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Improved Callaway model for lattice thermal conductivity
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In developing the phonon quasiparticle picture, Peierls discovered that, in a perfect crystal, without anharmonic
umklapp (U ) events, a current-carrying distribution can never relax to a zero-current distribution. Callaway
introduced a simplified approximate model version of the Peierls-Boltzmann equation, retaining its ability to
deal separately with normal (N ) and U events. This paper clarifies and improves the Callaway model, and shows
that Callaway underestimated the suppression of N processes in relaxing thermal current. The new result should
improve computations of thermal conductivity from relaxation-time studies.
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I. INTRODUCTION

Debye1 was the first to realize that a perfect harmonic
crystal is a perfect heat conductor. In insulators, heat is carried
by propagating lattice-vibrational normal modes. Quantum
theory simplifies by identifying these modes as particles.
Anharmonic interactions permit a phonon with wave vector
�Q to interact with other phonons �Q′ and �Q′′ (either by decay

into two, or absorption of one and emission of the other).
These events cause thermalization and resistance to current
flow. The Peierls-Boltzmann equation2 (PBE) puts this on a
firm footing. Peierls made the important observation that wave-
vector-conserving (“normal” or “N”) events ( �Q = �Q′ ± �Q′′)
can not by themselves cause a current-carrying state (with
nonzero total wave vector) to decay to a zero current state, but
that umklapp (“U”) events ( �Q = �Q′ ± �Q′′ + �G, where �G is a
reciprocal lattice vector) can relax the current to zero.

Solving the PBE is still not an easy task, but modern
advances make it possible. In particular, ab initio computation
of harmonic normal modes is now very successful;3 similar
techniques give quite reliable anharmonic forces;4 thus full
solutions from purely theoretical input are now being done
with good success.5 This does not diminish the need for
simplified approximate models to enable us to think about
the physics of the process, and perhaps to invent reliable
approximate treatments that avoid the full solution. Such a
model was introduced by Callaway6 in 1959. This model
had a big influence on the field, although the model is rarely
used in detail. Rethinking Callaway’s model has allowed me
to improve it, correcting and simplifying the solution. Then,
using a Debye-type phonon model, the relative role of N and
U processes is reanalyzed.

II. PEIERLS-BOLTZMANN EQUATION

The PBE is

dNQ

dt
= ∂NQ

∂t
− �vQ · ∂NQ

∂�r +
[
∂NQ

∂t

]
collision

, (1)

where Q is short for ( �Q,n): both wave vector and the “branch
indices” n needed to specify a propagating vibrational normal
mode. The phonon group velocity is �vQ = ∂ωQ/∂ �Q, where
ωQ is the frequency. The term “quasiparticle” denotes a prop-
agating vibrational normal mode. Disorder and anharmonic
interactions must not be so strong as to make the mean free path

� as short as a wavelength. The quasiparticle picture breaks
down if the wave vector uncertainty caused by scattering is too
large; ωQ and �vQ are correspondingly poorly defined. If the
heat-carrying excitations are not quasiparticles, then a theory
more complicated than the PBE is needed. The Ioffe-Regel
criterion,7 which says no currents can flow if quasiparticles are
destroyed (� < λ) is not correct. Better theories are sometimes
available.8,9 According to the PBE, the distribution NQ may
vary in space, and, if not driven, will relax under collisions
to a local equilibrium Bose-Einstein distribution nQ[T (�r)].
The collision term is a complicated nonlinear sum over other
phonon states NQ′ . The collisions conserve local energy

E =
∑
Q

h̄ωQ

(
NQ(�r) + 1

2

)
. (2)

In the absence of anharmonic U events or other momentum-
nonconserving processes (e.g., disorder), the total local wave
vector

�P (�r) =
∑
Q

�QNQ(�r) (3)

is also conserved under collisions.
The full Peierls-Boltzmann equation has an important

property, namely, generating the Boltzmann “H-theorem”.10

As explained, e.g., by Landau and Lifshitz,11 counting the
multiplicity of states gives a quasiparticle entropy

S = kB

∑
Q

[(NQ + 1) ln(NQ + 1) − NQ ln NQ]. (4)

When this is maximized, subject to the constraint of constant
E [Eq. (2)], the result is NQ → nQ. Even though entropy is
strictly not defined except in equilibrium, nevertheless, Eq. (4)
qualifies as a nonequilibrium local quasiparticle entropy. When
the PBE is used to compute the rate of change dS/dt of Eq. (4),
one can show that (dS/dt)collision � 0. The distribution NQ

that is stationary under collisions is the one that maximizes
S under the relevant constraints. If the sole type of collision
is anharmonic phonon scattering with only N processes, then
the relevant object to maximize is

