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Two-channel model for nonequilibrium thermal transport in pump-probe experiments
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We present an analytic solution for heat flow in a multilayer two-channel system for the interpretation of time-
domain thermoreflectance (TDTR) experiments where nonequilibrium effects are important. The two-channel
solution is used to analyze new room temperature TDTR measurements of Al/Cu and Al/Si0.99Ge0.01 systems.
Cu and Si0.99Ge0.01 are examples of materials well suited for analysis with a two-channel model because thermal
excitations responsible for the vast majority of the heat capacity in these solids contribute little to their thermal
conductivity. Nonequilibrium effects are found to be unimportant for the interpretation of the Al/Cu TDTR data
but dramatic for the Al/Si0.99Ge0.01 TDTR data. The two-channel model predicts a significant reduction in the
effective thermal conductivity of Si0.99Ge0.01 in a region within 150 nm of the Al/Si0.99Ge0.01 interface. The
extra thermal resistance in this region is a result of the disparate heat flux boundary conditions for low- and
high-frequency phonons in combination with weak coupling between low- and high-frequency phonons. When
the experimental data are analyzed with a single-channel model, both the conductance and thermal conductivity
appear to depend on pump-modulation frequency, consistent with the two-channel model’s predictions. Finally,
we compare the results of our diffusive two-channel model to a nonlocal description for steady-state heat flow
near a boundary and show they yield nearly identical results.
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I. INTRODUCTION

The magnitude of a material’s thermal conductivity and spe-
cific heat is determined by the dispersion relations, scattering
rates, and occupation statistics of the material’s quasiparticle
excitations, e.g., electrons, phonons, and magnons. On macro-
scopic scales, heat flow in a material is well described by the
heat diffusion equation and depends only on the magnitude of
the material’s heat capacity and thermal conductivity. The heat
diffusion equation is a valid description of heat flow as long as
all quasiparticles that store and carry heat are in local thermal
equilibrium. In other words, the occupation of all thermal
excitations must be well described by a single temperature on
time-scales that are comparable to the rate of heating/cooling
and length-scales that are comparable to the quasiparticle mean
free paths. On short time and length scales, the condition of
local equilibrium can break down, and microscopic knowledge
concerning the system’s thermal excitations is necessary to
accurately predict its thermal response.

Local equilibrium often breaks down in multilayered
systems due to boundaries. This is because different types of
thermal excitations can have drastically different temperature
and heat flux boundary conditions. For example, electrons
in a metal near a metal/dielectric interface have an adiabatic
boundary condition, while phonons in the metal do not;
this means local thermal equilibrium cannot exist between
electrons and phonons in close proximity to a metal/dielectric
interface that is subjected to a heat flux.1

Recent studies demonstrate the ability of pump/probe meth-
ods to reveal nonequilibrium energy flow in many different
types of systems.2–7 Quantifying the strength of coupling
between different types of excitations, a key goal of condensed
matter physics research, is more challenging. Recent stud-
ies demonstrate that time-domain thermoreflectance (TDTR)
is sensitive to the strength of coupling between thermal
excitations.3,5,7 However, the interpretation of TDTR data
where nonequilibrium effects are present is not straightforward

because the experimental data are typically analyzed with
a solution to the heat diffusion equation that assumes the
local-equilibrium condition is satisfied. To extract quanti-
tative values for the strength of coupling between thermal
excitations, a model is needed that can accurately describe
nonequilibrium heat flow.

The goal of the present work is to provide a model
for analyzing TDTR data that can accurately include some
nonequilibrium effects. While a general treatment of nonequi-
librium transport requires a solution of the Boltzmann
transport equation,8 nonequilibrium heat flow is often well-
described with a diffusive two-channel model,7 which is the
approach we take here. In this approach, different excitations
are divided into channels, and the heat diffusion equation
is modified based on the microscopic transport properties
of the carriers in each channel. Variations of the two-
channel approach have been used to successfully model heat
flow in systems with multiple types of heat carriers such
as low-frequency ballistic phonons/high-frequency diffusive
phonons,2 electrons/phonons,7 and magnons/phonons.9

The outline of the paper is as follows. In Sec. II, we
present a solution for two-channel heat flow in a semi-infinite
one-dimensional system. Several simple expressions are de-
rived that are useful for quantifying the time scales, length
scales, and thermal resistances associated with nonequilibrium
effects. In Sec. III, we use the two-channel solution to analyze
new TDTR measurements of Al/Cu and Al/Si0.99Ge0.01 sys-
tems, and compare with one-channel interpretations of the
same. Interestingly, the two-channel model suggests the value
of the Al/Si0.99Ge0.01 system’s measured interface conductance
is not intrinsic to the interface itself but is largely caused by
a mismatch between the heat carriers responsible for heat
flow across the Al/Si0.99Ge0.01 interface and heat flow in
the Si0.99Ge0.01. This type of contribution to the interface
conductance is similar to the type predicted by Majumdar and
Reddy for metal/dielectric interfaces due to weak electron-
phonon coupling in the metal.1 Finally, in Sec. IV we compare
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the diffusive two-channel model to a simple nonlocal model
for steady-state heat flow near an interface. The two different
approaches to the problem yield similar results, and both
suggest the mean free path is not the only important length
scale for describing nonequilibrium between carriers near an
interface.

II. TWO-CHANNEL PROBLEM IN ONE DIMENSION (1D)

In a two-temperature model, thermal excitations are divided
into separate channels. It is assumed that the carrier distribution
in each channel can be described by a single temperature that
can be distinct from the other channel’s temperature.1,10–12

Energy transfer between channels is proportional to their
temperature difference. In 1D, the channel’s temperatures
evolve in time according to the equations

C1
∂T1

∂t
= �1

∂2T1

∂z2
− g�, (1)

C2
∂T2

∂t
= �2

∂2T2

∂z2
+ g�, (2)

where C1 and C2 are the specific heats of channels 1 and 2,
�1 and �2 are the thermal conductivities of channels 1 and 2,
� = T1 − T2, and g is the energy transfer coefficient between
channels that depends on the strength of coupling between
carriers in different channels. We assume all thermal properties
are independent of temperature, i.e., that Eqs. (1) and (2) are
linear. Therefore, our model will not apply when temperature
excursions of either channel are large enough to invalidate this
assumption.

