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Critical behavior of the XY model in complex topologies
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The critical behavior of the O(2) model on dilute Lévy graphs built on a two-dimensional square lattice
is analyzed. Different qualitative cases are probed, varying the exponent ρ governing the dependence on the
distance of the connectivity probability distribution. The mean-field regime, as well as the long-range and short-
range non-mean-field regimes, are investigated by means of high-performance parallel Monte Carlo numerical
simulations running on GPUs. The relationship between the long-range ρ exponent and the effective dimension
of an equivalent short-range system with the same critical behavior is investigated. Evidence is provided for the
effective short-range dimension to coincide with the spectral dimension of the Lévy graph for the XY model in
the mean-field regime.
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I. INTRODUCTION: INTERACTING MODELS
IN COMPLEX NETWORKS

The study of interacting systems defined in complex,
nonregular structures is interesting from at least two points
of view. Statistical mechanical models in graphs are used
for the description of phenomena in different fields, among
which one can cite stock market dynamics,1–4 correlations
in bird flocking,5 avalanches in brain activity,6 or biological
networks.7,8 Furthermore, there is a theoretical interest per se
in the study of criticality in complex networks. The theory of
critical phenomena establishes that the critical properties of
systems interacting in a d-dimensional lattice only depend on
the symmetries of the interaction and on the dimensionality
d. On the other hand, when the topology of the interaction
is more complicated, e.g., translational invariance is lost
and symmetries of the lattice are broken, the dependence of
criticality on the structural properties of the interacting graph
is not known in general, although this topic has been a subject
of interest for more than two decades and several results are
available for particular models.9

A particularly clear case is the spherical model, which has
been proved to be equivalent to the n → ∞ limit of the O(n)
model when both models are defined on a lattice.10 On general
graphs the full equivalence does not hold anymore, though
the critical behavior of the spherical and O(n → ∞) still do
coincide.11 The critical properties of the spherical model on
a general graph are exactly known12 and are such that the
universality class of the transition only depends on a single
quantity: the spectral dimension of the graph, d̄, defined in
terms of the low-frequency spectral density of its adjacency
matrix �(ω) ∼ ωd̄/2−1. This quantity is also related to the
probability of self-return of a random walker in the graph,
and determines the infrared divergences of a Gaussian field
theory defined on the graph.12,13 Remarkably, the functional
dependence of the spherical model critical quantities on a
graph with spectral dimension d̄ turns out to be the same
as that of a short-range model in a hyper-cubic lattice with
Euclidean dimension d̄ . This analogy provides a suggestive,
physical sense to the noninteger dimensions appearing in the
context of the theory of critical phenomena.

The spectral dimension also plays a role in the XY
model criticality, which was proved14 to exhibit spontaneous

magnetization in the ordered phase in a graph of spectral
dimension d̄ > 2, and absence15 of spontaneous magnetization
for d̄ � 2. The latter phenomenon is well known in the
two-dimensional (2d) XY model,16–18 which is a particular
case of this result.

Further numerical and analytical results for the criticality
of other particular models in graphs are available (for a review
see Ref. 9). The Ising model was first studied in small-
world networks,19–23 in Barabasi-Albert networks,23–25 and on
general graphs,26,27 where it was found that the universality
class depends on the divergence or finiteness of the second and
fourth moments of the degree distribution. In this way, three
different critical regimes may be discriminated: (i) absence
of phase transition, when both second and fourth moments
diverge; (ii) a non-mean-field second-order transition, when
the second moment is finite; and (iii) a mean-field second-order
transition, when both moments are finite.

Studies of the Ising model in scale-free networks28 and
in correlated growing-random networks29,30 were also per-
formed. In the latter case a phase transition was found of
the Kosterlitz-Thouless (KT) universality class, different from
the mean-field nature of the transition found in (uncorre-
lated) scale-free networks. This difference was argued to
have its origin in the sign of the degree-degree correlations
(assortativity-disassortativity) of both types of networks.29,31

The Potts model has also been investigated,32–34 finding an
infinite-order transition for a divergent second moment of the
degree distribution.

