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Vortices of polarization in BaTiO3 core-shell nanoceramics: Calculations based
on ab initio derived Hamiltonian versus Landau theory
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In this paper, we want to emphasize the fact that many experimental properties of ceramics can be explained
by the existence of a core-shell structure of the grains, particularly at small sizes. In this framework, we have
studied BaTiO3 (BT) ceramics constituted of core-shell nanoparticles, nanowires, or nanoplanes by using ab
initio derived effective Hamiltonian calculations whose application range is for large values of shell thickness
and low values of shell permittivity. Many differences and new features compared to the situation of nanodots
are induced by the core-shell structure. For instance, phase sequences are different; there is also a coexistence of
vortices found by Naumov, Bellaiche, and Fu [I. I. Naumov, L. Bellaiche, and H. Fu, Nature (London) 432, 737
(2004)] in the case of isolated dots with a homogeneous polarization, a transition from cubic paraelectric phase
towards nonpolar rhombohedral phase, anomalies in dielectric permittivity associated with the onset of toroidal
moments, etc. Afterwards, we compare these results with those obtained by the Landau theory of core-shell
ceramics we have recently published. However, the ab initio calculations fail to capture the physics at small
shell thickness and/or high shell permittivity, whereas the Landau theory fails to predict the peculiar properties
of the phases in which vortices exist. Therefore, in a tentative way to build a global theory, we have constructed
a Landau potential using both the polarization and the toroidal moment as competing order parameters, which
allows us to propose a phase diagram, whatever the thickness and permittivity of the shell are.
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I. INTRODUCTION

The question of reduction of sizes in ferroelectric materials
is the subject of many fundamental and applied researches,
both of them motivated by an increasing number of industrial
applications. This is an important problem, for instance, in the
case of multilayer ceramic capacitors and actuators. Indeed,
decreasing the thickness of such devices for their integration
in microelectronic systems below micrometer sizes requires
controlling the structure and properties of nanosized particles,
both of them are known to drastically change at the smallest
sizes. Indeed, a huge number of experimental studies have
shown that the reduction of size in ceramic grains is accompa-
nied by a drastic diminishing of the dielectric permittivity,
a shift of the ferroelectric to paraelectric transition, and
eventually the disappearance of macroscopic ferroelectricity.
However, many reports of ferroelectricity in BaTiO3 (BT) at
small sizes published in the 1990s’ reported a critical size
of ≈100 nm, a value which continuously decreased as time
passed, to reach nano or subnanometer values in the most
recent papers. In “simple” ferroelectrics such as BT or PbTiO3

(PT), the situation is now well documented: it is clear from both
experiments and ab initio calculations that the ferroelectric
ground state should remain stable below at least 10 nm or
less. In BT (and probably PT), the size and temperature
dependencies of permittivity in ceramics down to 10 nm can
be quantitatively explained by a core-shell structure of the
grains,1,2 in which the core behaves like the bulk material but
is subject to a pure size effect, whereas the shell is the part of
the particle close to the surface in which extrinsic effects occur,
with typical thickness of ≈1 nm and a permittivity much lower
than that of the core (typically around εr = 70).

We have extended this picture to lead-based relaxor and
morphotropic compounds3–6 and to quantum paraelectric
strontium titanate, SrTiO3 (STO).7 The precise microscopic
structure of the shell (or dead layer) is in most of the cases
unclear as it strongly depends on the synthesis route, the
sintering process, the presence of impurity ions or vacancies,
etc., but is clearly connected to the local structure and chemical
composition of the grain boundary. In many cases, during
synthesis, core-shell structures are more or less unavoidable
(we call this situation “natural” core shell in the rest of the text)
but it can also be induced on purpose, e.g., (Refs. 8 and 9) to
tailor physical properties (“artificial” core-shell). This can be
done, e.g., by doping with specific ions, which diffuse weakly
inside the particles and remain mainly close to the surface of
the grains, or by coating the grains by another compound with
much lower permittivity, typically, silica (SiO2) or alumina
(Al2O3) to increase densification and get a gigantic Maxwell
Wagner permittivity. In this latter case, a core-double shell
is sometimes observed, i.e., natural plus artificial core-shell
structure.

From the standpoint of modeling, there are also many
attempts to explain and clarify the experimental situation. Sev-
eral types of approaches have been used, either analytically, or
in the framework of effective media approaches (EMA), brick-
layer-type models, or Landau theory. These methods have
tried to take into account the complex situation in ceramics,
eventually at nanometer sizes, and many of them separate the
microscopic structure of the grains as a “core,” which behaves
as bulk material submitted to a “pure” size effect, and a “shell”
in which all nonintrinsic effects such as defects of all kinds
including vacancies, dead layers, internal strains, etc., occur.
For instance, Emelyanov et al.10 have partially explained
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dielectric properties of ferroelectric ceramics by the presence
of fixed-thickness dielectric dead layer at grain boundaries.
Very recently, we have shown11 by using a combination of
the effective medium approximation and Landau theory that
core-shell structures should be considered, indeed, as the
main parameter to explain the dielectric properties of barium
titanate as well as its ferroelectric transitions at nanometer
sizes. However, these types of methods cannot predict the
microscopic organization of the polarization at a very local
state in ceramics.

In recent years, effective Hamiltonians and ab initio
calculations have received a huge success. It is true that these
methods have allowed a deep understanding of ferroelectricity
at nanometer sizes, and many new effects, such as the existence
of vortices of polarization in nanodots have been predicted12–14

and subsequently experimentally verified.
However, up to now, these methods have mostly dealt

with the case of “independent” or “elastic free” nanoparticles,
which are relevant for technological applications such as
memories, but are not intended for the case of nanostructured
ceramics in which the nanograins strongly interact with each
other elastically and electrically and in which a core-shell
structure is observed. In analogy with the situation of nanodots
modeled by ab initio methods, one may wonder whether a
nanoceramic could adopt new forms of polar organization
(such as vortices, for instance). Indeed, to the best of our
knowledge, no attempts have been made to resolve this issue
in the framework of first-principles calculation.

Therefore the aim of this paper is to give results in core-shell
nanoceramics of BaTiO3 system obtained from an ab initio
derived effective Hamiltonian method. We give results for
ceramics built of core-shell nanodots, and describe briefly
the case of ceramics built on core-shell nanowires; the case
of nanoplanes is also shortly addressed as it is physically
relevant in the field of thin films and the problem of dead layers.
Afterwards, we address the comparison of these results with
the situation of isolated nanodots as calculated in Refs. 12,13,
and 14, then compare with the situation of nanoceramics
in the framework of the Landau theory from our previous
work. Finally, in order to catch other physical insights, which
are unreachable via ab initio derived effective Hamiltonian
calculations, we propose a Landau-based formalism, using a
toroidal moment as the order parameter; in particular, a phase
diagram is predicted and discussed.