Before solving Eqs. (1) and (2) in the frequency domain, it
is useful to look at the solution for � = T1 − T2 in the spatially
uniform and steady state limits. These solutions are found by
solving the differential equation that results from the subtrac-
tion of Eq. (2) from Eq. (1). In the spatially uniform limit,
∂2T/∂z2 = 0, the temperature difference between channels
decays exponentially with a time constant of

� = (g/C1 + g/C2)−1. (3)

This is the thermal relaxation time of the two channels in the
absence of heating. Values for relaxation times will range from
tens of femtoseconds to hundreds of picoseconds, depending
on the type of carriers that make up each channel. Since
the time scale for pump modulation in TDTR experiments
is typically greater than 50 ns, thermal resistances that result
from a difference in temperature between channels will not
depend on the pump-modulation frequency.

In the steady state limit, ∂T /∂t = 0, the difference in
temperature between the channels will exponentially decay
on a length scale of

d = (g(1/�1 + 1/�2))−1/2. (4)

Any thermal resistance caused by nonequilibrium effects
will be distributed across this length. Typical values at room
temperature will range from nanometers to hundreds of
nanometers.

The values of d and � are useful for determining if nonequi-
librium effects in a TDTR experiment are distinguishable from
other thermal parameters in the system. For example, the
value � will often be comparable to other time scales in the

problem, such as pump- or probe-pulse duration, the thermal
relaxation time for a metal transducer, (h2C)/�, or the time
constant for heat to diffuse across an interface,13 (hC)/G.
Similarly, if d is much less than other important length scales in
TDTR experiments such as transducer thickness, metal/sample
Kapitza length, thermal penetration depth, and laser spot size,
then the nonequilibrium resistance may not be distinguishable
from other thermal resistances.

Because d is often small compared to other important length
scales, the most common result of using a single channel model
to describe a two-channel system is to combine into a single
effective value the thermal conductance associated with the
nonequilibrium between channels and the interfacial thermal
conductance. We follow Majumdar and Reddy’s derivation of
an effective conductance that includes nonequilibrium effects
for an electron-phonon system1 and consider the steady-state
solutions to Eqs. (1) and (2); however, we do not initially
require an adiabatic boundary condition on one of the channels.
We assume each channel has an interface conductance, G1 and
G2, that determines heat flow into that channel at the boundary,

qi = Gi(T0 − Ti), (5)

where T0 is the temperature of the single-temperature layer at
the boundary and i = 1,2. The temperatures in each channel
are then

T1 = γ a
gd2

�1
e−z/d + az + Tb, (6)

T2 = γ a

(
gd2

�1
− 1

)
e−z/d + az + Tb, (7)

γ = 1

dg

(
�2

G2
− �1

G1

) (
1

G1
+ d

�1
+ 1

G2
+ d

�2

)−1

, (8)

where a and Tb are constants that depend on T0. Assuming
equilibrium between channel temperatures is equivalent to
assuming that the boundary temperature of both channels is Tb

(d = 0). The effective conductance in this case is

Geff = q1 + q2

T0 − Tb

= −(�1 + �2)

γ dg(1/G2 + d/�2) − �2/G2

=
(

1

GNE
+ 1

G1 + G2

)−1

. (9)

where GNE is defined as the nonequilibrium conductance.
In many systems, one channel’s interface conductance is

much lower than the others. For example, at a semiconductor
boundary with a metal, the interface conductance for low-
frequency phonons is small compared to high-frequency
phonons because of their relative number of states.14 (Heat flux
across a plane due to a specific phonon is proportional to the
difference in temperature on either side of the plane, the mode’s
group velocity, and the mode’s number density.) In these
situations, the limiting case of an adiabatic boundary condition
for one channel, G1 ≈ 0, is useful for quickly determining
whether nonequilibrium resistances will be significant in the
system. For the adiabatic case, the effective interface resis-
tance simplifies to the sum of interfacial and nonequilibrium
resistances,

1

Geff
= 1

G2
+ �1d

�2(�1 + �2)
= 1

G2
+ 1

GNE
. (10)
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In the limit that �2 � �1, Eq. (10) predicts a nonequilib-
rium conductance of GNE = �2

2/(�1d), much larger than most
interfacial thermal conductance values. A large conductance
means a small resistance, and resistances combine additively.
Therefore, in situations where a high-thermal conductivity
channel has a large interface conductance, nonequilibrium
effects can be safely ignored. In the opposite limit, �2 � �1,
Eq. (9) predicts a nonequilibrium conductance of �2/d, a
value that is sometimes comparable to measured interfacial
conductance values.14,15 For example, consider Au at room
temperature with phonons as channel 2 and electrons as
channel 1. Using a value of 3 W m−1 K−1 for the lattice thermal
conductivity of Au (extrapolated form measurements below
100 K16) and a coupling strength of 2.5 × 1016 W m−3 K−1

between electrons and phonons in Au7, the above equations
yield d ≈ 10 nm and GNE ≈ 300 MW m−2 K−1, which is
a conductance comparable to observed values for phonon-
phonon interface conductance.14,15 A similar analysis for Ag
and Cu, again using values for the lattice thermal conductivity
extrapolated from measurements below 100 K (Refs. 17 and
18) and literature values for the electron-phonon coupling
strength,7,19 yields 350 MW m−2 K−1 and 750 MW m−2 K−1,
respectively. In most other metals, the nonequilibrium conduc-
tance will be much higher because of stronger electron-phonon
coupling than is present in the group 1B metals.19 We conclude
that electron-phonon coupling is rarely a significant source
of thermal resistance compared to phonon-phonon interfacial
thermal conductance values.

In semiconductors, we can estimate the expected coupling
constant between the low-frequency phonons, which carry
significant amounts of heat, and high-frequency phonons,
which form the majority of the heat capacity, by assuming
the minimum possible thermal relaxation time, �, is equal
to the scattering times of low-frequency phonons (<3 THz).
Low-frequency phonons in semiconductors will nearly always
have lifetimes greater than 10 ps; for example, estimates of the
lifetimes of 3 THz phonons in Si range from 50 to 180 ps.20,21

We estimate the heat capacity of low-frequency phonons to be
on the order of 104 J m−3 K−1 and the thermal conductivity of
the thermal reservoir as between 10 and 30 W m−1 K−1. Then,
using Eq. (3), a reasonable estimate for the coupling constant
between low- and high- frequency phonons is on the order of
1015 W m−3 K−1, and Eq. (10) predicts a nonequilibrium con-
ductance on the order of 100 MW m−2 K−1. This is comparable
to typical metal/semiconductor interface conductance values
observed in TDTR experiments15 and suggests nonequilibrium
effects are an important contribution to the observed interface
conductance values in metal/semiconductor systems.