Eventually, also the O(2) XY model has been analyzed. In
the one-dimensional (1d) small-world network, it was argued35

to exhibit long-range order for arbitrarily low values of the
rewiring probability (like in the Ising case). For uncorrelated4

and correlated23 scale-free networks an order-disorder transi-
tion is observed for a sufficiently large value of the degree
distribution exponent. Interestingly, as happens in the Ising
case, in the correlated scale-free network the transition is
non-mean-field, unlike the uncorrelated case. This difference
is again ascribed to the different nature of the degree-degree
correlations in both kinds of graphs.4

Another piece of the puzzle is provided by the numerical
work carried out by Yang et al.,36 in which the critical behavior
of the XY model is studied in uncorrelated and correlated
random (rather than scale-free) graphs. In the first case, i.e.,
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the Erdös-Rényi graph, the transition is found to be of the
mean-field type, while in a randomly growing network it
is claimed that the occurring transition belongs to the KT
universality class.

Despite numerous results in this field, a unified picture of
critical phenomena in graphs is still lacking. For instance, it is
not clear under what conditions a relation can be established
between criticality in graphs with spectral dimension d̄ and
short-range models in d̄ dimensional lattices, nor what is the
relation with the conjectured influence of dissasortativity on
criticality.

A. Lévy lattice

In order to study networks in different universality classes
in a continuous way, and, thus, deepen the relationship be-
tween long-range system Euclidean dimension d, short-range
equivalent Euclidean dimension D, and spectral dimension
d̄ , we adopt the so-called Lévy or long-range dilute lattice.37

It is a graph in which two nodes are connected with a
probability decaying as a power ρ of their distance in a given
d-dimensional lattice. The total number of links in the system
is Nz/2, z being the average connectivity of a node. While
for large enough ρ one recovers the d-dimensional hypercubic
lattice, the ρ = 0 Lévy graph limit corresponds to the random
Erdös-Rényi graph, such that the zN/2 bonds are chosen at
random from the set of all N (N − 1)/2 possible bonds. With
respect to the fully connected version of the model, thus, the
study of the model defined on the Lévy graph allows for
more efficient computation, since the number of couplings
grows only linearly with the size N . Varying the power ρ,
one actually acts as if continuously varying the dimension of
a D-dimensional short-range lattice model, equivalent—from
the critical behavior point of view—to the long-range model.

The possibility yielded by Lévy lattices of changing
the effective dimensionality, freely choosing the universality
class of the model without compromising the computational
complexity, is useful to approach different problems: the
applicability of the replica symmetry breaking theory in and
out of the spin-glass mean-field regime,37,38 the existence of
the Almeida-Thouless critical line above the spin-glass upper
critical dimension in Ising39,40 and Heisenberg41 systems,
the criticality of the 3-spin spin glass,42 the random field
Ising model transition at zero temperature,43 and the low-
temperature behavior in Heisenberg spin glasses (including
the spin-chirality decoupling)44,45 as well as in O(m → ∞)
spin glasses.46

B. Criticality regimes

For fully connected systems with (ordered or disordered)
long-range interactions decaying with the ρth power of the
distance in a d-dimensional hypercubic lattice, three regimes
can be identified:

(1) d < ρ < ρmf(d), in which the system undergoes a mean-
field transition;

(2) ρmf(d) < ρ < ρsr(d), in which infrared divergences take
place, to be dealt with in the renormalization group approach;

(3) ρ > ρsr(d), where the critical behavior is short-range-
like.

The value of ρmf(d) depends on the specific theory and its
symmetries, thus being different in ordered47 (ρmf = 3d/2)
and disordered (spin glass)48 (ρmf = 4d/3) systems. The
exponent ρsr(d) is defined as the value of ρ at which long-range
and short-range two-vertex functions display the same scaling
behavior: ρsr(d) − d = 2 − ηsr(d), where ηsr is the anomalous
scaling exponent of the space correlation function in the D-
dimensional short-range counterpart. The above scenario holds
on the Lévy lattice, as well, where, besides, the mean-field
regime is found also below ρ = d, down to ρ = 0.