II. METHODOLOGY

We decided to model a ceramic in which the grains are made
of core-shell particles, i.e., nanodots, which are periodically re-
peated in space by using infinitely periodic boundaries. This is
very different from previous works which considered isolated
(pure core) nanodots and the differences and the consequences
of these hypotheses will be discussed in Sec. IV A. We used
BT as the core material, and a dielectric shell of thickness
e and low permittivity εr : its chemical composition could be
either BT with defects, vacancies, etc., corresponding to a
“natural” shell or it could be made of artificial coating. In fact,
we observed that the results of calculations depend strongly
on e and εr but weakly on the exact chemical composition of
the shell. We have considered an infinitely periodic structure

FIG. 1. (Color online) Periodic core-shell unit pattern of the
nanodots as modeled in this work. In the case of nanodots, the distance
R is along the three x, y, and z directions, in the case of nanowires,
R is along x and y directions and infinite along z direction, and in the
case of nanoplanes, R is along z direction, and is infinite along the
two other directions.

as shown of Fig. 1 in which a “unit” cell formed of a
core of length R with three perpendicular boundary shells
with thickness e, periodically repeats along the x, y, and z

directions; α = (R + e)/R is thus the thickness ratio, equal
to 1 if no shell is present, thus the situation of an infinite
(i.e., bulk) single crystal is recovered. The case of core-shell
nanowire ceramics can be obtained by suppressing the shell
perpendicular to one direction, e.g., the z direction, and the case
of nanoplane ceramics by suppressing the shell perpendicular
to two directions, e.g., the y and z directions.

The calculation is using the effective Hamiltonian coupled
with Monte Carlo simulations developed by Zhong,
Vanderbilt, and Rabe,15 which targets in particular ferroelectric
perovskites. In this approach, local modes ui (i is the cell
index) describe the ferroelectric instability in individual 5-
atom ABO3 cells; ui are associated with local electrical dipoles
Pi via Pi = Z∗ui i (where Z∗ is the effective charge of the
local mode). The total energy is written as

Etot = Eself (u) + Edpl(u) + Eshort(u) + Eelas(η) + Eint(u,η),

where η is the strain.
This development is well known and will not be explained

here: let us just recall that the first term is the energy
corresponding to the local modes, the second one to the
long-range dipole-dipole interaction, the third one to the
short-range interaction, the fourth one to the elastic interaction,
and the fifth one to the dipole-elastic interaction.

Compared to the original method, we have made new devel-
opments in order to be able to study core-shell nanoparticles.
We have therefore taken into account the presence of two
different phases: (1) the core phase, which is modeled with
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TABLE I. Effective Hamiltonian parameters used for ceramics
built on particles with a core of BT and a shell of SiO2.

Effective Hamiltonian
parameters BaTiO3 core SO2 shell

Lattice constant a 7.371 7.371
Zeff 9.6646 9.6646
ε∞ 5.21 5.21
κ2 0.051758 0.08
α 0.2808 0.1
γ − 0.41281 − 0.1228
j1 − 0.0120107708 − 0.0120107708
j2 0.0222156256 0.0222156256
j3 0.0042062141 0.0042062141
j4 − 0.0023677794 − 0.0023677794
j5 0.003536007 0.003536007
j6 0.0007541296 0.0007541296
j7 0.000377065 0.000377065
B11 4.776 1.195
B12 1.610 0.402
B1xx − 1.973 − 0.0273
B1yy − 0.041 − 0.041
B4yz − 0.059 − 0.059

the well-known Hamiltonian parameters, and (2) the shell
phase, which should have the physical characteristics of a
linear dielectric.

Since the Hamiltonian code developed by Vanderbilt et al.
is adapted to the perovskite structure, the shell phase should be
modeled also as a perovskite ABO3, which is the case of many
experimental situations, and therefore we have empirically
adapted the Hamiltonian in order to fit the chosen material
with a low value of permittivity εr . We have considered in
some calculation the case of artificial shell made of SiO2

(with permittivity ranging from εr = 3) and calculated a
“pseudoperovskite” with Hamiltonian parameters that mimic
the dielectric and elastic behavior of real silica. In particular,
short-range interactions have been drastically reduced in
this pseudoperovskite phase. Table I shows Hamiltonian
parameters that have been used for the BaTiO3 core-phase
and pseudosilica shell phase.

Since the dielectric shell is modeled by a perovskite, its
thickness in the elementary cell (see Fig. 1) cannot be reduced
to less than one lattice parameter (about 4 Å). Therefore in
practice, in order to diminish the “radius” ratio α, we need to
change essentially the BaTiO3 core size R. We have modeled
the core-shell system for sizes (expressed in N × N × N

lattices) ranging from N = 6 to 28 (i.e., a maximum size for
BT of ≈12 nm), which correspond to α ratio from 1.16 to
1.035, respectively, that is, 16% and 3.5% of thickness α ratio
of the shell/core. Trying to go to lower values of α should
involve using larger cells, which is not possible due to the
computing time limitation. To get insight into the situation
at lower thickness of the shell, or for other materials, we
have increased the value of εr. However, strong increases of
this value will at some point induce ferroelectricity in the
shell, which should give rise to a strongly nonlinear (versus
temperature and electric field) permittivity; this should be
avoided in order to accurately describe a linear dielectric shell.

We have studied the response of such core-shell nanoceramic
at quasinull field and at high field. At quasinull fields, we
have observed that up to εr ≈ 90 no peak in the temperature
dependence of permittivity (which should have indicated a
ferroelectric phase) was observed; at high electric fields a value
of εr not higher than ≈20 should be used for the same reasons.
However, in this paper, we will show only results obtained in
the low-field limit and therefore values of εr up to 90 could be
safely used. Results at high field will eventually be published
elsewhere. As usual, the total energy is used in Monte Carlo
simulations to obtain finite-temperature properties and to get
the most pertinent equilibrium state. The simulations have
been performed from “high” temperature (T = 800 K) down
to T = 0 K.

