finite-temperature magnetism in CuO within a pure spin
model in a general setting without taking into account the
details of the crystal structure. We have shown that if the
stronger interactions are such that they compete and lead
to a degeneracy of magnetic ground states, then the role of
the much weaker higher-order interactions cannot be ignored.
These interactions are as important as other weak effects like
the magnetocrystalline anisotropies and the spin-orbit induced
DM interactions. Using the real-space analysis we also find
that the high-temperature spiral phase is inhomogeneous with

islands of spiral phase coexisting with paramagnetic regions.
The common feature with the previous model studies is that
the entropic effects are crucial in stabilizing the noncollinear
state at high temperatures.29,30 While there have already been
some experimental reports that point to an inhomogeneous
ferroelectric state in CuO,52 it would be very interesting
to probe further the spatial nature of the high-temperature
noncollinear phase in CuO.

ACKNOWLEDGMENTS

The simulations were performed using the High Per-
formance Computing Facility at IISER Mohali. We thank
an anonymous referee for useful remarks and suggestions.
K.P. acknowledges support from UGC-CSIR, India. S.K.
acknowledges insightful discussions with Zohar Nussinov
and Prabuddha Chakraborty, and financial support from DST,
India.

1H. Schmid, Ferroelectrics 162, 317 (1994).
2M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005); N. A. Spaldin
and M. Fiebig, Science 309, 391 (2005); W. Eerenstein, N. D.
Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).

3J. F. Scott, Nature Mater. 6, 256 (2007).
4R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
5S. W. Cheong et al., Nature Mater. 6, 13 (2007).
6F. Sugawara, S. Iida, Y. Syono, and S. Akimoto, J. Phys. Soc. Jpn.
25, 1553 (1968).

7N. A. Hill and K. M. Rabe, Phys. Rev. B 59, 8759 (1999).
8N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
9N. A. Hill, Annu. Rev. Mater. Res. 32, 1 (2002).

10D. I. Khomskii, J. Mag. Mag. Mat. 306, 1 (2006); D. Khomskii,
Physics 2, 20 (2009).

11N. J. Perks, R. D. Johnson, C. Martin, L. C. Chapon, and P. G.
Radaelli, Nature Commun. 3, 1277 (2012).

12S. Ishiwata, Y. Kaneko, Y. Tokunaga, Y. Taguchi, T.-h. Arima, and
Y. Tokura, Phys. Rev. B 81, 100411(R) (2010).

13L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G.
Radaelli, and S.-W. Cheong, Phys. Rev. Lett. 93, 177402 (2004).

14T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73,
220401(R) (2006).

15S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204
(2008).

16S. Horiuchi and Y. Tokura, Nature Mater. 7, 357 (2008).
17P. Lunkenheimer, J. Müller, S. Krohns, F. Schrettle, A. Loidl,

B. Hartmann, R. Rommel, M. de Souza, C. Hotta, J. A. Schlueter,
and M. Lang, Nature Mater. 11, 755 (2012).

18J. van den Brink and D. Khomskii, J. Phys.: Cond. Mat. 20, 434217
(2008).

19H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

20M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
21I. V. Solovyev, Phys. Rev. B 83, 054404 (2011).
22C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401(R) (2005);

I. A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, and L. Bellaiche,
Phys. Rev. Lett. 99, 227602 (2007).

23T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).
24L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii,

Phys. Rev. B 78, 024402 (2008).
25I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
26T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez,

Nature Mater. 7, 291 (2008).
27M. Mostovoy, Nature Mater. 7, 269 (2008).
28X. Rocquefelte, K. Schwarz, P. Blaha, S. Kumar, and J. van den

Brink, Nature Commun. 4, 2511 (2013).
29G. Giovannetti, S. Kumar, A. Stroppa, J. van den Brink, S. Picozzi,

and J. Lorenzana, Phys. Rev. Lett. 106, 026401 (2011).
30G. Jin, K. Cao, G.-C. Guo, and L. He, Phys. Rev. Lett. 108, 187205

(2012).
31P. Toledano, N. Leo, D. D. Khalyavin, L. C. Chapon, T. Hoffmann,

D. Meier, and M. Fiebig, Phys. Rev. Lett. 106, 257601 (2011).
32X. Rocquefelte, K. Schwarz, and P. Blaha, Sci. Rep. 2, 759

(2012).
33J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, J. Phys. C: Solid

State Phys. 21, 2917 (1988).
34B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys.

Rev. B 39, 4343 (1989).
35K.-Y. Choi, W.-J. Lee, A. Glamazda, P. Lemmens, D. Wulferding,

Y. Sekio, and T. Kimura, Phys. Rev. B 87, 184407 (2013).
36K. Cao, G.-C. Guo, D. Vanderbilt, and L. He, Phys. Rev. Lett. 103,

257201 (2009).
37A. Kalz and G. Y. Chitov, Phys. Rev. B 88, 014415 (2013).
38K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 136, 621 (1982).
39J.-Y. P. Delannoy, A. G. Del Maestro, M. J. P. Gingras, and P. C. W.

Holdsworth, Phys. Rev. B 79, 224414 (2009).
40F. Mila and F.-C. Zhang, Eur. Phys. J. B 16, 7 (2000).
41C. Griset, S. Head, J. Alicea, and O. A. Starykh, Phys. Rev. B 84,

245108 (2011).
42Y.-W. Lee and M.-F. Yang, Phys. Rev. B 85, 100402 (2012).
43R. Singer, F. Dietermann, and M. Fähnle, Phys. Rev. Lett. 107,
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47P. Corboz, A. M. Läuchli, K. Totsuka, and H. Tsunetsugu, Phys.
Rev. B 76, 220404(R) (2007); A. Läuchli, G. Schmid, and
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