In the frequency-domain, Eqs. (1) and (2) become

∂2T1

∂z2
= α1T1 − g

�1
T2, (11)

∂2T2

∂z2
= α2T2 − g

�2
T1, (12)

where α1 = 1/�1(iωC1 + g) and α2 = 1/�2(iωC2 + g). The
differential equations in Eqs. (11) and (12) can be solved as
an algebraic eigenvalue problem by assuming a solution of the
form T = veλz. The general solution to Eqs. (11) and (12) in

matrix form is[
T1

T2

]
= [X]

[
B−

1 e−λ1z + B+
1 eλ1z

B−
2 e−λ2z + B+

2 eλ2z

]
, (13)

where λ2 are the eigenvalues of the characteristic matrix[
α1 −g/�1

−g/�2 α2

]

and [X] is the associated eigenvector matrix

[X] =
[

v1 v2

u1 u2

]
. (14)

For the case of a semi-infinite solid B+ = 0, because there is
no reflected thermal wave and therefore no wave propagating
toward the surface. Applying a heat flux boundary condition
q = −�(dT /dz)z=0 to each channel gives the solution[

B−
1

B−
2

]
= [Y ]−1

[
q1

q2

]
, (15)

where

[Y ] =
[

�1 0

0 �2

]
[X]

[
λ1 0

0 λ2

]
. (16)

Further details for generalizing Eqs. (11)–(16) for a radially
symmetric multilayer problem and integrating the two-channel
solution with the standard analytical techniques for TDTR
analysis are given in Appendix A.

Example calculations using Eqs. (11)–(16) are shown in
Fig. 1 for Cu and Si0.99Ge0.01. For Cu, the phonons and
electrons are divided into separate channels, and oscilla-
tory heating at the surface is restricted to phonons only.
The Cu thermal properties used are �1 = 392 W m−1 K−1,
�2 = 7 W m−1 K−1, C1 = 3 × 104 J m−3 K−1, C2 = 3.42 ×
106 J m−3 K−1, and g = 7.5 × 1016 W m−3 K−1. The out-of-
phase temperature oscillations of Cu shows no significant
deviation compared to a one-channel model calculation with
bulk properties at frequencies below 20 MHz [Fig. 1(b)]. The
out-of-phase signal in a TDTR measurement is dominated
by the imaginary part of the frequency response at the
pump-modulation frequency.22 Therefore, any impact from
the difference in temperature between channels in Cu will only
appear in the in-phase temperature response of a TDTR exper-
iment, which includes high-frequency components associated
with pulse-decay timescales.22

For Si0.99Ge0.01, we divide the low-frequency phonons
(<3 THz) and high-frequency phonons into separate
channels with an adiabatic surface boundary condi-
tion imposed on the low-frequency phonons. The ther-
mal properties of the channels in the Si0.99Ge0.01 layer
are �1 = 30 W m−1 K−1, �2 = 12 W m−1 K−1, C1 = 3 ×
104 J m−3 K−1, C2 = 1.62 × 106 J m−3 K−1, and g = 4 ×
1014 W m−3 K−1. The division of the total thermal conduc-
tivity between channels 1 and 2 and the coupling strength, g,
are based on the experimental results presented in Sec. III.
The division of heat capacity between channels is calculated
from the Si density of states.23 The division frequency of
3 THz was chosen so that only phonon modes with linear
dispersion and low-heat capacity are included in the low-
frequency channel.23 Unlike Cu, both the out-of-phase and
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FIG. 1. (Color online) Calculated frequency response of 1D semi-
infinite two-channel Cu and Si0.99Ge0.01 layers. For Cu, T1 and T2 are
the temperature of the electrons and phonons, while in Si0.99Ge0.01,
T1 and T2 describe the low- and high-frequency phonons. Thermal
properties of both systems are described in the text. (a) Amplitude
of temperature oscillations for each channel as a function of depth
at a heating frequency of 20 MHz. The temperature rise of each
channel is normalized with the prediction for surface temperature
from a one channel model with bulk properties, TB (0). (b) Surface
temperature of channel 2 as a function of heating frequency. Solid
lines are the in-phase temperature and dashed lines are the out-of-
phase temperature. A one-channel model predicts no difference in
the in-phase and out-of-phase temperature response.

the in-phase surface temperature oscillations of Si0.99Ge0.01

[Fig. 1(b)] display a significant deviation from the single-
channel model’s prediction at all frequencies above 1 MHz.
Thus, nonequilibrium between channels can be expected to
influence TDTR experiments through both the in-phase and
out-of-phase signals of a TDTR experiment.

The frequency dependence of the thermal response shown
in Fig. 1 will be qualitatively similar to any two-channel
system where the majority of heat is carried by thermal
excitations with very little heat capacity, such as other metals7

(electrons), semiconductor alloys3 (low-frequency phonons),
or spin ladders24 (magnons). In 1D, solids with homogenous
thermal properties will have in-phase and out-of-phase surface
temperature oscillations that are equal in magnitude. The
difference in amplitude between the in-phase and out-of-phase
temperature oscillations for the two-channel systems in Fig. 1
indicates that the thermal properties of the system are not

homogenous in the region of the system that is transporting
heat, and that a single effective thermal conductivity cannot
describe the system’s transient thermal response.