III. RESULTS

A. Case of nanoceramics constituted of core-shell nanodots

We have calculated the Cartesian components ux , uy , uz

of the local mode—which is directly proportional to the
polarization—in nanodots with x, y, and z axes being along
the pseudocubic 100, 010, and 001 directions. Figure 2 shows a
comparison of results for bulk BT (α = 1) and for the core-shell
ceramic. In the case of the bulk BT, we get of course the
well-known cubic (C), tetragonal (T), orthorhombic (O) and
rhombohedral (R) phases. However, in the case of the ceramic,
even for the smallest values of shell thickness, which can be
calculated, i.e., α = 1.035, we have observed only a very weak
residual polarization, less than 1/10 of bulk BT, which means
a disappearance of any macroscopic ferroelectricity; above
200 K (see enlargement in insert of Fig. 2), this residual value
completely disappears.

However, at microscopic scale, there is a well-defined
organization of the local polarization, very similar to what
found by Naumov et al.12 in the case of isolated dots (i.e., in
open-circuit condition). Indeed, the local modes rotate around

FIG. 2. (Color online) Local modes calculated for a single crystal
of BT and in the insert, calculation for a ceramic constituted of
core-shell nanodots: in this latter case, only residual polarization is
observed below 200 K.
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FIG. 3. (Color online) Temperature dependence of the compo-
nents of the toroidal moment, in the case of a ceramic constituted
of core-shell nanodots. (Insert) Projection of the local polariza-
tion along the x ′y plane showing appearance of vortices at low
temperatures.

the [111] diagonal direction of the cube and form a vortex. A
projection of this configuration into the plane perpendicular
to one of the cubic simple directions (left insert of Fig. 3)
shows that this 3D configuration can be considered as a vector
composition of rotations along the 3 axis.

That is why Naumov et al. demonstrated that such micro-
scopic organization of polarization can be quantified by using
the toroidal moment G:

G = 1

2M

∑
i

Ri · ( pi − 〈 p〉), (1)

where Ri correspond to the i coordinate of the punctual dipole
pi with 〈p〉 the mean punctual dipole and M = N3, where
N is the size of the supercell. This toroidal moment has
been proposed as a new order parameter for the microscopic
situation of nanodots. However, we can observe from its
dimensional analysis that this quantity is not normalized:
indeed, it can be shown that the toroidal moment as expressed
above increases with the size of the cell by an N factor.
To show that, we can consider a simplified situation where
we replace the N × N × N cubic cell by a cylinder with a
diameter D = Na (where a is the unit cell length) and height
Na. In a situation where all dipoles get the same p⊥ = | p⊥|
norm and rotate around the z axis of the cylinder, the toroidal
moment is along z (Gx = Gy = 0); indeed, from the above
definition and since by symmetry 〈p〉 = 0,

G = 1

2M

∑
i

Ri · p⊥.

In the cylindrical coordinate system, the Ri vector can be
decomposed into a radial and a z component:

Ri = Rir ur + Rizuz.

We can therefore write

G = 1

2M

(∑
i

Rir . p⊥ +
∑

i

Riz. p⊥

)
,

where the second sum is null due to symmetry considerations.
The toroidal moment is therefore aligned with the z axis with

Gz = 1

2M
N

D
2∑

r=0

rap⊥(2πr) = 1

4M
Nap⊥π

N∑
d=0

d2.

In a cylinder, M = π (N
2 )2 N = π

4 N3, consequently,

Gz = a · p⊥
N2

N∑
d=0

d2.

Using

N∑
d=0

d2 = 1

6
N (N + 1) (2N + 1) ,

we can see that for N 	 1,

N∑
d=0

d2 ≈ 1

3
N3,

and we can therefore write

Gz ≈ 1

3
ap⊥N,

which shows that G is linearly dependent on the N size.
Therefore we have used for our study instead of G the vector
quantity g as order parameter defined as follows:

gα = p⊥α

a3
≈

(
Gα

N

)
3

a4

(with α = x,y,z); notice that g has the same dimensionality
as the polarization since it represents the volume average of
the norm of cell polarization induced by the presence of a
toroidal moment. The temperature evolution is shown in Fig. 3:
the three components gi are zero above T ≈ 400 K (which
corresponds to the Curie temperature of bulk BaTiO3), whereas
below this temperature, an order-parameter-like behavior is
observed.

We have also calculated the different components of the
normal and shear strains (see Fig. 4). The main components
of the strain are the normal components, which are by a
factor 30 greater than the shear components. Whereas the sole
consideration of polarization should have indicated a (C) cubic
phase, all strain curves clearly indicate at low temperatures the
existence of a rhombohedral distortion (the three components
are approximately equal for both normal and shear strain),
whose magnitude is at 0 K about four times smaller than in
bulk rhombohedral BT. This result is a natural consequence
of the fact that the local modes rotate in the form of a vortex
along the [111] direction. In other words, the toroidal moment
induces an elastic deformation, which is rhombohedral but not
ferroelectric; we call this phase C’ hereafter in the text, the
prime is to indicate that it is an elastic/structural distortion of
the standard (C) cubic phase of BT, and that it is different
from the (R) phase of bulk BT, which is ferroelectric. Above
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FIG. 4. (Color online) Temperature dependence of the compo-
nents of the normal strain and, in insert, of the shear strain, in the case
of a ceramic constituted of core-shell nanodots. In the latter case, the
values are very weak.

T ≈ 400 K, the shear distortion vanishes because the toroidal
moment also does so, the remaining normal strain is just
the strain associated to normal thermal dilatation: the phase
becomes the standard (C) cubic phase of BT.

These results indicate that the microscopic polar organiza-
tion in BT nanoceramics for T < 400 K is very different from
the typical polar disorder expected in a classical paraelectric.
Moreover, the presence of a shear strain in the nanoceramics
at T < 400 K is an intrinsic phenomenon, which superimposes
to usual internal shear stress effects almost always observed in
disordered nanoceramics. Therefore our results show that the
strain associated to the existence of a toroidal moment cannot
be released by any adequate thermal treatments. This new (C’)
rhombohedral phase is a nonpolar phase as no macroscopic
polarization exists, and is to be associated to the onset of the
new order parameter associated to the existence of a toroidal
moment.

We have also calculated the dielectric permittivity (at zero
field) and got a surprising result (see Fig. 5, two plain lines
with dots). Indeed, we observed two weak but well pronounced
peaks, the first one is at ≈180 K, the second one is at ≈320 K.
The first peak is to be associated with the existence of the
residual polarization below 200 K, as observed in Fig. 2;
the second one is more surprising as it is not related to
any polarization but to the onset of cooling of the vortices
of polarization. This origin will be clearly demonstrated in
Sec. IV D in which we calculate the permittivity associated to
the onset of toroidal moment (see Fig. 5, dotted line).