Critical exponents are functions of ρ, as

ηρ = 2 − ρ + d (1)

for any ρ (the η long-range exponent is not renormalized) and

νρ = (ρ − d)−1 (2)

valid only in the mean-field regime. These expressions are
formally the same both in ordered systems47 and in spin
glasses,48,49 whereas different is their dominion in ρ and the
renormalized expression for ρ > ρmf(d). The prediction for the
ηρ exponent has been compared with the outcome of numerical
simulations in the case of the long-range Ising ferromagnet.50

C. Short-range and long-range equivalence conjecture

Starting from the field-theoretic representation in the
free theory limit, an equivalence between ρ and D can be
conjectured:37

D = 2d

ρ − d
ρ ∈ (d : 2 + d],

(3)
D = d ρ � 2 + d.

This is exact up to ρ = ρmf (or down to D = Du) but provides
a ρsr = 2 + d, which is wrong. It can be improved as42,51

D = 2 − ηsr(D)

ρ − d
d (4)

for which D = d at the right ρsr = d + 2 − ηsr(d). The above
relationships hold in the absence of external fields and do not
depend on the specific symmetries of the system, nor on the
presence of any long-range order at all (as in the quenched
disordered case). What changes is the range of values of ρ

determining the universality class to which the model belongs.
So far Eq. (4) has been carefully tested in 1d Lévy Ising spin

glasses for ρ > ρmf(1) = 4/3, verifying that the equivalent
short-range critical behaviors are actually consistent both for
D = 3 (ρ = 1.792) and for D = 4 (ρ = 1.58). The compati-
bility is better the higher D (Du = 6 in the spin-glass case).51

In the 2d fully connected ordered Ising model at ρ = 1.6546
and 1.875, which, according to Eq. (4), should correspond to
D = 2 and D = 3, respectively, numerical estimates of critical
exponents are consistent nearer to the mean-field threshold
(in D = 3) but for ρ = 1.875 they do not appear compatible
anymore with the 2d model.52 These observations hint that
Eq. (4) is but an approximating interpolation beyond mean
field. In the following we will test the conjectured relation
Eq. (4) on the 2d XY model on Lévy graphs. To make reading
more fluid and avoid notation ambiguities, in Table I we
summarize various dimensions we refer to in this work.
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TABLE I. Summary of the different dimensions considered.

d Auxiliary lattice dimension
D Critically equivalent short-range lattice dimension
d̄ Lévy graph spectral dimension
Du Upper critical dimension

There are some aspects that should be clarified also in
this context. An elementary question is about the relationship
between the spectral dimension d̄ of the graph and the
short-range equivalent dimension D; cf. Eq. (3). A rigorous
derivation of the critical properties of long-range dilute models
as a function of the power ρ is still lacking, and also an
argument stating under what conditions they are equivalent
to the fully connected case with the same value of the power
ρ. In what follows we will clarify some of the mentioned issues
in the O(2) case. Along with theoretical arguments, we shall
present the outcome of numerical simulations run on graphics
processing units (GPUs) with an ad hoc optimized code, whose
dynamics is based on the Metropolis, parallel tempering, and
overrelaxation algorithms, suited to study continuous spin
models interacting in graphs with arbitrary topology (and
possibly randomness).

The paper is organized as follows: In Sec. II we provide a
theoretical argument to support the existence of three different
universality classes of the O(2) model defined on a dilute 2d
graph with power ρ, relative to three intervals of the power ρ.
We yield numerical evidence in support of the fact that in the
mean-field regime the Euclidean D(ρ) is, actually, the spectral
dimension of the graph with power ρ. In Sec. III numerical
methods are exposed. We present numerical results in Sec. IV
and our conclusions in Sec. V.

II. CRITICALITY OF THE XY MODEL
IN THE 2D LÉVY GRAPH

We are concerned with the ferromagnetic O(n) model,
defined by the Hamiltonian

H = −
N∑

i<j=1

Jij Si · Sj , (5)

where Si denotes the dynamic variable on the ith site of the
graph, an n-dimensional vector with unit modulus, and the
product is a n-dimensional Euclidean scalar product, the XY
model being the n = 2 case. The values of the adjacency matrix
Jij of the graph can be either 0 (no connection) or 1.