S/kB − βE − �� · �P , (5)

144302-11098-0121/2013/88(14)/144302(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.144302


PHILIP B. ALLEN PHYSICAL REVIEW B 88, 144302 (2013)

where β and �� are Lagrange multipliers. The maximum occurs
when NQ evolves to a “flowing equilibrium” n∗

Q:

NQ → n∗
Q = [eh̄ωQ/kBT + ��· �Q − 1]−1. (6)

The Lagrange multiplier β has been identified as 1/kBT , with
a local temperature T (�r), but the Lagrange multiplier �� has
still to be identified.

Now consider heat transport under an impressed tempera-
ture gradient. The steady state distribution obeys dNQ/dt =
∂NQ/∂t = 0. The distribution function relaxes toward a local
equilibrium (T may vary spatially), with a small deviation
NQ → nQ + �Q. The aim is to find, to first order in �∇T , the
heat current, defined as

�j = (1/	)
∑
Q

h̄ωQ�vQ�Q ≡ −κ · �∇T . (7)

The spatial gradient term in the PBE [Eq. (1)] can be linearized
in the thermal gradient; �vQ · �∇NQ becomes (∂nQ/∂T )�vQ ·
�∇T . It is common to approximate the collision term by a
simplified linear and local-in-Q approximation. The steady
state, linear in �∇T , PBE, and the corresponding thermal
conductivity become

0 ≈ −�vQ · �∇T ∂nQ/∂T − �Q/τQ, (8)

κRTA = 1

	

∑
Q

h̄ωQv2
QxτQ ∂nQ/∂T . (9)

This is the relaxation-time approximation (RTA), and τQ is
the phonon relaxation time. It is worth noting that, although
this represents a serious approximation to the full PBE,
nevertheless, the exact solution, if available, can always be put
in the form of Eq. (9), with a suitably redefined relaxation time.
The idea is that the exact distribution function nQ + �Q, found
by solving the linearized integral equation, can be written,
in linear approximation, as �exact

Q ≡ −τ exact
Q �vQ · �∇T ∂nQ/∂T .

This defines a quantity τ exact
Q which can be interpreted as the

time for current relaxation in the channel Q. It is perhaps
not very different from, but is surely not the same as, the
ordinary “quasiparticle” relaxation time, defined using thermal
Green’s function theory via the self-energy (�), 1/τ

QP
Q ≡

−2 Im�(Q,ω + iη).

III. APPROXIMATE TREATMENT OF N VERSUS U

The question is how to find an approximate τQ that will
give an accurate thermal conductivity, without the full labor
of solving the PBE? The choice τ

QP
Q has some advantages

since it is a well-defined object, measurable by neutron or
x-ray scattering, and not overwhelming to compute by modern
methods. It is also an object of interest in Peierls-Boltzmann
theory. If all phonons Q′ are forced to be in equilibrium (NQ′ =
nQ′ ) except when Q′ equals Q, then (dNQ/dt)collision becomes
−(NQ − nQ)/τQP

Q . The PBE form for τ
QP
Q agrees with the

Green’s function result in the usual anharmonic perturbation
theory. The RTA consists of using τ

QP
Q as the τQ in Eq. (8).

This underestimates the thermal conductivity. When NQ 	=
nQ, all collisions involving mode Q help relax the quasiparticle
population of state Q; however, there are N processes which

contribute to τ
QP
Q but can not be fully active in relaxing the

current. They do not fully contribute to τ exact
Q . This is where

the Callaway model6 comes in.
Callaway’s idea is to write (∂NQ/∂t)collision in two parts, as

−(NQ − nQ)/τU
Q − (NQ − n∗

Q)/τN
Q . The collective relaxation

rate

1/τ c
Q = 1/τU

Q + 1/τN
Q (10)

is just the total quasiparticle relaxation rate.12 The part
denoted 1/τN

Q , arising from anharmonic N processes, leaves
the total crystal momentum unchanged. Only the “U” part
1/τU

Q can relax to the final zero-current equilibrium. The part
1/τN

Q relaxes the distribution to the flowing equilibrium n∗
Q

[Eq. (6)]. When other mechanisms of phonon relaxation, such
as disorder, are present, they also destroy crystal momentum
conservation, and are grouped with the U terms.