Up to now, we have studied the case of nanodots with a
shell structure sufficiently thick to induce a depolarizing field
that is strong enough to cancel the polarization. The case of
shells with weaker thickness is also interesting to examine as it
should indicate how one passes from the situation of core-shell
nanodots, with no macroscopic ferroelectric polarization, to
the case of infinite bulk ferroelectric single crystal. However,
as we have indicated in Sec. II, we cannot go below the

FIG. 5. (Color online) Temperature dependence of the dielectric
permittivity in the case of a ceramic constituted of core-shell
nanodots, for two values of the size system N × N × N . One peak
(at low temperature) is associated with the onset of the residual
polarization, the second one (at high temperature) to the onset of the
toroidal moment. Also, dotted line (see text below in Sec. IV D), we
show the temperature dependence of dielectric permittivity calculated
by the Landau theory using g and P as order parameters for a
core-shell nanodots ceramic, in the case of high value of α = 1.02 for
which no ferroelectric transition occurs: a clear anomaly is observed,
associated to the onset of the toroidal moment.

shell with α = 1.035. Instead, another way to diminish the
depolarizing field responsible for the core-shell behavior is
to increase the value of εr , which we can reliably do up to
a value of ≈90, as explained in Sec. II. We did not explore
all the details of this situation but globally we observe the
onset of a macroscopic polarization and a diminishing of
the components of the toroidal moment with situations in
which both polarization and toroidal moment coexist inside
a temperature range (see Fig. 6).

B. Case of nanoceramics constituted of core-shell nanowires

In our previous work,2 we have shown that properties of
nanostructured ceramics can be greatly enhanced, in particular
for energy-harvesting applications, if instead of core-shell
dots (i.e., spherical), the ceramic is built from nanodisks or

FIG. 6. (Color online) Schematic representation of the toroidal
moment and of the macroscopic polarization for a decreasing shell
thickness or increasing shell permittivity: one passes from a situation
with a pure vortex configuration to a mixed situation in which
ferroelectric domains progressively grow against the vortices.
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FIG. 7. (Color online) Temperature dependence of the compo-
nents of local modes and in the insert of the toroidal moment in
the case of a ceramic constituted of core-shell nanowires. In the
insert, we also show the schematic representation of the nanowire
with coexistence of vortices and macroscopic polarization: only a Pz

macroscopic component is observed and in the perpendicular plane
the local polarization adopts a vortex pattern, i.e., a gz component is
only observed.

nanowires with a core-shell structure. Although such types
of ceramic are not very easily synthesized as all disks or
wires should be aligned in the same direction, experimental
efforts are done to achieve such nanostructured ceramics. The
calculation shown above can easily be performed in the case of
infinite core-shell nanowires, assuming an infinite z direction
and a coating only along x = 1 and y = 1 planes. The results
(see Fig. 7) show that the x and y components of polarization
are approximately zero, whatever the temperature is, like in
the case of core-shell nanodots, but a strong z component is
observed, with a value close to that of the bulk material, at
temperatures below ≈400 K. This result can be intuitively
understood by considering the fact that along the z direction
no depolarizing field exists.

Although x and y components of polarization are approxi-
mately zero, they display nonzero toroidal moment along the
z direction (two insert of Fig. 7), below the same temperature
≈400 K with a magnitude comparable to the case of core-shell
nanodots. This temperature therefore corresponds to the onset
of a ferroelectric tetragonal phase in which axial polarization
coexists with planar vortices.

In this phase, the origin of the tetragonal distortion is thus
twofold: a contribution due to the coupling of polarization
with lattice, like in bulk BT, plus a contribution due to toroidal
moment: that is why we call this phase the (T’) phase. Indeed,
like in the case of core-shell nanodots, the existence of such
a nonzero toroidal moment induces strains. However, for
core-shell nanowires, we calculated (not shown) that only a
normal strain is observed (zero shear strain components), with
a high contribution of gz to the strain along the z direction
and a weaker contribution on the x and y directions: a global
elongation of the nanowires is therefore observed. That is why
we use a prime in (T’) notation because this phase is different

FIG. 8. (Color online) Temperature dependence of the component
of local modes in the case of a ceramic constituted of core-shell
nanoplanes; at low temperature, only in-plane x and y components
are observed. Whatever the temperature is, no component of toroidal
moment is ever observed. In insert, stripes pattern of polarization
observed in the orthorhombic plane.

from the (T) phase of bulk BT. At higher temperature, as
both polarization and toroidal moment disappear at the same
temperature, a direct transition (T’)-(C) is observed, which
means that no (C’) phase is observed.

C. Case of nanoceramics constituted of infinite
core-shell nanoplanes

This case is physically relevant for composites constituted
of stacking of ultrathin films surrounded by dead layers. In this
case, the calculation shows that no toroidal moment ever exists:
this is intuitively understandable as a depolarizing field (which
tends to destroy ferroelectricity) only happens along the z axis
perpendicular to the plane. The temperature dependence of
polarization (see Fig. 8) shows two equal components along
x and y axes below ≈250 K, i.e., an (O) orthorhombic phase,
similar to that of bulk BT, as no supplementary strain is present;
between ≈260 and ≈360 K, only one x axis (or y axis)
component is observed, i.e., a (T) tetragonal phase. Above
≈360 K, a paraelectric phase occurs, which is a “true” cubic
phase (contrary to the nanodots case), as no strain occurs at
these temperatures.

However, although no vortex is ever observed, in the
low-temperature orthorhombic phase, a peculiar pattern of the
local polarization is still observed. Indeed, when planes of
the core parallel to the shell planes are uniformly polarized,
perpendicular planes reveal alternation of stripes with opposite
direction of polarization (insert of Fig. 8). This type of patterns
have already been evidenced in a very thin film of PbTiO3

16 and
are explained by the interplay between strain and the amount
of screening of surface charges.17 Clearly, this situation and
the situation in core-shell nanoplanes are very similar.

IV. DISCUSSION

In the first part of this section, we address the comparison of
our results with the situation of isolated nanodots as calculated
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in Refs. 12 and 13. In the second part, we pay attention to
the picture of nanoceramics from previous results obtained in
the framework of the Landau theory. In the last part, a new
Landau-based formalism, using a toroidal moment as order
parameter is proposed and a new phase diagram is predicted.