We will study the dilute Lévy graph, for which two sites i

and j are connected (i.e., the element of the Jij matrix is 1)
with a probability

Pρ(Jij ) = 1

Z
|ri − rj |−ρ,

(6)
Z =

∑
r

r−ρ,

and such that the total number of bonds is independent from
ρ and equal to 2N (z = 4, for periodic boundary conditions).
In Eq. (6), the vector ri corresponds to the position of site i

on a square lattice and the probability is normalized summing
over the set of all possible distances between the sites of the

FIG. 1. (Color online) Probability distribution of the degree of
connectivity of dilute 2d graphs with N = 2562 nodes for three values
of the decay exponent ρ = 1/2,10/3 and 14/3 of the link probability,
one for each critical regime. Results are reported for both periodic
(open symbols) and free (closed symbols) boundary conditions. ρ =
14/3 is in the short-range regime, ρ = 10/3 in the non-mean-field
regime, and ρ = 1/2 in the mean-field regime. In the latter case the
Poisson distribution with average 4 is displayed for comparison.

2d lattice. Operatively, the set of possible distances on lattices
of linear size L depends on the boundary conditions chosen
for the numerical simulation being periodic (PBCs) or free
(FBCs). The maximum distance rmax will be [L/2]

√
2 for

PBCs or L
√

2 for FBCs.
In Fig. 1 we show the degree distribution of the dilute

2d graph (with FBCs and PBCs) for different values of ρ.
While the square lattice limit of the Lévy graph (ρ → ∞)
exhibits a delta function δ(z − 4), the ρ = 0 limit corresponds
to the Erdös-Rényi graph with degree distribution given
by a Poisson distribution with average degree equal to 4.
The latter case is independent from the kind of boundary
conditions. The differences in the distribution of the number
of connections per spin in systems with FBCs and with PBCs
in the ρ > 0 case are finite-size effects that are stronger the
larger ρ. Notwithstanding these differences, for what concerns
universal quantities (i.e., critical exponents) the outcome of
the numerical finite-size scaling (FSS) analysis of the critical
behavior remains consistent when FBCs are implemented
rather than PBCs, if the simulated sizes are large enough. We
will show an instance of this consistency in Sec. IV. Unless
otherwise stated, however, the results shown in the present
paper are obtained from graphs with PBCs.

A. A dimensional argument

We now discuss the criticality of the model. Let us
first consider the d-dimensional fully connected version of
our model where each site is connected with any other
site and the interaction strength decays with a power law
J (r) ∼ |r|−ρ of the distance in a d-dimensional lattice. Fol-
lowing Ref. 47, we consider the following effective Ginzburg-
Landau Hamiltonian for the long-range model, a scalar φ4
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FIG. 2. (Color online) Three domains of ρ, relative to the three
universality classes of the dilute XY model on the Lévy graph. The
arrows point out at the values of ρ at which simulations have been
carried out: 0,1.667,2.333,2.833,3.307933,3.333,3.75,3.875,4.67.

sine-Gordon theory,

H = Ld

∫
ddq

(2π )d
(qψ + m2) |φ̃(q)|2 + λ

4!

∫
ddr φ4(r), (7)

where L is the linear size of the system, q is the momentum
space index, m is the mass of the theory, φ̃ is the Fourier
transform of the scalar field, and λ is the coupling strength.
The long-range exponent ψ is such that the Fourier transform
of the interaction J (r) goes like

J̃ (q) = L−d/2
∫

ddr J (r)eır·q ∼ q−ψ (8)

for low q = |q|. In the long-range fully connected case (J (r) ∼
r−ρ), it holds ψ = ρ − d, and there is a divergence for ρ = d,
the point at which the number of links, proportional to J̃ (0),
diverges in the thermodynamic limit.

A dimensional analysis of the Hamiltonian, Eq. (7), see,
e.g., Refs. 37,47–49, shows that the dimension of the coupling
constant λ is larger than zero whenever ρ > 3d/2. Below this
point, λ is an irrelevant variable at criticality: the system critical
behavior is correctly described by a (mean-field) free theory.
For ρ > ρsr(d), the short-range lattice contribution to the
propagator q2 takes over the long-range qψ contribution and
the Ginzburg-Landau Hamiltonian corresponds to the one of a
d-dimensional short-range model. Considering the anomalous
decay of the correlation function at criticality ψ has to be
compared with 2 − η yielding ρsr(d) = 2 + d − ηsr(d). We
will motivate better in the following section such analogy (see
also Sec. II B). Eventually, in the fully connected model, an
ultraextensive regime occurs for ρ < d, with diverging energy.
This is not present in the dilute model, since the number
of bonds of the graph is constant. Collecting all the above
considerations, we summarize the following dependence of
the criticality of the dilute XY model on the exponent ρ (see
Fig. 2):

(1) ρ � ρsr(d): The model should behave similarly to its
short-range version in d dimensions, for what concerns
criticality, thus belonging to the Kosterlitz-Thouless (KT)
universality for d = 2. This regime will be called the short-
range (SR) regime in the following.