The deviation �Q = NQ − nQ [Eq. (7)] determines
the current. Deviation from the flowing equilibrium can
be written by Taylor expansion as NQ − n∗

Q = �Q +
(kBT 2/h̄ωQ)(∂nQ/∂T ) �� · �Q. The Callaway-modified RTA
therefore gives the distribution function as

�Q = −τ c
Q�vQ · �∇T

∂nQ

∂T
− τ c

Q

τN
Q

kBT 2

h̄ωQ

�� · �Q∂nQ

∂T
. (11)

The Lagrange multiplier �� is not yet determined. This is where
my answer deviates a bit from Callaway’s.

The total crystal momentum �P [Eq. (3)] should be the same
for both the actual distribution NQ and the flowing equilibrium
distribution n∗

Q that N processes drive NQ towards. This means∑
Q

�Q(NQ − n∗
Q) = 0 =

∑
Q

�Q(�Q + nQ − n∗
Q). (12)

Taylor expanding gives

nQ − n∗
Q = nQ(nQ + 1) �� · �Q = kBT 2

h̄ωQ

∂nQ

∂T
�� · �Q. (13)

Inserting Eqs. (11) and (13) into Eq. (12) gives an equation for
the Lagrange multiplier ��:

∑
Q

τc
Q(�vQ · �∇T ) �Q∂nQ

∂T
=

∑
Q

τc
Q

τU
Q

kBT 2

h̄ωQ

( �� · �Q) �Q∂nQ

∂T
.

(14)

This replaces Eq. (14) of Callaway’s paper,6 which is equiva-
lent except for an extra factor of 1/τN

Q inside the sums on both
sides of the equation. Why does Callaway have a different
formula fixing ��? Callaway uses the constraint that the time
rate of change of �P from N processes must vanish. This is
surely an equally exact statement, but, in order to implement
it, Callaway makes an additional use of the relaxation time
model. This gives an extra factor of 1/τN

Q inside both Q

sums in Eq. (12). The model is inexact, and leads to a
difference from Eq. (14), which made no such additional
approximation. Insofar as Callaway’s Eq. (14) differs from
Eq. (14), Callaway’s method is wrong.

The argument simplifies by assuming cubic symmetry or
else a thermal gradient along a symmetry axis (denoted x) of
an orthorhombic crystal. Then only �x is needed. Its value
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cancels from Eq. (11) when the second term is multiplied
by the left-hand side, and divided by the right-hand side, of
Eq. (14). When the resulting equation for �Q is substituted
into Eq. (7), a formula for the thermal conductivity results:

κxx = κc + λ1λ2/λ3. (15)

The leading term κc is just the usual relaxation time formula

κc = 1

	

∑
Q

h̄ωQv2
Qxτ

c
Q ∂nQ/∂T , (16)

where 1/τ c
Q is the usual quasiparticle relaxation rate 1/τU

Q +
1/τN

Q containing both N and U processes. The correction
factors are

λ1 = 1

	

∑
Q

vQxQxτ
c
Q ∂nQ/∂T , (17)

λ2 = 1

	

∑
Q

vQxQx

(
τ c
Q

/
τN
Q

)
∂nQ/∂T , (18)

λ3 = 1

	

∑
Q

(
Q2

x

/
h̄ωQ

)(
τ c
Q

/
τU
Q

)
∂nQ/∂T . (19)

Equations (15)–(19) are the new result of this paper. They
are an approximate procedure, based on the Callaway model,
which better contains the different roles of N and U scattering
events. Callaway’s answer is similar, except that τ c

Q is replaced
by the ratio τ c

Q/τN
Q in both λ1 [Eq. (17)] and λ3 [Eq. (19)].

To see the consequence of this modification, the Debye
model is appropriate. It assumes three branches ωQ = vQ,
with v a constant sound velocity, the same for simplicity, for
all three branches. The dispersion relations are spherically
symmetric, and the Brillouin zone approximated by a sphere of
radius QD with maximum frequency ωD = vQD . The Debye
density of states is D(ω) = (9N/V )ω2/ω3

D . The specific
heat is

C(T ) =
∫ ωD

0
dω h̄ω

∂n(ω)

∂T
D(ω). (20)

In the same spirit, one assumes scattering rates 1/τN
Q and 1/τU

Q

to depend only on ωQ and T , that is, the only Q dependence
comes through ωQ. Furthermore, it is common to assume that
the resulting function factorizes into a power of frequency ω

times a function of T :

1/τα
Q → 1/τα(ωQ,T ) = γα(T ) × (ωQ/ωD)pα . (21)

If we look only at ratios, it will not be necessary to choose
a T dependence of γN . For γU ’s, at low T , the needed
large Q thermal phonon is thermally suppressed by a factor
often written as γU = γN × A exp(−�D/aT ), where A is a
constant, independent of T , and �D is the Debye temperature
kB�D = h̄ωD . The adjustable parameter a is often set to 3.