A. Comparison of core-shell nanodots ceramics with the case
of isolated nanodots

As shown in the previous section, ceramics based on
core-shell nanodots display in certain ranges of shell thickness
or shell permittivity, a local organization of polarization in
the form of vortices, below a critical temperature. Such
organization was evidenced and developed in many examples
by several authors, in the case of isolated nanodots submitted to
a depolarization field.12,13 In these examples, the surface of the
dots is elastic-free, whereas in our modeling, we use periodic
boundary conditions that create on the surface a certain strain
in addition to the depolarization field. In the framework of
isolated dots, the depolarization field was introduced via the
relation

εTot
Heff(pi ,Vi ,η) = εHeff(pi ,Vi ,η) + β

∑
i

〈Ed〉pi, (2)

which represents the total energy of the dots decomposed
into two terms: the first one is the energy associated to
the dot put in void, which is a function of polarization
pi , homogeneous η, and inhomogeneous Vi strain, which
therefore is completely submitted to depolarizing field Ed , and
the second term, which is negative, “tunes” via the β coefficient
the effect of this field: (i) when β = 1, the depolarizing field is
completely screened, and the dot is therefore in short-circuit,
and (ii) when β = 0, the depolarizing field is completely
applied. Different authors have shown that the ground state of
stress-free ferroelectric nanodots consists of a vortex structure
that does not exhibit any polarization but an electric toroidal
moment for β values smaller than 0.95, in order to completely
annihilate the depolarizing field. On the other hand, for
β >0.95, such nanodots possess a polarization whose magni-
tude strongly depends on β as well as on the dots’ size, because
the depolarizing field increases in magnitude and thus opposes
more strongly against the polarization. Moreover, it was shown
that most of experimental situations could be accurately
reproduced with a β value of ≈0.97. However, it should be
noted that the case β = 1 (short circuit) does not correspond to
an infinite crystal: indeed, whereas a ferroelectric polarization
with no toroidal moment is observed, in a similar situation to
infinite crystal, in the case of BT, no orthorhombic phase was
observed (as it is experimentally observed in bulk BT) and the
critical temperatures of the other phases transitions are strongly
depressed. This is due to the fact that the dots in this case are
put in void, and therefore no elastic interaction exists between
the surface and the outside environment. This type of modeling
aims at dealing (for β 
= 1) with the physical situation of
isolated nanodots with screened charges (because of humidity
or dust) or inner conductivity (with a dead layer or conductivity
at the surface but not with a core-shell structure). That is why
differences, in particular, in the phase sequences, the critical
temperature, the coexistence of vortices and polarization, exist
with our modeling. However, many qualitative similarities do

exist, in particular, the possibility of coexistence of vortices
with homogeneous polarization.

B. Comparison of core-shell nanodots ceramics with the
case of ferroelectric composites

Another approach has been performed to explain the
existence of vortices: the so-called phase-field simulation18 in
which the authors decomposed the particle into small cells in
which a Landau potential is numerically minimized, assuming
of course boundaries continuity. By iteration, the total free
energy of the particle could be minimized. In the case of a
nanodot, these authors observed a polarization pattern in the
form of vortex; however, in the case of nanowires, they did not
observe vortices as we have observed but a sole polarization
along the wire axis.

We should also mention that some authors have considered
the case of nanocomposites constituted of nanowires embed-
ded in a matrix. Prosandeev and Bellaiche16,19 have considered
the case of PbZrO3-PbTiO3 (with 50-50 composition) material
and applied a coefficient of “ferroelectric strength” as a
parameter. This leads to situations where either the dots or
the matrix is PZT, the other part been a PZT material with
different ferroelectric properties. The authors could observe in
their phase diagram the occurrence of vortices that can coexist
with polarization. However, two important differences with our
study are the facts that the permittivity of the shell in our case is
frozen and not allowed to change with temperature or any other
parameters, and that we have considered a core and a shell with
different mechanical properties: in particular, paying special
attention to the temperature dependence of strains (which was
not done in Ref. 19) allowed us to evidence new phases.
Our paper being less general than Prosandeev and Bellaiches’
paper allowed us to have a more complete description of the
situation encountered in the case of nanoceramic, to calculate
quantitative values of temperature dependence of polarization,
toroidal moment, permittivity, etc., to easily play with the size
of the nanodots, the shell thickness, permittivity, etc.

Another study20 by the same team has considered the case
of nanocomposites constituted of nanowires embedded in a
matrix of a paraelectric or a ferroelectric material, which is
not really a core-shell situation, as the equivalent value of α is
in this case 18/12 = 1.5, that is, much higher than in our case.
Very rich pattern situations have been observed, among them a
similar situation in which vortices coexist with a polarization
along the normal axis of the wire.

C. Comparison with the Landau theory of nanoparticles

We have very recently published a Landau theory of
core-shell nanoceramics.11 This was done by solving first the
Laplace equation for a single core-shell particle (for different
cases of isotropic or anisotropic shapes) submitted in void
to an external electric field. Then, the case of ceramics is
obtained by placing the particle in the effective medium field,
which averages the effects of all surrounding particles to
obtain in a self-consistent way the equations for the different
internal electric fields, the permittivity and the polarization
of a nanoceramic constituted of such core-shell particles. In
particular, we found that the component of the core electrical
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field Ei and of the core-shell total polarization PSi are

Ei = βi

Pi

ε0
+ γiEappi

,

(3)
PSi

= β ′
iPi + γ ′

i Eappi
,

with i = x,y,z, Pi , and Eappi the components of the core
polarization and of the external applied field, respectively. One
can see that the core electric field Ei and the total polarization
Pi are proportional to βi , γi and β ′

i , γ ′
i coefficients, respec-

tively; these four coefficients are simple fractional functions
of α and εr . In the case of spherical core-shell particles,
βx = βy = βz = β, as well as for the other coefficients. One
should notice that the β coefficient, although of a very close
physical significance, is numerically different from the one
used in the ab initio calculations (2) as it goes from 0 in
short-circuit conditions, i.e., in bulk, to 1/3 in open circuit
conditions, i.e., in an isolated spherical dot. For instance, as
we will use latter this coefficient, we have for a sphere,11

βi=x,y,z = 1 − α3

[(2α3 + 1)ε2 + α3 − 1]
. (4)

We have introduced afterwards the expression of the core-shell
polarization into the Landau potential for a single crystal21 in
which we added a depolarizing energy as well as an energy
associated to the effect of an external field [two last terms in
Eq. (5) below], which allowed us to get the phases diagrams
for different cases of nanoparticles shapes. Thus we found

Fp = α∗
1 (T )