(2) ρ ∈ (ρmf(d): ρsr(d)), with ρmf = 3d/2: The system will
present a transition different from a KT transition, with
exponents different from the mean-field ones; this regime will
be denoted as the long-range (LR) non-mean-field regime.

(3) ρ � ρmf(d): The system belongs to the mean-field
universality class; i.e., its critical properties are those corre-
sponding to a free Gaussian theory in dimension 4. We will
denote this regime as the mean-field (MF) regime.

d̄
(ρ

)

ρ

ρ = ∞
D(ρ)

L = 512 z = 4
L = 512 z = 8
L = 768 z = 4
L = 768 z = 8

FIG. 3. (Color online) Spectral dimension d̄ , cf. Eq. (9), or
equivalent short-range dimension D(ρ), cf. Eq. (3), compared to
the numerically estimated spectral dimension, versus ρ. The light
full line is the result for the square lattice case ρ = ∞, the black
full line is Eq. (9). The numerical estimate has been plotted for two
sizes, L = 512 and 768 at the smaller ρ = 10/3, in order to highlight
relevant finite-size effects when long-range connections occur. In all
plotted cases, graphs with average connectivity z̄ = 4 and 8 have been
considered.

B. Spectral dimension

Considering Eq. (3) one sees that the regimes above
introduced are in correspondence with the three regimes of an
equivalent D-dimensional lattice model with nearest-neighbor
interactions: (1) short-range regime, D = d; (2) non-mean-
field regime, D ∈ (d : Du); (3) mean-field regime, D � Du.
Remarkably, this comparison suggests a tight relationship
between D and the spectral dimension of the Lévy graph,
d̄ . Indeed, in Ref. 53 it is proved that a fully connected lattice
with interaction strength decaying as r−ρ (r being the distance
in a d-dimensional lattice) has spectral dimension

d̄ =
{

d if ρ > 2 + d,

2d
ρ−d

if ρ ∈ (d : 2 + d].
(9)

It coincides with Eq. (3), holding in the mean-field
regime ρ � ρmf(d) = 3d/2. This implies that the relationship
between critical properties of a model on a graph with spectral
dimension d̄ and on a lattice of Euclidean dimension d̄, proved
for spherical and O(∞) models,12 still holds for the O(2)
model on Lévy lattice with ρ � 3d/2:

D = d̄. (10)

In the present section we provide an analysis of the spectral
dimension directly supporting Eq. (9) also in dilute long-
range random graphs. We numerically estimated the spectral
dimension of 2d dilute Lévy graphs, with several values of
the power ρ, through the calculation of the probability of
self-return of a random walker in the graph after a time τ ,
P (τ ), a quantity related54 to the spectral dimension via

P (τ ) ∼ τ−d̄/2 (11)

for large τ . Our results are summarized in Fig. 3, in which
we compare d̄(ρ) in Eq. (9) with the estimation of d̄ at the
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corresponding ρ via the histogram of the random walker
self-return times. As ρ decreases, finite-size effects become
relevant, e.g., for ρ = 10/3. Details of the method are reported
in Appendix A.

Figure 3 shows that the behavior of the spectral dimension is
compatible with Eq. (9), even though strong finite-size effects
take place as ρ decreases towards the mean-field threshold.
To get an idea of finite-size effects, at ρ = 10/3 we present
results obtained on graphs of linear size L = 512 and L = 796,
with different average coordination number z̄. We observe that
d̄(10/3) increases towards the prediction of Eq. (9), d̄ = 3.
This hints that the ρ dependence of the spectral dimension
of the Lévy diluted 2d graph with power ρ coincides with the
one of the fully connected version. Combined with Eq. (3), this
also implies the equivalence between the spectral dimension
of the graph d̄ and the short-range dimension D of the XY
model in the mean-field regime, ρ � ρmf(2) = 3.