III. ANALYSIS OF EXPERIMENTAL TDTR DATA
WITH A TWO-CHANNEL MODEL

Example calculations of TDTR data for a two-channel
multilayer system are shown in Fig. 2. The system consists of
an 80-nm single-channel Al transducer on top of a semi-infinite
two-channel Si0.99Ge0.01 layer. Low-frequency Si0.99Ge0.01
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FIG. 2. (Color online) (a) Calculated dependence of TDTR data
on coupling strength, g, at fixed modulation frequency of 20 MHz
and 1/e2 laser spot size of 10 μm for an 80 nm Al/Si0.99Ge0.01 two-
channel system. The units of g are W m−3 K−1. The apparent interface
conductance and thermal conductivity are defined as the values that
result from analyzing the two-channel data with a single-channel
model. The apparent interface conductance is primarily determined
by the time decay of the in-phase signal, while the apparent thermal
conductivity is primarily determined by the magnitude of the out-
of-phase signal. (b) The apparent interface conductance GA versus
coupling strength. (c) The apparent thermal conductivity �A versus
coupling strength.
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phonons (<3 THz) form channel 1, while high-frequency
phonons make up channel 2. Thermal properties of the chan-
nels in the Si0.99Ge0.01 layer are the same as those described in
Sec. II for Fig. 1. The interface conductance values between the
Al and Si0.99Ge0.01 channels are G1 = 30 MW m−2 K−1 and
G2 = 320 MW m−2 K−1. The total conductance was chosen
based on the lattice dynamics calculation in Ref. 25 with a =
0.2 nm, K ′ = 2.5, M ′ = 1, and an Al Debye temperature of
400 K. The conductance for the low-frequency phonons, G1,
was set to the phonon radiation limit value for phonons less
than 3 THz (Ref. 15). Setting G1 to a lower value will increase
the thermal resistance due to nonequilibrium effects.

We define an apparent thermal conductivity, �A, and appar-
ent interface conductance, GA, as the values extracted by fitting
TDTR signals using a one-channel model.22 We can calculate
apparent thermal conductivity and conductance values for
a hypothetical two-channel system by fitting TDTR signals
generated using the two-channel model with a single-channel
model. The value of �A depends primarily on the magnitude
out-of-phase TDTR signal, while GA depends primarily on
the decay rate of the in-phase TDTR signal with the delay
time between pump and probe pulses. Figures 2(b) and 2(c)
show calculated �A and GA values as a function of coupling
strength for the two-channel Al/Si0.99Ge0.01 system described
above. The pump-modulation frequency dependence observed
in the �A and GA values is a result of assuming a homogenous
Si0.99Ge0.01 thermal conductivity, thereby ignoring the reduced
ability of the Si0.99Ge0.01 to transport heat within a length
d of the interface. The thermal resistance caused by the
two channels having different temperatures is independent
of the pump-modulation frequency; it appears even at steady
state [see Eq. (9)]. However, the sensitivity of the surface
temperature to the thermal properties of the region near the
interface is a function of pump-modulation frequency. At
low pump-modulation frequencies (<1 MHz), nonequilibrium
thermal resistance manifests as a significant reduction in GA

for the Al/Si0.99Ge0.01 system. At higher pump-modulation
frequencies (>1 MHz), the out-of-phase temperature is more
sensitive to the thermal properties of the region near the
Al/Si0.99Ge0.01 interface, thereby causing the nonequilibrium
resistance to also appear as a reduction in �A.

Figure 3 shows �A and GA derived from room temperature
TDTR measurements of Al/Cu and Al/Si0.99Ge0.01 samples,
along with predictions of the two-channel model. The pump
and probe 1/e2 spot sizes for the TDTR measurement were
10.3 μm. The Ge content of the dilute Si alloy was determined
to be 0.9% by Rutherford backscattering spectroscopy. The
80-nm Al metal films were deposited on the Si0.99Ge0.01 and
Cu substrates using dc magnetron sputtering in a high vacuum
chamber. The substrates were temporarily heated to ∼600 ◦C
under high vacuum and allowed to cool to room temperature
prior to Al deposition in order to provide a cleaner interface.

For the two-channel analysis of Cu, electrons are grouped
into channel 1, phonons into channel 2, and the thermal
properties for each channel are the same as defined in Sec. II
for Fig. 1. We expect an adiabatic condition between the Al
and Cu electrons as a result of the Cu native oxide and set
G1 = 0. The phonon-phonon interface conductance is treated
as a fitting parameter and is adjusted so GA derived from the
two-channel model matches GA derived from the experimental
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FIG. 3. (Color online) Apparent thermal conductivity and in-
terface conductance from TDTR measurements of Al/Cu and
Al/Si0.99Ge0.01 systems as a function of pump-modulation frequency.
Lines indicate the results of fitting TDTR signals generated by the
two-channel model with a single-channel model. The units of g are
W m−3 K−1.

data. A value of G2 = 92 MW m−2 K−1 results in good
agreement. This value is much less than the 4 GW m−2 K−1

conductance previously observed for clean Al/Cu interfaces,26

confirming our expectation of an adiabatic boundary condition
on electrons. The nonequilibrium conductance calculated from
Eq. (9) is 750 MW m−2 K−1, much larger than the phonon-
phonon conductance. The length scale of the nonequilibrium
calculated from Eq. (4) is only 10 nm, much less than
the thermal penetration depth in Cu (>2 μm). For these
reasons, nonequilibrium effects are indistinguishable from the
phonon-phonon conductance, and the two-channel model is
unnecessary for interpreting the results.

For Si0.99Ge0.01, the two-channel thermal properties are set
to the previously described values, and g, �2, and �1 + �2

are adjusted until �A and GA calculated from the two-
channel model match the experimental values. Values of g =
4 × 1014 W m−3 K−1, �2 = 12 W m−1 K−1, and �1 + �2 =
42 W m−1 K−1 result in excellent agreement. A coupling
constant on the order of 1014 W m−3 K−1 is expected based on
the scattering times of low-frequency phonons in Si (Refs. 20
and 21). The total thermal conductivity of 42 ± 4 W m−1 K−1

we find for Si0.991Ge0.009 is higher than the previously reported
value of 30 W m−1 K−1 for a 1-μm-thick thin film of
Si-0.99Ge0.01 (Ref. 27). While thin films often have reduced
thermal conductivity values compared to the bulk, the prior
TDTR study did not consider the possibility of a suppressed
value due to the 10 MHz pump-modulation frequency used.
The similarity between the value we obtain at 10 MHz of
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32 W m−1 K−1 and the prior result of 30 W m−1 K−1

suggest that the effect of using a high pump-modulation
frequency may not have been negligible. However, because the
800-nm thermal penetration depth in Si0.99Ge0.01 at 10 MHz is
comparable to the 1-μm film thickness, the error is likely small.