(
P 2

1 + P 2
2 + P 2

3

) + α11
(
P 4

1 + P 4
2 + P 4

3

)
+α∗

12

(
P 2

1 P 2
2 + P 2

2 P 2
3 + P 2

3 P 2
1

) + α111
(
P 6

1 + P 6
2 + P 6

3

)
+α112

[
P 2

1

(
P 4

2 +P 4
3

) +P 2
2

(
P 4

1 +P 4
3

) + P 2
3

(
P 4

1 + P 4
2

)]
+α123P

2
1 P 2

2 P 2
3 + α1111

(
P 8

1 + P 8
2 + P 8

3

)
+α1112

[
P 6

1

(
P 6

2 + P 2
3

)+P 6
2

(
P 2

1 + P 2
3

)+P 6
3

(
P 2

1 +P 2
2

)]
+α1122

(
P 4

1 P 4
2 + P 4

2 P 4
3 + P 4

1 P 4
3

)
+α1123

(
P 4

1 P 2
2 P 2

3 + P 4
2 P 2

1 P 2
3 + P 4

3 P 2
1 P 2

2

)
+

∑
i

−βiP
2
i

2ε0
− PiγiEappi

. (5)

Neither strain nor coupling between polarization and strain
were needed to explain the properties of the core-shell ceramic:
the core-shell picture of nanoparticles adequately explains
the size evolution of the critical temperatures and the phase
sequences. Of course, surface tension or strain can play a role,
but at a primary stage they are not needed to describe ex-
perimental data.11 Numerical minimization of the FP Landau
potential results for instance in curves of polarization versus
external electric field, which were numerically integrated to
obtain the maximum density of energy that can be stored in
the nanoceramic. These calculations were performed in the
case of different shapes of nanoparticles.

In the case of spherical core-shell nanoparticle ceramics,
which is the closest case to that of nanodots, we have obtained
within this Landau theory a phase diagram in which all bulk
phases of BT [(C), (T), (O), and (R) phases] are observed
for a weak value of α shell thickness, the three ferroelectric

critical temperatures being shifted downwards from the same
negative amount, with increasing value of α. At higher values
of α, the 3 ferroelectric phases successively disappear and
finally only the cubic phase is observed down to the lowest
temperatures. Of course, this Landau theory fails to predict
the existence and the peculiar properties of the (C’) phase,
due to the existence of vortices. This is therefore a point
that should be addressed in a more efficient Landau theory.
In Fig. 9 (top), we have superimposed these Landau phase
diagrams with the results of our ab initio derived effective
Hamiltonian calculations. These calculations (see Sec. III A)
have indeed shown also the cancelation of any ferroelectric
phase at the lowest reachable value of α = 1.035 (dotted white
line) and were able to predict the existence of the (C’)-(C)
transition as well as its critical temperature (white square),
which happened to be size independent. However, the ab initio
calculations fail to capture the physics at small shell thickness
and/or high permittivity, in particular, the existence of the three
ferroelectric phases.

We have also studied by the Landau theory the case of
nanorods and its limit case, i.e., nanowires: for an increasing
anisotropy of the nanoparticles, the (T) phase is stabilized
against the two other ferroelectric phases, which is a rather
intuitive result. In the case of nanowires, the Landau theory
predicts a sole (T)-(C) transition [no more (R) and (O)
ferroelectric phases] with a critical temperature independent
of the coating thickness α. Superimposing these results with
the ab initio derived effective Hamiltonian results (see Fig. 9
middle) leads to the fact that the (T) phase is a (T’) phase,
which transforms at a temperature independent of the shell
thickness α towards the (C) cubic phase. The same limitation
for both types of modeling is observed: the Landau theory
failed to predict the existence of vortices inside the tetragonal
phase [(T’) phase], whereas the ab initio derived effective
Hamiltonian calculations cannot operate at very low values of
α. However, in this case, no change is predicted by the Landau
theory, and the agreement between both types of modeling in
the α range where they can be compared is rather fair: not
only for the critical temperature values (white triangles to be
compared with the T’-C line) but also for the value of the
temperature dependence of the polarization calculated by both
methods (insert of Fig. 9 middle).

We have also studied in the Landau theory the case of nan-
odisks: for an increasing anisotropy of the nanoparticles, the
(T) and (O) phases are stabilized against the (R) ferroelectric
phase; this is again a rather intuitive result, and at the limit of
“infinite anisotropic nanodisks,” we get the case of nanoplanes.
In this case, the Landau theory predicts a cancelation of the (R)
phase, the orthorhombic phase being stable down to the lowest
temperature, whatever α is, and (O)-(T) and (T)-(C) transitions
with critical temperatures independent of α. Superimposing
these results with the ab initio derived effective Hamiltonian
results (see Fig. 9, bottom) leads to a rather fair agreement
regarding the two critical temperatures calculated by both
methods (white triangles and circles, and solid lines), as well
as for the temperature dependence of the polarization (see
an insert of Fig. 9, bottom). A limitation of the ab initio
calculations is again the fact that it cannot operate at very
low values of α, which is also in this case less important, as
no change is predicted by the Landau theory.
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FIG. 9. (Color online) (Top) Shell thickness-temperature phase
diagram of a ceramic constituted of core-shell nanodots with shell
permittivity εr = 5, built from an ab initio derived effective
Hamiltonian and Landau theory. (Middle) Same but for a ceramic
constituted of core-shell nanowires; in the insert, we show the
calculated polarization from first principles and Landau theory.
(Bottom) Same for a ceramic constituted of core-shell nanoplanes;
in the insert, we show the calculated polarization by ab initio and
Landau theory.

D. Toroidal moment of core-shell nanodots ceramics and the
building of a new Landau theory

Many authors have pointed out that the toroidal moment as
defined above is an order parameter of ferroelectric transitions
at nanosizes. Although a detailed analysis of symmetry

associated with this new order parameter in relation to the
symmetry of the electrostatic forces is still lacking, one may
wonder if it could be used to build a Landau theory of core
shell that could take into account the results we have obtained
in Sec. III, in particular, the existence of vortices, the possible
coexistence with polarization, etc., and possibly predict new
ones. This should have also the advantage to provide results
in the whole range of shell thickness α and permittivity
εr , which is unreachable by ab initio derived effective
Hamiltonian calculations, due to computational limitations.
Landau theory of course is a thermodynamic theory and deals,
therefore, in the case of such compounds as BT, only with
macroscopic polarization. Thus in most of the situations, local
and macroscopic polarizations are not identical (except in
highly homogeneous cases); for instance, one can imagine two
very different situations with both macroscopic polarizations
equal to zero: one with a lattice of vortices, and another one
where the local polarization is fully disordered. These two
situations will have different entropy, different specific heat,
etc. Thus the toroidal moment does not directly depend on the
thermodynamic polarization P . Another way to say this is that
a thermodynamic potential with only P as an order parameter
cannot describe many situations, which could be described
with a potential that includes G and P even in a phase-field
simulation, see Sec. IV B. The relationship between P and G

should be introduced via coupling terms in the potential, just
like when using polarization and strain, although these two
latter quantities are also strongly related and both depend on
the atomic positions and can be calculated from them; in that
sense, they are not independent variables.