III. NUMERICAL METHOD, ALGORITHM,
AND DETAILS OF THE SIMULATION

We now expose the numerical method used to analyze the
critical properties of the XY model in dilute 2d lattices (5), via
Monte Carlo sampling in finite-size realizations of graphs with
N vertexes and 2N edges. Given T and ρ, we consider both
the ensemble average 〈. . .〉, at T , and the graph (topology)
average at ρ:

〈O〉 = 1

Z
∑
{J }

∑
{S}

O{S} exp [−H {S}/T ]Pρ(J ), (12)

where H is the Hamiltonian of the model, Eq. (5), O is an
observable, and Z is the partition function. The following
quantities are measured: the specific heat

c = 1

N

∂〈H 〉
∂T

= 1

NT 2
(〈H 2〉 − 〈H 〉2), (13)

the susceptibility

χ = N〈m2〉 − 〈m〉2, (14)

and the fourth-order Binder cumulant

U4 = 〈m4〉
〈m2〉2

− 1, (15)

where m is the magnetization,

m = 1

N

N∑
j=1

Sj , (16)

and where {Sj }Nj=1 is a given spin configuration. Yet another in-
teresting scaling observable is the second-moment correlation
length ξ :55

ξ = 1

2 sin(kmin/2)

[
χ (0)

χ (kmin)
− 1

]1/ψ

, (17)

where ψ = ρ − d in the long-range regime and ψ = 2 in the
short-range regime, cf. Eqs. (7) and (8), kmin = (2π/L,0) =
(0,2π/L) is the smallest momentum in the Fourier space, and
χ (k) is the Fourier transform of the equilibrium two-point

correlation function

C(r) = 1

N

∑
i

〈Si · Si+r〉. (18)

With these observables we analyze the critical properties of
the model around the critical temperature Tc using the scaling
relations

U4(T ,N ) = Ũ4(t N1/ν̄); (19)

c(T ,N ) =
{

Nα/ν̄ c̃(t N1/ν̄), ρ > ρmf,

c̃(t N1/2), ρ � ρmf;
(20)

χ (T ,N ) =
{

Nγ/ν̄ χ̃(t N1/ν̄), ρ > ρmf,

N1/2 χ̃ (t N1/2), ρ � ρmf;
(21)

ξ (T ,N ) =
{

Lξ̃ (t L1/νρ ), ρ > ρmf,

L1/ψ ξ̃ (t N1/2), d < ρ � ρmf;
(22)

where t = T − Tc, α and γ are the standard critical exponents,
and ν̄ is the correlation volume exponent. This is suited to study
scaling relations in graphs and fully connected systems,35,56 in
which the correlation length is no longer well defined, but for
which the correlation volume V diverges at the critical point
as V ∼ t−ν̄ . The correlation volume exponent is related to
the correlation length exponent of the short-range equivalent
system by

ν̄ ≡
{

Dνsr(D) D < Du,

Duν
mf
sr = 2 D � Du.

(23)

According to the conjectured LR-SR equivalence in free
energy density scaling,51 νsr(D)D = νρ(d)d, one can hypoth-
esize the following relationship to the LR exponents:

ν̄ =
{

dνρ(d) ρ > ρmf(d),

dνρmf (d) = 2 ρ � ρmf(d) = 3
2d.

(24)

Consequently, using the Widom scaling relation
γ

νρ

= 2 − ηρ, (25)

one has

γ

ν̄
= γ

dνρ

=
{

ρ/d − 1 ρ > ρmf(d),

1/2 ρ � ρmf(d) = 3
2d,

(26)

which can be easily verified/falsified, thus yielding informa-
tion about the reliability of the SR-LR equivalence.

IV. NUMERICAL RESULTS

According to the arguments of Sec. II, and in order to
elucidate the nature of the phase transition in each regime,
we have run various sets of simulation with the values of ρ

reported in the first column of Table II, cf. Fig. 2, ρ = 0,
1.667, 2.333, 2.833, 3.307933, 3.333, 3.75, 3.875, 4.667, and
on the 2d square lattice, corresponding to ρ = ∞. We have
studied finite-size realizations of the system in Lévy graphs
with N = L2, L = 16, 32, 64, 128, 256, 384 nodes. Each run,
for a fixed topology, consists of 221 Monte Carlo steps (MCSs).
We measure observables each every MCSs. Time averages are
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TABLE II. Estimations of the critical temperature and of the ν̄, γ , β, and η exponents for various values of ρ.

