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Temperature-dependent effective third-order interatomic force constants from first principles
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The temperature-dependent effective potential (TDEP) method is generalized beyond pair interactions. The
second- and third-order force constants are determined consistently from ab initio molecular dynamics simulations
at finite temperature. The reliability of the approach is demonstrated by calculations of the mode Grüneisen
parameters for Si. We show that the extension of TDEP to a higher order allows for an efficient calculation of the
phonon life time, in Si as well as in ε-FeSi; a system that exhibits anomalous softening with temperature.
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I. INTRODUCTION

Thermodynamic properties of materials are often discussed
in terms of the quasiharmonic approximation.1,2 This theory
has a solid foundation, but it is not without limitations.
Any property that relies on phonon lifetimes and scattering
rates, such as thermal conductivity, is unavailable. For those
properties one needs terms higher than second order in the
Taylor expansion of the crystal potential energy surface. If
the higher-order terms are known, there is extensive theory
developed for the properties that can be extracted.3 The
difficulties lie in determining these parameters.

Density functional theory gives one access to the potential
energy surface. Perturbation theory and the 2n + 1 theorem
or direct supercell approaches can be used to determine
materials’ force constants.4–6 In these formalisms, however,
the potential energy surface is treated as constant with respect
to temperature. We have previously shown that this is not
the case.7,8 In those studies, using the temperature dependent
effective potential (TDEP), we obtain the best possible second
order Hamiltonian as a fit to the Born-Oppenheimer molecular
dynamics potential energy surface at finite temperature. With
this technique it is possible, for example, to accurately describe
solid 4He, which is strongly anharmonic, with a second-order
Hamiltonian. The effective potential gives accurate phonon
dispersion relations and free energies. The aim of this paper is
to extend the TDEP formalism to include higher-order terms,
making the technique suitable for calculations of important
materials properties such as phonon lifetimes.

II. METHOD

We start with a model crystal Hamiltonian
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Here U is the potential energy and ¯̄�ij and ¯̄�ijk are the second-
and third-order force constants. The displacement of atom i

from ideal positions is denoted �ui , its momentum �pi , and
αβγ are Cartesian indices. Bold symbols indicate vectors and
doubly overlined symbols matrices or tensors, respectively.

The basic idea of the generalized TDEP is to use Born-
Oppeheimer molecular dynamics to accurately sample the

potential energy surface at finite temperature. Then we fit the
model Hamiltonian in Eq. (1) to this surface. This is done by
comparing the forces of the model and the ab initio system at
each time step and minimizing the difference.

With the vast number of values to be determined for the
third-order force constants it is crucial for the generalization
of the TDEP to higher-order terms to make use of the symmetry
analysis.8 We begin by reiterating the symmetry relations the
force constants obey,2 first the transposition symmetries
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Then, if two tensors are related by symmetry operation S the
components are related as follows:
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Force constants also obey the acoustic sum rules∑
j

¯̄�ij = 0 ∀ i, (6)

∑
k

¯̄�ijk = 0 ∀ i,j. (7)

To apply symmetry relations (2) to (7), we set each tensor
component to a symbolic variable, called θk . The index k runs
from 1 to the total number of components in all tensors. We
include all tensors within a cutoff radius rc (the maximum
cutoff is determined by the simulation cell size). Using Eqs. (2)
through (7) we figure out which tensor components that are
equal, related to each other or 0 by symmetry. This drastically
reduces the number of values that have to be determined. With
the symmetry irreducible representation at hand, we express
the forces in the model Hamiltonian
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Evaluating Eq. (8) analytically allows to express the forces as
a function of the symmetry inequivalent components θk:

Fα
i =

∑
k

θkc
iα
k (U). (9)

Here ciα
k (U), the coefficient for each θk is a polynomial function

of all displacements within rc. The form of this function
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depends on the crystal at hand. For a given supercell, we can
express Eq. (9) as a matrix equation

FM = � ¯̄C(U). (10)

The subscript M denotes the forces from the model potential.
The coefficent matrix ¯̄C is a function of all the displacements
in the supercell. � is a vector holding all the θk . To obtain a
solution for � we run Born-Oppenheimer molecular dynamics
in the canonical ensemble at temperature T . From these
simulations, we store displacements u and forces FMD at each
time step. Then, we seek the � that minimize the difference
between the model system and the ab initio one
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Here Nt is the number of time steps in the molecular dynamics,
and subscript t denotes the displacements and forces from time
step t . A least-square solution
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gives the � that minimizes these forces. Then, with a simple
substitution back into �ij and �ijk we determine the quadratic
and cubic force constants. Note that the second- and third-
order force constants are extracted from the same set of
displacements and forces, simultaneously.