Here, we propose to follow such a demarche in order to
build a preliminary and simplified model. First of all, in our
opinion, the possibility to build such Landau theory arises
from the fact that a system with polarization vortices can be
considered as a homogeneous system from the stand point
of its energy. Indeed (not shown), the electric field and the
local polarization (i.e., the local mode) are always parallel:
this minimizes the electrostatic energy EP , just like in an
infinite crystal with homogeneous (i.e., constant) polarization.
Moreover, the local modes have amplitude, which is constant
inside the vortices, except close to the boundaries of the dots.
This means that the electrostatic energy of a vortex should
be considered as homogeneous. The same remark applies for
the elastic energy associated to the configuration of the local
mode. Therefore the behavior and properties of a system with
vortices should be very close to a homogeneous system, if we
replace the polarization by the volume average of the norm of
the individual dipolar moment which constitutes the toroidal
moment g.

We must now consider some conditions that must be
addressed by the Landau potential using g as an order
parameter. (1) It must have a similar form as the potential
that uses polarization as the order parameter. (2) As there is no
long-range dipole-dipole interaction between cells, the energy
associated to g is not strongly modified by the existence of
the other cells: in other words, the energy is not modified
by the boundary conditions, whatever they are in short or
open circuits. (3) As previously shown, g is decreasing with
temperature and has a critical temperature close to the Curie
temperature TC of bulk BT: this is a result from the ab initio
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derived effective Hamiltonian calculations; we can therefore
include a (T − TC)(g1

2 + g2
2 + g3

2) term. (4) For high shell
thickness, the three components g1, g2, and g3 of g are equal
or almost equal below TC , which implies weak interactions
between themselves [such as g1

2(g2
2 + g3

2)], thus we can
neglect them but include terms such as (g1

4 + g2
4 + g3

4),
etc. (5) A gi component is weakly affected by a Pi component
of polarization but is more drastically changed if the other
components of polarization exist: therefore we must include
components of the form g1

2(P2
2 + P3

2) and P1
2(g2

2 + g3
2),

but we can neglect terms such as g1
2(P1

2 + . . ..). (6) Ab
initio calculations have shown a σ strain associated with the
existence of g, thus we must put an interaction term between
g and σ .

This leads to the addition of new terms in the FP Landau
potential (5) associated to P polarization such as to form the
complete FG+P :

FG+P = FP + α′
1(T −Tc)

(
g2

1 + g2
2 + g2

3

)+ α′
11

(
g4

1 +g4
2 + g4

3

)
+α111

(
g6

1 + g6
2 + g6

3

)
+α′

12

[
P 2

1

(
g2

2 + g2
3

) + P 2
2

(
g2

1 + g2
3

) + P 2
3

(
g2

1 + g2
2

)]
+α′′

12

[
g2

1

(
P 2

2 +P 2
3

) +g2
2

(
P 2

1 +P 2
3

) + g2
3

(
P 2

1 + P 2
2

)]
+α′

123

[
g2

1P
2
1 + g2

2P
2
2 + g2

3P
2
3

]
+α1122

(
P 4

1 P 4
2 + P 4

2 P 4
3 + P 4

1 P 4
3

)
+α1123

(
P 4

1 P 2
2 P 2

3 + P 4
2 P 2

1 P 2
3 + P 4

3 P 2
1 P 2

2

)
−Q′

11

(
σg2
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−Q′

44

(
g2g3σ4 + g1g3σ5 + g2g1σ6

)
(6)

in which the order parameters (P and g) compete with each
other.

For the FP polarization part of the FG+P Landau potential,
all the αij etc and Qij coefficients have already been published
for bulk BT (see Table I). In order to get all additional
terms of Eq. (6) (terms with prime), we have proceeded
in a practical way, although not mathematically correct: we
started by taking the same values as in the FP expansion
and empirically modified them to get the α’ij etc and Q’ij
(see Table II) coefficients able to reproduce the results
already obtained in the situations described above by the ab
initio derived effective Hamiltonian calculations shown in the
preceding sections. This is shown on Fig. 10 for core-shell
nanodots, and we did also the same work for nanowires (not
shown). This does not of course guarantee that other sets of
parameters could not work as well but this is the first basic
attempt, which should be more deeply and systematically
investigated in a further study.

Now we can also use this potential to predict new results,
which may involve vortices and thus are not reachable in the
“classical” Landau theory, in particular, for the case of small
thickness and high permittivity of shell, which are unreachable
by ab initio calculations.

We have explored the whole range of thickness and
permittivity of shell and built a new phase diagram (see Fig. 11)
versus screening coefficient β from Eq. (3) and temperature;

TABLE II. Landau coefficient used in the expansion of free energy
vs polarization and toroidal moment.

FP FG

coefficients Value coefficients Value

α1(T ) 4.124 × 105 (T -115) α1 (T )′ 4.124 × 105 (T -100)
α11 − 2.097 × 108 α′

11 0
α12 7.974 × 108 α′

12 23.922 × 108

α111 1.294 × 109 α′
111 1.294 × 1010

α112 − 1.956 × 109

α123 − 2.5 × 109

α1111 3.863 × 1010

α1112 2.529 × 1010

α1122 1.637 × 1010

α1123 1.367 × 1010

α′′
12 23.922 × 108

Q′11 0.0275
Q′12 − 0.0108
Q′44 0.0147
s11 8.3 × 1012

as previously shown, this coefficient is a simple function of
α and εr [see Eq. (4)]. This gives a more general form for
the phase diagram, as several couples (α,εr ) can give the
same value of β; however, we also plot an α scale for the
case εr = 70 in order to give an idea of the high-permittivity
situation. On the same figure, we compare with the phase
diagram obtained from the “conventional” Landau theory of
Fig. 9 upper part (dashed lines). Several important features
in this diagram and differences with the previous diagram
of Fig. 9 can be observed. (1) A supplementary (C’)-(C)
transition occurs whatever β 
=0 (or α 
=1) is, at the same
TC temperature. (2) Vortices are observed in two phases, i.e.,
the ferroelectric (T’) and the nonferroelectric (C’) phases. (3)

FIG. 10. (Color online) Temperature dependence of the compo-
nents of polarization and toroidal moment in the case of a ceramic
constituted of core-shell nanodots calculated from first principles
(dotted lines) and Landau theory using g and P as order parameters
(solid line).
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FIG. 11. (Color online) Phase diagram vs screening coefficient
β’ (which is a simple function of α and εr ) and temperature. We have
also put an α scale for the case εr = 70 in order to give an idea of
the high-permittivity situation. In the same figure, we compare with
the phase diagram obtained from the “conventional” Landau theory
of Fig. 9 upper part (dashed lines).