We observe frequency dependence in the apparent interface
conductance of the Al/Si0.99Ge0.01 system (Fig. 3), a phenom-
ena that has not been previously reported. The two-channel
model suggests the frequency dependence is a result of (1) the
in-phase decay of the Al/Si0.99Ge0.01 system being sensitive
to both the interface conductance and the thermal effusivity
within a distance d of the interface; and (2) the magnitude of
the out-of-phase signal being sensitive to the thermal effusivity
of the SiGe within d of the interface. Previous reports of
TDTR frequency-dependent �A have been for low thermal
conductivity, high concentration alloys, where the in-phase
decay rate is primarily determined by the small effusivity of
the sample and therefore were not sensitive to this type of
effect. Prior TDTR measurements of high thermal conductivity
solids, such as Si, have revealed no frequency dependence in
�A or GA. This is consistent with the two-channel model,
since high diffusivity solids will have thermal penetration
depths much larger than d at the pump-modulation frequencies
accessible in TDTR experiments (<20 MHz). Frequency-
domain thermoreflectance (FDTR) can access higher pump-
modulation frequencies but cannot independently determine
�A and GA at a single frequency; therefore, all FDTR studies
to date have assumed that GA is a constant value.6,28

Because TDTR is sensitive to thermal effusivity, it derives
its sensitivity to the thermal parameters in the two-channel
model indirectly based on how they affect T2(z), the tempera-
ture profile of the high heat capacity channel. As a result, �A

and GA derived from the two-channel model do not depend
on g, �2, and G1 independently of each other, and we cannot
uniquely determine all parameters from the experimental data.
The low-frequency TDTR measurements yield approximate
values for �1 + �2 and Geff . The frequency dependence of
�A and GA provides information about the thermal resistance
due to nonequilibrium between channels, i.e., it provides
approximate values for 1/GNE and d. Any combination
of parameters that results in �1 + �2 ≈ 42 W m−1 K−1,
d ≈ 150 nm, and GNE ≈ 200 MW m−2 K−1 will yield similar
results.

Although the nonequilibrium in surface temperatures is due
to a difference in temperature between heat carriers, the effect
can be closely approximated using a single channel model by
inserting a low thermal conductivity film of thickness d at the
surface of the bulk solid. The thermal conductivity of the layer
can be calculated by adding the a thermal resistance of 1/GNE

to the intrinsic thermal resistance of the film, d/(�1 + �2).
A single-channel bilayer model with a thin film of thick-
ness d = 150 nm, heat capacity of 1.65 J cm−3 K−1, and
thermal conductivity of �tf = d(d/(�1 + �2) + 1/GNE)−1 =
17 W m−1 K−1, on top of a semi-infinite Si0.99Ge0.01 layer with
bulk properties, yields nearly equivalent results as the two-
channel model. Similarly, for the Cu system, a single-channel
model for a 10-nm-thick film with a thermal conductivity of
7 W m−1 K−1 on top of a semi-infinite Cu layer with bulk
properties yields identical results to the two-channel model.
The reason this thin-film approximation works is it predicts

a temperature profile similar to the two-channel model’s
prediction for the high heat capacity channel T2(z).

IV. DIFFUSIVE TWO-CHANNEL MODEL VERSUS
BALLISTIC/DIFFUSIVE TWO-CHANNEL MODEL

A relevant question when applying the diffusive two-
channel model to Si0.99Ge0.01 is whether splitting up high-
and low-frequency phonons into two diffusive channels is
justified; most of the low-frequency phonons have mean free
paths larger than d [Eq. (4)]. In this section, we address
this issue and discuss how our two-channel, two-temperature
model relates to prior explanations of frequency-dependent
thermal conductivity in TDTR measurements.3,29

Previous observations of frequency-dependent thermal
conductivity measured by TDTR, as well as the similar
technique FDTR, have been interpreted phenomenologically
as a mean free path effect that results from nonlocal heat
flow.3,6 In this interpretation, phonons with mean free paths
larger than the thermal penetration depth do not contribute to
the experimentally measured thermal conductivity. The mean
free path explanation is similar to the multiple-channel picture
described here but is not identical. In both interpretations, long
lifetime phonons become decoupled from the thermal reservoir
and do not contribute to the measured thermal conductivity
when the thermal penetration depth is less than a given length
scale (mean free path or d). Aside from the difference in length
scales, another important difference is that in the diffusive
two-channel model, it is the heat flux boundary conditions
at the interface, rather than the nonlocal nature of the heat
flow, that is solely responsible for the decoupling of high- and
low-frequency phonons.8

The impact of an interface on a nonlocal description of heat
flow has not been discussed in the prior TDTR and FDTR
studies that have posited that nonlocal heat flow is the source
of observed deviations from bulklike behavior.3,5,6 However,
the temperature profile of a solid near interfaces has a strong
curvature; therefore, nonlocal effects are likely to be important
near boundaries. To better understand the role of interfaces in
nonlocal transport, and to better understand the relationship
between the diffusive two-channel model and nonlocal theory,
we consider a simple model for steady-state ballistic heat
flow in 1D. Heat flux across a plane, q, in a homogenous
solid due to one type of thermal excitation is equal to the
product of the excitation’s volumetric number density, n, the
excitation’s group velocity, v, and the difference in energy
between excitations traveling in the positive and negative
directions, 
E, i.e., q = nv
E/2. We assume the thermal
energy of the excitation is determined by the temperature
at the position at which it was last scattered. For small
energy differences, 
E = dE/dT (
T ) and q = Cv
T/2,
where 
T is the average difference in temperature of the
positions where excitations crossing the plane last scattered.
If the temperature profile near the plane can be approximated
with the local temperature gradient, i.e., 
T = −2� dT /dz,
then heat flow is diffusive and q = Cv�(−dT /dz). When the
temperature profile near the plane cannot be approximated
by the local temperature gradient, meaning the temperature
profile is not a linear function of position on the length scale
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of the mean free path, the ballistic heat flux, qB , is

qB = Cv

2
(T̄ (−∞ → z) − T̄ (z → ∞)), (17)

T̄ (−∞ → z) =
∫ z

−∞
T (x)/� exp (−(z − x)/�)dx, (18)

T̄ (z → ∞) =
∫ ∞

z

T (x)/� exp (−(x − z)/�)dx. (19)

To include the effect of an interface with another layer at
z = 0, T̄ (−∞ → z) needs to be redefined to allow excitations
to transmit or reflect at the boundary

T̄ (−∞ → z) =
∫ z

0
T (x)/� exp (−(z − x)/�)dx

+
∫ ∞

0
(RT (x) + (1 − R)T0)/�

× exp (−(x + z)/�)dx, (20)

where R is the probability of reflection, and T0 is the
temperature of the other layer, which we assume is constant.
Figure 4 shows how a boundary with a constant temperature
layer affects the steady-state heat flux for different mean free
path thermal excitations. The long mean free path phonons
have a lower heat flux near the interface. This is analogous to
the low-frequency phonons in the diffusive two-channel model
having a small interface conductance.