It is convenient to define a frequency average f of a
frequency-dependent function f (ω) as

f (T ) = 1

C(T )

∫ ωD

0
dω h̄ω

∂n(ω)

∂T
D(ω)f (ω). (22)

Then in the Debye model, the answers (16)–(19) become

κcD = 1

3
C(T )v2τc,

λ1D = 1

3h̄
C(T )τc,

(23)
λ2D = 1

3h̄
C(T )τc/τN,

λ3D = 1

3h̄2v2
C(T )τc/τU .

Then my result for the Callaway model in Debye approxima-
tion is

κC = κRTA

(
1 + τc(ω,T )/τN (ω,T )

τc(ω,T )/τU (ω,T )

)
. (24)

Callaway’s solution has an extra factor 1/τN
Q in both λ1 and

λ3. Then Eq. (24) is replaced by

κ∗
C = κRTA

(
1 + τc(ω,T )/τN (ω,T )

2

τc(ω,T ) τc(ω,T )/τU (ω,T )τN (ω,T )

)
.

(25)

The notations κC and κ∗
C denote the present (new and corrected)

solution of Callaway’s model in Debye approximation, and the
original (old and uncorrected) solution.

Finally, it is necessary to choose power laws pN and pU for
N and U scattering rates. Following Herring,13 the N processes
are assumed to have quadratic ω dependence pN = 2. This
has been confirmed in recent numerical calculations.14,15

Herring also suggested quadratic behavior pU = 2 for the ω

dependence of U processes. However, numerical calculations
have been recently fit to larger powers pU = 4 (Ref. 14) and
pU = 3 (Ref. 15). Results for two cases pU = 2 (Herring) and
pU = 4 (a possible alternative) are shown in Fig. 1.

0 0.2 0.4 0.6 0.8 1
T/ΘD

0

0.2

0.4

0.6

0.8

1

κ C
*/

κ C

FIG. 1. Ratio of Callaway’s old solution (κ∗
C) to the new solution

(κC) of the Callaway model in Debye approximation, with quadratic
behavior 1/τN (ω) = γN (ω/ωD)2. The dashed curves use the Herring
quadratic behavior also for U , with ratio τN (ω)/τU (ω) = γU/γN =
g and g = A exp(−�D/3T ). The solid curves have pU = 4 or
τN (ω)/τU (ω) = g(ω/ωD)2, and the same form for g. In both cases,
the four curves, from lowest to highest, are for values of A set to 1,
2, 4, and 10.
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Callaway’s solution κ∗
C underestimates the suppression of

N scattering, and thus underestimates the thermal conductivity.
I believe that κC , the larger solution, is the true solution
of Callaway’s model. In the low-T limit, integrals can be
done analytically. In Herring’s case (pN = pU = 2), the ratio
κ∗

C/κC → 7/25, and in the case pN = 2, pU = 4, the ratio
becomes κ∗

C/κC → 1/7. At higher T , as U scattering increases
to the level of N scattering, the difference between Callaway’s
old solution and the present new one is smaller.

The new solution simplifies in the case pN = pU as, for
example, in Herring’s case where both are 2. The complex-
ities in Eq. (24) cancel, leaving κC → κRTA × (1 + γN/γU ).
This is true at all T , leaving the simple answer κC =
(1/3)Cv2τU (T ,ω); N scattering drops out completely. This
is definitely not true of Callaway’s solution. For more realistic
models, for example, with pU = 4, frequency integrals are
more complicated, and N scattering does not completely
disappear. In fact, since U scattering has apparently an ω3 or
ω4 limiting behavior, and impurity scattering has the Rayleigh
form γimp ∝ ω4, the quadratic behavior of the N term is the
only thing that prevents a low-ω divergence in the integrals.
A low-ω divergence is not completely unphysical. At low
enough T , the only vibrations thermally excited are sure to
have mean free paths longer than sample size. Whether or
not their contribution to the integrals for κ converge, they
in fact do not contribute currents governed by temperature
gradients. Instead, they give ballistic currents determined by
the difference available heat (i.e., T 4) in the baths at the two
ends. The integrals have to be cut off at some ωmin whose value
depends on sample size.