III. NUMERICAL RESULTS

Si is a common model system where high-order terms
are relevant,4,6,9,10 and to verify the quality of the force
constants obtained in the TDEP formalism we employ
Born-Oppenheimer molecular dynamics with the projector-
augmented wave (PAW) method as implemented in the code
VASP.11–14 We use a 128-atom supercell. For the Brillouin zone
integration we use the 
-point and ran the simulations on a grid
of temperatures and volumes in the canonical ensemble. Tem-
perature was controlled using a Nosé thermostat.15 Exchange-
correlation effects were treated using the generalized gradient
approximation with the Perdew-Burke-Ernzerhof16 functional.
We use a plane wave cutoff of 250 eV. The simulations ran for
about 100 ps with a time step of 1 fs. A subset of uncorrelated
samples is then chosen. For each of the samples the electronic
structure and total energies are recalculated using a 5 × 5 × 5
k-point grid and a cutoff of 500 eV.

The first way of verifying if our force constants are correct
is to calculate the potential energy according to Eq. (1) and
compare to the ones from density functional theory (DFT).
In Fig. 1 we show the difference in potential energy from
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FIG. 1. (Color online) Figure showing the difference between the
ab initio potential energies of Si and the potential energies from our
model potential. The top line is the values from Born-Oppenheimer
molecular dynamics. The bottom line is the ab initio energies with
the second-order term in Eq. (1) subtracted, and the middle line is
when both the second- and third-order energies are subtracted. Had
the model potential been exact, the middle line would be perfectly
straight. There are still some fluctuations, but they are on the order of
1 meV/atom, and the accuracy of our potential is good. The second-
order potential includes up to fourth neighbors and the third-order up
to second nearest neighbors.

DFT and the model Hamiltonian, and in Fig. 2 we show the
convergence of this potential energy with respect to the number
of time steps. These results confirm that the third-order force
constants are accurately determined and represent the potential
energy surface well.

The mode Grüneisen parameters are a measure how
sensitive the vibrational frequencies are with respect to a

0 20 40 60

-0.4

-0.2

0.0

0.2

0.4

Uncorrelated timesteps

P
ot

en
ti
al

 e
ne

rg
y 

di
ffe

re
nc

e 
(m

eV
/a

to
m

)

FIG. 2. (Color online) Convergence of the potential energy of our
model potential for Si. The displacements that go into Eq. (1) are from
snapshots from molecular dynamics.

144301-2



TEMPERATURE-DEPENDENT EFFECTIVE THIRD-ORDER . . . PHYSICAL REVIEW B 88, 144301 (2013)

volume change. They are given by

γqs = − V

ωqs

∂ωqs

∂V
, (13)

where V is the volume and ωqs is the frequency of mode s

at wave vector q. γqs can be obtained either by numerical
differentiation of the phonon dispersion relations or from the
third-order force constants:18,19

γqs = − 1
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γ
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Here ε
qs

iα is a component α associated eigenvector ε for atom
i. Mi is the mass of atom i, and ri is the vector locating
its position. To confirm the accuracy and consistency of our
third-order force constants, we calculated the mode Grüneisen
parameters using both Eqs. (13) and (14), as can be seen in
Fig. 3, the results are excellent, both in terms of consistency
with each other and with respect to the experimental values.

With the third-order force constants we can calculate
the phonon lifetimes. The lifetime due to phonon-phonon
scattering is related to the imaginary part of the phonon
self-energy20

1

τqs

= 2
qs, (15)

where τqs is the lifetime for wave vector q and mode s, and
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+ 2(nq′s ′ − nq′′s ′′ )δ(ωqs − ωq′s ′ + ωq′′s ′′ )]dq′dq′′. (16)

nqs is the equilibrium occupation number. The �qq′q′′ ensures
momentum conversation q + q′ + q′′ = G, and the delta
functions in frequency ensure energy conservation. The three-
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FIG. 3. (Color online) Mode Grüneisen parameters for Si. The
solid line is calculated according to Eq. (14) and the dotted line
according to Eq. (13). The experimental points are from Weinstein
et al. (Ref. 17).
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FIG. 4. (Color online) Density plot of phonon lifetimes in Si at
300 K. The intensity is logarithmic.

phonon matrix elements are given by
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where Mi is the mass of atom i, ε
qs

αi is the component α of the
eigenvector for mode qs and atom i, and ri is the lattice vector
associated with atom i. The resulting phonon lifetimes for Si
can be seen in Fig. 4. The numerical integration is done on a
31 × 31 × 31 Monkhorst-Pack21 q-point grid. The momentum
conservation is exactly fulfilled (the sum of two vectors on the
grid ends up on the grid), and for the energy conservation we
used the adaptive broadening scheme of Yates et al..22 Our
results agree well with previously calculated results.10,23