To compare the predictions of this simple description of
ballistic heat flow to the results of the diffusive two-channel
model, we consider a two-channel ballistic/diffusive model.
Channel 1 is made up of ballistic phonons with a small
heat capacity and constant inelastic scattering time, τ , and
whose contribution to the heat current is given by

1 10 100 1000
0

0.5

1

1000 nm

100 nm

q B
(z

) 
/ q

F

z (nm)

10 nm

FIG. 4. (Color online) The ratio of heat flow for ballistic phonons,
qB , to the value predicted by Fourier’s law, qF = Cvz�z, for steady-
state conditions and a boundary that transmits and reflects phonons
at z = 0. The curves were calculated with Eq. (17) for a linear
temperature gradient at z > 0. The temperature is assumed to be
continuous at z = 0 and constant at z < 0. Solid lines represent the
radiation limit (R = 0), while dashed lines represent the adiabatic
limit (R = 1).

Eqs. (17)–(20). This channel is analogous to the low-frequency
phonon channel in the diffusive model. Channel 2 is made up
of diffusive phonons with a large heat capacity whose contribu-
tion to the heat current is given by Fourier’s law. This channel
is analogous to the high-frequency phonon channel in the
diffusive model. In the ballistic/diffusive model there is only
one temperature: the temperature of the thermal reservoir. This
reservoir can transport energy through diffusion and by radiat-
ing and absorbing low-frequency phonons. This type of model
has previously been used to interpret quasiballistic transport21

and is justified physically because most three-phonon scat-
tering events for low-frequency phonons include two high-
frequency phonons. The mean free path of the ballistic phonons
in the z direction is �. The total heat flux will be given by the so-
lution to the integro-differential equation, q = −�2 dT /dz +
qB. A temperature profile of the form T (z) = H ×
exp(−z/δ) + az satisfies this equation. The surface temper-
ature, H , and temperature decay length, δ, can be found by re-
quiring the total heat flow from diffusive and ballistic channels
to be independent of z and by rejecting nonphysical solutions:

δ =
(

�2

�1 + �2

)1/2

�. (21)

This is identical to the decay length predicted by the diffusive
two-channel model, d, if � = τ , where d and � are defined
in Eqs. (3) and (4).

In the limit that the low-frequency phonons are adiabatic,
R = 1 and � = τ , the nonlocal and diffusive models produce
identical results, i.e., H = T2(0), where T2 is defined in Eq. (7).
A decrease in R increases the quantity of heat carried in the
ballistic channel and reduces the surface temperature of the
thermal reservoir, H . Similarly, for the diffusive two-channel
model, an increase in G1 increases the quantity of heat carried
in the low-frequency phonon channel and reduces the surface
temperature of the high-frequency phonon channel, T2(0).
However, away from the adiabatic limit, the two models
do not predict identical results; the ballistic/diffusive model
predicts a lower value for the surface temperature than the
diffusive model. In the ballistic/diffusive model, the heat flow
between layers, within a length δ of the interface due to
low-frequency phonons, is related to T0 − T̄ (0 → ∞). In the
diffusive two-channel model, the heat flow between layers, due
to low-frequency phonons, is proportional to T0 − T1, and the
heat flow in the solid, due to low-frequency phonons, is equal to
−�1

dT1
dz

. Despite this difference, the results of both models are
similar because both require high-frequency phonons to carry
the majority of heat diffusively near an interface, and both
models have a parameter (G1 and R) that adjusts how much
heat is carried near the interface by the low-frequency channel.

A key insight from the comparison of the two models is that
when an interface is responsible for decoupling low- and high-
frequency phonons, the important length-scale for deviation
from Fourier’s law is δ or d. This means that the low-frequency
phonon channel having mean free paths longer than d does not
invalidate the use of the diffusive two-channel TDTR model
for experimental analysis. Qualitative consideration of the bal-
listic/diffusive model in steady-state reveals why the ballistic
mean free path is not the only important length scale. Away
from the interface, the temperature gradient is linear, and both
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the diffusive and ballistic channels carry significant heat. For
steady-state heat flow, q is independent of position; therefore, a
reduced ability to transport heat ballistically near the interface
results in an increase in the amount of heat that is carried diffu-
sively near the interface. The quantity of heat the thermal reser-
voir carries diffusively depends on �2. Therefore, the length
scale describing the deviation from Fourier’s law should de-
pend on both the ballistic mean free path and thermal conduc-
tivity of the thermal reservoir, as Eq. (21) predicts. A second
important insight from both models is that elastic and inelastic
scattering events do not have equivalent effects; only inelastic
scattering is responsible for energy transfer between channels.
The importance of distinguishing between elastic and inelastic
scattering has been previously described in Ref. 29.

V. CONCLUSION

In summary, we presented a two-channel model for the
analysis of TDTR experiments for use in systems where
nonequilibrium heat flow is important. The key insight from
the two-channel model is that weak coupling between ther-
mal excitations, combined with different heat flux boundary
conditions, can result in a significant reduction of a material’s
ability to transport heat near an interface. We have shown
that the two-channel model can explain an apparent frequency
dependence of the TDTR-derived thermal conductivity and
interface conductance of Si0.99Ge0.01. Finally, we explored the
role an interface plays in ballistic heat flow and demonstrated
that a simple ballistic/diffusive model of heat flow near
an interface yields nearly identical results as the diffusive
two-channel model.
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APPENDIX A: TDTR ANALYSIS
WITH TWO-CHANNEL SOLUTION

To interpret TDTR experiments, a thermal model that
predicts the surface temperature of a radially symmetric multi-
layered system in response to surface heating is needed.22,28,30

In the frequency domain, the intensity-averaged surface
temperature response is22


T (ω) = 2πA

∫ ∞

0
G(k,ω) exp

(−π2k2
(
ω2

1 + ω2
2

)/
2
)
kdk,

(A1)

where A is the amplitude of heat absorbed by the sample
surface, ω1 and ω2 are the pump and probe spot sizes, and
G(k,ω) is equal to Ts(k,ω)/qs(k,ω), where Ts and qs are

the temperature and heat flux at the system’s surface. To
incorporate two-channel heat flow into a multilayered thermal
model for TDTR analysis, it is necessary to modify the
computation of G(k,ω).