For high values of β >≈8.510−4, the ground state is at low
temperature, the nonferroelectric (C’) phase in which vortices
are observed. (4) At weak values of β, the succession of three
ferroelectric phases (R), (O), (T’) is observed and the (T) phase
is not observed. (5) The (O) orthorhombic phase has only a
small β range of existence (contrary to the diagram of Fig. 9)
and disappears above β ≈ 1.310−4. Above this value, a direct
(R)-(T’) transition is observed. (6) A deviation of the critical
lines from linearity occurs, in particular, for the (T’)-(C’) line.

From the Landau expansion, we can also calculate the
permittivity of the ceramic. In particular, if we calculate it
at high value of α, i.e., in the range of the phase diagram
where no ferroelectric phase happens, for instance, α = 1.02,
a clear and strong peak appears at the temperature of the
(C’)- (C) (nonpolar) transition (see Fig. 5 dotted line). This
result confirms the attribution of the peaks observed in the
temperature dependence of permittivity obtained in ab initio
calculations (see Fig. 5). The appearance of this peak is thus
clearly not associated with the onset of ferroelectricity but
is the consequence of the vanishing (on cooling) or onset (on
heating) of the toroidal moment, via the coupling of both order
parameters in Eq. (6).

V. CONCLUSION

We have emphasized the fact that many experimental
properties of nanoceramics can be explained by the exis-
tence of a core-shell structure of the nanograins. In this
framework, we have studied BaTiO3 ceramics constituted of
core-shell nanoparticles by using ab initio derived effective
Hamiltonian calculations whose application range is for large
values of shell thickness and low values of shell permittivity.
When the nanoparticles are core-shell isotropic nanodots, no
ferroelectric phase emerges but a well-defined organization
of the local polarization occurs, in the form of vortices,
below a critical temperature as found by Naumov et al.12

in the case of isolated dots. We have shown that vortices

induce several new features, e.g., a supplementary phase
transition from the paraelectric cubic phase of BaTiO3 towards
a nonpolar rhombohedral phase with a strong anomaly of
permittivity in the form of a peak associated to this transition, a
destabilization of the orthorhombic phase, etc. The calculation
has been extended to the case of ceramics constituted of
core-shell nanowires and nanoplanes. In the former case, axial
polarization coexists below a critical temperature with planar
vortices in a ferroelectric tetragonal phase; in the latter case,
no vortex is ever observed, but the rhombohedral ferroelectric
phase of bulk BT is suppressed: only orthorhombic-tetragonal-
cubic phases are observed, however, in the low-temperature
orthorhombic phase, the polarization adopts a peculiar organi-
zation in the form of stripes rather than a conventional domain
configuration.

We have afterwards compared these results with the situ-
ation of isolated nanodots and of nanocomposites as studied
by Bellaiches’ team.12,19,20 The first result is that that there
are many similar points in both studies of nanoceramics and
of nanodots: despite the presence of stress and of a linear
dielectric as a shell, the system is essentially sensitive to
the depolarizing field and thus shares a close behavior with
nanodots. However, we should stress that contrary to nanodots,
our study focuses on a nanoceramics description and therefore
we stress the details that are not available in common nanodot
studies (strain, permittivity of the shell/matrix, nature of the
shell/matrix, the necessity to mimic realistic materials in both
their electric and mechanic properties, the effect of size of the
dot /thickness of the coating and its dielectric permittivity, the
dielectric permittivity of the nanoceramic, etc.). Also, there
are many differences and new features, e.g., a phase with
coexistence of both vortices and homogeneous perpendicular
polarization, and a new transition from cubic paraelectric phase
towards nonpolar rhombohedral phase. Also, to the best of our
knowledge, anomalies in dielectric permittivity (see Fig. 5)
associated with the onset of a toroidal moment have never
been evidenced before; in the case of core-shell nanowires, we
have demonstrated a new tetragonal phase.

Our results have also been compared with those obtained
by the Landau theory of core-shell ceramics we have recently
published.11 A very good agreement regarding the stability and
critical temperature of ferroelectric phases was observed in the
range where both theories can be compared. However, the ab
initio calculations fail to capture the physics at small-shell
thickness and/or high-shell permittivity, whereas the Landau
theory fails to predict the peculiar property of the phases in
which vortices exist.

Therefore, in a tentative way to build a global theory,
we have constructed a new Landau potential using both the
polarization and the toroidal moment as order parameters,
which allowed us to propose a new phase diagram, whatever
the shell thickness and permittivity are. This phase diagram
displays and predicts many new properties such as new phases
where vortices occur or the cancelation of the orthorhombic
phase at high shell thickness, etc.; the temperature dependence
of the polarization, toroidal moment, permittivity, etc., could
be also calculated. Although this potential is only a preliminary
proposition and a more rigorously built potential is still to
be written, we believe, however, that it captures the most
important features of the core-shell ceramics.
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Comparison of our results with the experimental situation is
unfortunately rather difficult and indirect. Regarding the phase
sequence, Lin et al.21 observed at nanosizes rhombohedral
and orthorhombic phases as we observed. Also, Buscaglia
et al.22 and Schalg et al.23 have observed at small sizes, a
cubic phase but with a local polar structure: although they
could not describe this polar order, it could be related to our
finding of the C’ phase. Aoyama et al.24 have observed a
“quasirhombohedral phase,” which is also compatible with
our finding of the C’ phase. Regarding the vortices they have
been observed in PZT films25 and PZT micrometer-sized
ferroelectric capacitors,26 also in BFO films,27 the same
observations were made in bulk single crystal of BT.28 On
the contrary, Polking et al.29 observed in nanodots of BT and
GeTe, linear polarization down to 5 nm. That is to say, to

our knowledge, no vortex could be experimentally detected
in free ferroelectric nanodots; the same applies in the case of
a nanoceramic, which is a case even harder to be dealt with
experimentally. This is why we are now trying such a study
in BT nanoceramics in order to test our results. But many
difficulties will have to be tackled in a ceramic, in particular,
the possible conduction of the grains and its inhomogenity, also
their size inhomogeneity, which should create an averaging
that could mask some effects. That is why we must try to use
ideally monodisperse nanograins.
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