IV. TEMPERATURE DEPENDENCE

The unique feature of our formalism if that the force con-
stants are volume and temperature dependent. For comparison,
only the volume dependence is included in the quasiharmonic
approximation. In systems with dynamical instabilities, such
as bcc Zr, the temperature dependence is obvious,7 but it is
also present in system that do not exhibit instabilities. ε-FeSi
is such a system.24

We ran Born-Oppenheimer molecular dynamics for FeSi
out in a similar fashion to that of Si, but we use a 3 × 3 × 3
supercell (216 atoms), a cutoff of 300 eV, and used the 
 point
for Brillouin zone integration. We used the experimental lattice
parameter of 4.779 and temperatures of 150 and 1200 K and
ran the simulations for 30 ps after equilibration with a 1-fs time
step. We used the same lattice constant at both temperatures
to show that the softening is not due to thermal expansion, but
originates from finite temperature effects, such as electron-
phonon coupling.

Phonon dispersion relations from TDEP calculations are
shown in Fig. 5. We observe the softening across the whole
spectrum with increasing temperature. The physical origin
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FIG. 5. (Color online) FeSi dispersion relations and phonon
density of states. The solid lines correspond to T = 150 K and the
dashed lines to T = 1200 K. The experimentally observed softening
across the spectrum can be seen clearly.

is discussed by Delaire et al.24 in great detail. It exhibits
anomalous softening with temperature due to the thermal
excitations smearing a sharp peak at the Fermi level, inducing
a insulator-metal transition. We observe that TDEP can capture
this temperature dependence well. The third-order force con-
stants are also temperature dependent, the result of this can be
seen in Fig. 6. The lifetimes are decreased significantly, across
the whole spectrum. The temperature parameter used when
evaluating lifetimes was fixed at 400 K, the only difference
comes from the temperature dependence of the force constants.
This is consistent with experimental results,25 where they see
a strong suppression of phonon linewidths below 250 K. Due
to the overestimation of the band gap in DFT, the closing of
the gap occurs at a higher temperature in simulations [it is
not fully closed until 1200 K (Ref. 24)], but the effect on the
phonon linewidths and dispersions is qualitatively correct.

This tells us that to accurately describe the phonon-phonon
interactions of FeSi at finite temperature, one needs to take the
temperature dependence of the potential energy surface into
account. A traditional approach where the force constants are
calculated as derivatives of the potential energy at the ideal
T = 0 positions cannot describe this, even when extended to

T=1200K
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FIG. 6. (Color online) FeSi phonon lifetimes. The liftetimes are
evaluated at 400 K using force constants extracted from 150 and
1200 K.

orders beyond the third. For the insulator–metal transition to
occur, the atoms need to occupy thermal excited positions.

V. CONCLUSION

We have presented an extension of our existing formalism to
calculate temperature-dependent third-order force constants.
They are shown to reproduce experimental results well.
This is a numerically efficient technique to simultaneously
incorporate all orders of phonon-phonon and electron phonon
coupling into a model Hamiltonian.

ACKNOWLEDGMENTS

Support from the Knut and Alice Wallenberg Foundation
(KAW) project “Isotopic Control for Ultimate Material Prop-
erties” and the Swedish Foundation for Strategic Research
(SSF) program SRL10-002 is gratefully acknowledged. Su-
percomputer resources were provided by the Swedish National
Infrastructure for Computing (SNIC).

1M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, 1964) .

2A. A. Maradudin and S. Vosko, Rev. Mod. Phys. 40, 1 (1968).
3G. P. Srivastava, The Physics of Phonons (A. Hilger, Bristol,
England, 1990) .

4D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart,
Appl. Phys. Lett. 91, 231922 (2007).

5L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett. 109,
095901 (2012).

6S. Narasimhan and D. Vanderbilt, Phys. Rev. B 43, 4541
(1991).

7O. Hellman, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B 84,
180301 (2011).

8O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Phys.
Rev. B 87, 104111 (2013).

9M. Omini and A. Sparavigna, Nuovo Cimento Soc. Ital. Fis. D 19,
1537 (1997).

10J. A. Pascual-Gutierrez, J. Y. Murthy, and R. Viskanta, J. Appl.
Phys. 106, 063532 (2009).

11G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
12G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
13G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

144301-4

http://dx.doi.org/10.1103/RevModPhys.40.1
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1103/PhysRevLett.109.095901
http://dx.doi.org/10.1103/PhysRevLett.109.095901
http://dx.doi.org/10.1103/PhysRevB.43.4541
http://dx.doi.org/10.1103/PhysRevB.43.4541
http://dx.doi.org/10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1063/1.3195080
http://dx.doi.org/10.1063/1.3195080
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.48.13115


TEMPERATURE-DEPENDENT EFFECTIVE THIRD-ORDER . . . PHYSICAL REVIEW B 88, 144301 (2013)

14G. Kresse, Comput. Mater. Sci. 6, 15 (1996).
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