The solutions generated for a 1D two-channel system are
easily generalized to a three-dimensional (3D) cylindrically
symmetric layer. In cylindrical coordinates, Eqs. (1) and (2)
become

C1
∂T1

∂t
= �1

(
η1

r

∂

∂r

(
∂T1

∂r

)
+ ∂2T1

∂z2

)
+ g(T2 − T1), (A2)

C2
∂T2

∂t
= �2

(
η2

r

∂

∂r

(
∂T2

∂r

)
+ ∂2T2

∂z2

)
+ g(T1 − T2), (A3)

where η1 and η2 are the ratio of the thermal conductivities
in the radial and z directions of channel 1 and 2. Taking
the Hankel and Fourier transforms of Eqs. (A2) and (A3)
results in differential equations nearly identical to Eqs. (11)
and (12) except with α1 = 1/�1(iωC1 + η1�14π2k2 + g) and
α2 = 1/�2(iωC2 + η2�24π2k2 + g). The temperature profile
for any layer in the two-channel multilayer will have the same
form as Eq. (13).

In standard TDTR experiments, the surface layer is a metal
film that serves as a transducer. The pump beam heats the
metal’s electrons, while the probe beam primarily interrogates
the temperature of the metal’s phonons.31 Assigning electrons
to channel 1 and phonons to channel 2 yields

G(k) = u1B
−
1 + u2B

−
2 + u1B

+
1 + u2B

+
2

γ11v1B
−
1 + γ12v2B

−
2 − γ11v1B

+
1 − γ12v2B

+
2

, (A4)

where γmn = �mλn.
To solve for the surface temperature of a layer in terms of

the surface heat flux, it is necessary to relate the temperature
profiles and heat currents between layers. This can be accom-
plished by applying thermal boundary conditions to each layer
and requiring conservation of energy across boundaries and
then solving the resulting system of equations. We generalize
this approach for an arbitrary number of layers by deriving
an iterative expression, analogous to Eq. (14) in Ref. 22,
which relates the unknown constants in Eq. (13), [B] =
(B−

1 B−
2 B+

1 B+
2 )T to the values for [B] of the layer beneath

it. To do this we need a matrix that relates a layer’s values of
[B] to the temperatures and heat fluxes at the bottom of that
layer, a matrix that relates the temperatures and heat fluxes of
two layers at a boundary, and a matrix that relates the surface
temperature and heat fluxes of a layer to its values of [B].

The values of [B] can be expressed in terms of the
temperatures and heat fluxes at the bottom of that layer with
the expression

[B] = [M][T1 T2 q1 q2]Tz=L, (A5)

[M] = 1

2

⎡
⎢⎢⎢⎣

eλ1L 0 0 0

0 eλ2L 0 0

0 0 e−λ1L 0

0 0 0 e−λ2L

⎤
⎥⎥⎥⎦

[
[X]−1 [Y ]−1

[X]−1 −[Y ]−1

]
,

(A6)

where L is the layer thickness and [X] and [Y ] are defined
in Eqs. (14) and (16). The temperatures and heat fluxes at a
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surface of a two-channel layer can be expressed as

(T1 T2 q1 q2)Tz=0 = [N ][B], (A7)

[N ] =
[

[X] [X]

[Y ] −[Y ]

]
. (A8)

Heat flow between layers at an interface can be described
using four interface conductance values, G11, G12, G21, G22,
where the subscripts denote the channels between which G de-
scribes heat flow. Consider as an example the Al/Si0.099Ge0.01

system with low- (<3 THz) and high-frequency phonons
grouped into channels 1 and 2. Then the G11 and G22 terms
are related to the strength of coupling between the low- and
high-frequency phonon reservoirs in the two layers. The terms
G12 and G21 relate the coupling of low-frequency Al phonons
to high-frequency Si phonons and high-frequency Al phonons
to low-frequency Si phonons. These terms will not be equal
because selection rules that govern the probability of a three-
phonon scattering event will be different for the two cases. In
most systems, only one or two of these four conductance values
will be needed in the calculation because coupling between
different types of carriers across an interface is often weak.

The temperatures and heat fluxes at the bottom of layer n

can be related to temperatures and heat fluxes at the surface of
layer n + 1 with the four interface conductance values

[T1 T2 q1 q2]Tn,z=d = [R][T1 T2 q1 q2]Tn+1,z=0,

(A9)

[R] = 1

G11G22 − G12G21

×

⎡
⎢⎢⎢⎣

CG22 −DG21 G22 −G21

−CG12 DG11 −G12 G11

β −β EG22 −EG21

−β β −FG12 FG11

⎤
⎥⎥⎥⎦ , (A10)

C ≡ G11 + G21, (A11)

D ≡ G12 + G22, (A12)

E ≡ G11 + G12, (A13)

F ≡ G22 + G21, (A14)

β ≡ EG22G21 + FG11G12. (A15)

Using Eqs. (A.5), (A.7), and (A.9), we can write an
iterative expression for the constant matrix [B]:

[B]n = [M][R][N ][B]n+1. (A16)

For analysis of experiments in which the metal transducer
is not on the surface of the multilayer stack, meaning heat is
deposited and temperature is interrogated at a buried interface
in the multilayer system, it is necessary to modify the above
solution for G(k) to account for bidirectional heat flow from the
transducer. In a bidirectional model, the multilayered system
can be split into two stacks: a forward stack consisting of
all layers above the boundary where heat is deposited, and
a backward stack that includes all layers below. The correct
substitution for Eq. (A.4) can be derived by (a) noting energy

conservation at the heated boundary, qs = qf + qb, where qf

is the heat flow into the forward stack, and qb is heat flow into
the backward stack; and (b) solving the system of equations
that results from the separate application of Eq. (A.16) to the
forward and backward stack.