Figure 2 shows some of the same results as Fig. 1,
except in a different ratio, comparing with the relaxation-time

0 0.2 0.4 0.6 0.8 1
T/ΘD

0

0.2

0.4

0.6

0.8

1

κ R
TA
/κ
C

FIG. 2. Ratio of relaxation-time approximation (κRTA) to full
solution κC for the Callaway model in Debye approximation with
quadratic ω dependence for 1/τN and quartic ω dependence for
1/τU . The four solid curves use the same parameters as the solid
curves of Fig. 1. The dashed curves have A = 10 (as does the
top solid curve), but also include Rayleigh-type impurity scattering
[1/τimp = γimp(ω/ωD)4], a momentum-nonconserving event which
adds to 1/τU without the low-T thermal suppression. The strength of
the impurity term is γimp/γN = 1, 2, 4, 10 (from the lowest dashed
curve to the highest).

approximation rather than the original Callaway approxima-
tion. Also shown is the effect of including large amounts of
momentum-nonconserving impurity scattering. Enhancement
of thermal conductivity is still quite large since N scattering
dominates 1/τQP at low T . However, the enhancement is
smaller because 1/τimp exceeds 1/τU at lower T .

IV. CALLAWAY’S MODEL AND REALITY

Computation is now advanced enough to give a final answer
to the question: How realistic is Callaway’s model? There are
good algorithms for accurate construction and solution of the
PBE, at least at T not too low (where mesh size becomes
a problem because only small �Q phonons are excited.) An
iterative solution of the PBE begins with a first iteration which
is the RTA. This requires full computation of the quasiparticle
relaxation rate 1/τ

QP
Q . It is straightforward in principle to

separate this into N and U parts. These could be used to
obtain the Callaway model solution from λ1, λ2, and λ3 of
Eqs. (17)–(19). If a full interative solution of the PBE is
then completed, it would be interesting to compare with the
Callaway solution.

In the Herring version of the Debye approximation to the
Callaway model, with anharmonic phonon scattering rates
going like 1/τQ ∝ ω2

Q for both N and U , the answer is that
N processes drop out, and the umklapp scattering determines
the conductivity. This is a nice but oversimple result. Once
the model gets more complex, with multiple momentum
relaxing processes with differing ω dependencies, N processes
no longer drop out completely, but can not alone relax the
distribution NQ to the zero-current distribution. For models
more realistic than Debye, N processes can relax the current
toward a value h̄〈v2〉 �P/	, but still can not relax the current
completely.

There has been a practice of computing only κRTA, some-
times with the claim that the Boltzmann equation has thus
been solved. Two arguments may seem to support this. First,
Callaway used his solution to fit quite accurately the measured
κ(T ) of Ge. He did not find much enhancement beyond
RTA from the reduced role of N processes. This must be,
at least partly, an artifact of the inaccuracy of his solution.
Thus, Callaway’s work seems to approximately support the
RTA, but the support can not be taken seriously. The second
argument is that the corrections are not often as big in
complex materials as they are in the Debye model shown in
Figs. 1 and 2.

Several converged iterative solutions of the PBE have been
reported that include some discussion of the departure of the
full solution from the RTA. Ward et al.16 in Fig. 2 show an
80% increase in κ(172 K) for diamond, by converging the PBE
rather than using RTA. The increase lowers to 30% at 1200 K.
However, in other systems, the error is often not so large. For
example, Fig. 3 of Chernatynskiy et al.17 shows that for MgO,
the effect on κ(T = 300 K) is only a 7% increase, and the
effect is smaller in UO2. In SrTiO3, where the effect is tiny at
250 K, it is 7% at 50 K and a 42% increase at 20 K.18 The
message is that for materials with complex phonon spectra,
U processes are only thermally suppressed at quite low T .
This is why the inability of N processes alone to degrade
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heat current does not show up except at low T and with pure
samples (including isotopic purity). The recent prediction of
large κ in BAs (Ref. 19) is related to weakness of U processes
(and the resulting ineffectiveness of N processes) caused by
phonon dispersion that is quite simple and also unusual. It
would be interesting to ask whether the Callaway model has
decent predictive power in this case. Even if not predictive,
the Callaway model has given needed insight, and should
continue to do so. Therefore, the corrected (and simpler)

solution of this model found in this paper should have some
value.
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