Often a single channel is sufficient to describe heat flow in a
majority of the system’s layers, and the formulation described
by Eqs. (A5)–(A16) is computationally wasteful. A more
computationally efficient but less general approach is to derive
G(k) for a hybrid multilayer, where some layers have two
channels and some have one channel. This expression is easily
derived for the specific case of a one-channel multilayer on
top of a semi-infinite two-channel layer. Applying interfacial
conductance heat flux boundary condition to the two-channel
layer [Eq. (5)] and substituting Eq. (13) into Eq. (15) yields a
system of equations that defines the B−

i in terms of the bottom
of the single-channel layer, TSC:

[h]TSC = ([Y ] + [h][X])[B−], (A17)

where [h] is a diagonal matrix that contains each channel’s
interface conductance. By requiring conservation of energy
at the surface of the semi-infinite two-channel layer, the total
heat flux at the bottom of the single-channel multilayer can be
expressed as

qSC =
∑

i

qi =
∑

j

∑
i

YijB
−
j = �TSC. (A18)

In standard TDTR analysis, the heat flux at the surface of the
semi-infinite substrate is proportionally related to its surface
temperature, qn = �nunTn, where un = (4π2k2 + iωCn/�n).
The major change in analysis when replacing a one-channel
semi-infinite layer with a two-channel semi-infinite layer is
that �nun is replaced by �:

G(k) = D+ − �B+

�A+ − C+ , (A19)

where A+, B+, C+, and D+ are defined in Eq. (A14) in
Ref. 28. We note that the B+ term here is not related to
the B terms defined in Eq. (13). A second difference is that
for the two-channel semi-infinite substrate case the interfacial
conductance values are used to calculate �, while for the
case of a one-channel substrate the interface conductance is
included in the calculation of A+, B+, C+, and D+. This
difference arises because the B− terms in Eq. (13) for the
semi-infinite two-channel layer depend on how the heat flux
into the layer is distributed between the channels [Eq. (15)]
and can’t be assumed to equal 1 as in Ref. 22 for single channel
layers.

APPENDIX B: (N + 1) TEMPERATURE MODEL

Electron-electron scattering times are typically much faster
than the electron-phonon relaxation time; therefore, the as-
sumption that the electron and phonon channels are well
described by a single temperature is often rigorously valid.10

The same is not true for the low-frequency/high-frequency
channels in a phonon system. We do not expect a single temper-
ature to describe the occupation statistics of all low-frequency
phonons because scattering rates between low-frequency
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acoustic phonons are small, the coupling constant between
high- and low-frequency phonons is frequency dependent, and
the interface conductance integrand is frequency dependent.
To correct this oversimplification, we generalize our approach
to allow the low-frequency channel to have N temperatures. To
limit the number of additional thermal property parameters
in the model, we follow Ref. 21 and assume that coupling
between low-frequency phonons is negligible. Then, the two
coupled differential equations in Eq. (11) and Eq. (12) become
a system of N + 1 coupled differential equations:

∂2T0

∂z2
= α0T0 −

∑
n

gn

�0
Tn

∂2T1

∂z2
= α1T1 − g1

�1
T0

(B1)
...

∂2TN

∂z2
= αNTN − gN

�N

T0,

where α0 = 1/�0(iωC0 + GR), αn = 1/�n(iωCn + gn),
GR = ∑

n gn, T0 is the temperature of the high-frequency
phonon thermal reservoir, and T1 to TN describe the N

low-frequency channels. The value of GR quantifies the rate of
energy transfer from the high-frequency channel by radiation
and absorption of low-frequency phonons.21 The temperature
profiles in B1 can be found in an identical manner to T1 and
T2 in Eqs. (11) and (12). The only change is that the matrices
in Eqs. (13)–(16) will have a rank of N + 1 instead of 2.

The characteristic polynomial for the eigenvalues is

(α0 − λ2)
N∏

n=1

(αn − λ2)

−
N∑

n=1

(
g2

n

�0�n

1

(αn − λ2)

N∏
n=1

(αn − λ2)

)
= 0. (B2)

In the steady-state limit, αn = gn/�n, and the length scale of
nonequilibrium between channels is given by 1/λ. Considering
Eq. (B2), we see that the range of length scales describing
nonequilibrium will be of order

√
�0/GR to

√
�M/gM ,

where M labels the channel with weakest coupling to the
high-frequency thermal reservoir.

In order to use an (N + 1) temperature model to generate
TDTR data, it is necessary to define (N + 1) interface con-
ductance values, thermal conductivities, heat capacities, and
coupling parameters. To reduce the number of free parameters,
we need frequency-dependent expressions for these properties.
For example, let channel i contain phonons with frequency ω to
ω + 
ω. Then its thermal conductivity can be approximated as
�i = (C(ω)v2τ (ω)/3)
ω. The phonon-phonon scattering rate
for low-frequency phonons can be approximated as τ (ω)−1 =
BSω

2, where BS is the scattering strength. The low-frequency
heat capacity can be approximated as C(ω) = 3kBω2/(2v3π2).
Assuming that the low-frequency scattering time is equal to
the thermal relaxation time between high- and low-frequency
phonons allows the coupling constant of channel i to be ap-
proximated as gi = C(ω)
ω/τ (ω) = 3kBBSω

4
ω/(2v3π2).
Similarly, we can approximate the interface conductance of
channel i as Gi = v(1 − R)C(ω)
ω/4. Now the thermal
parameters in the model are R, BS , v, �Tot, CTot, and
GTot. For Si0.99Ge0.01, values of BS = 6.5 × 10−17s, �Tot =
44 W m−1K−1, and GTot = 260 MW m−2 K−1, R = 0, v =
6000 m/s, and CTot = 1.65 J cm−3 result in excellent agree-
ment between the (N + 1) temperature model and experiment
for N = 20. In this calculation, we included only phonons with
frequencies between 0.5 THz and 3 THz in the low-frequency
channel and assumed modes with a frequency less than 0.5 THz
do not carry heat because of Akhiezer damping.32 We note
that the value we derive for BS depends on the value we
assumed for R. A value of BS = 6.5 × 10−17s corresponds
to GR = 3 × 1014 W m−1 K−1, comparable to the value
of g = 4 × 1014 W m−1 K−1 derived using the two-channel
model.
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