0 5/3 7/3 17/6 3.307933 10/3 3.75 3.875 14/3 ∞
Tc from Tf 1.93(1) 1.96(1) 1.94(1) 2.01(1) 1.76(1) 1.75(2) 1.63(1) 1.58(1) 1.36(1) 0.89(1)
Tc from U crosses 1.93(1) 1.96(1) 1.94(1) 2.00(1) 1.76(1) 1.75(2) 1.62(2) 1.57(1) 1.38(2)
Tc from KT law 1.59(1) 1.34(2) 0.893(4)
Tc from η FSS 1.60(2) 1.56(1) 1.37(1) 0.894(5)
ν̄ 2.00(2) 2.00(3) 2.00(3) 2.00(2) 2.18(2) 2.19(2) 2.40(3)
γ 1.00(1) 1.00(4) 0.99(6) 0.97(4) 1.42(7) 1.45(5) 2.10(4)
β/ν̄ 0.25(1) 0.25(1) 0.26(2) 0.25(2) 0.178(6) 0.15(2)
η 0.25(2) 0.25(1) 0.26(2) 0.250(1)

performed on exponentially increasing windows (between 2k

and 2k+1, k = 1, . . . ,19,20). Topology averages are performed
over a sampling of Ng simulations with different realizations
of the graph topology, with Ng decreasing for increasing
N : Ng = 160 for L = 16, . . . ,128, Ng = 6 for L = 256,
Ng = 4 for L = 384. Equilibration checks have been done
by comparing time averages of observables on exponentially
increasing time windows and verifying the consistency of
the energy and magnetization histograms and the correlation
length values for the last two time windows. As a further
equilibration test, we have checked the coincidence of specific
heat measurements according to the equality in Eq. (13).
The algorithm used, a parallel exchange Monte Carlo with
overrelaxation implemented on GPUs, is described in detail in
Appendix B.

In this section we present numerical results supporting the
considerations about the XY model criticality as a function of
ρ that we presented in Sec. II. As reference for the rest of
the paper, results for the critical behavior are summarized in
Figs. 4, 5, 6 and in Table II. We now proceed to analyze and
discuss the critical behavior in the different regimes, starting
with the two extreme model limits: the 2d and the Erdos-Renyi
XY models.

Tc

ρ

FIG. 4. (Color online) Critical temperature in the MF, LR, and SR
regimes, according to the two different estimation methods described
in Appendix C and to the N → ∞ extrapolation of the critical
temperatures from the KT scaling (29). The horizontal arrow marks
the position of the 2d critical temperature.

A. Kosterlitz-Thouless transition: 2d square lattice limit

As a benchmark test we have analyzed the outcome of our
algorithm in the square lattice (the ρ = ∞ limit), where the XY
model is known to undergo an infinitely high order transition,
the KT transition.16,17 The paramagnetic high-temperature
phase, in which vortices are unbound, displays exponentially
decaying spatial correlations. The low-temperature spin-wave
phase is made of coupled pairs of vortices of opposite
chirality. It is characterized by the absence of spontaneous
magnetization and a power-law asymptotic decay of the spatial
correlation function.

We can compare our results with the analysis of Ref. 58,
finding excellent agreement for all the analyzed quantities (χ ,
〈H 〉, ξ , c). Looking at the FSS of the temperatures relative
to fixed values of the Binder cumulant, we find Tc = 0.89(1).
We also find Tc = 0.894(5) with an independent estimate (see
below). As a further test, we have looked at several properties
of the KT transition, which we will also consider as fingerprints
for the classification that we will do in the following;
cf. Sec. IV E. We enumerate them for clarity:

(1) Scale invariance in the whole range T � Tc. The scaling
functions ξ/L and U4 are scale invariant for all T < Tc in the
large-N limit.59 Differently from what happens, for example,
in standard second-order phase transitions, one observes a

ν̄

ρ

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4

ν

ρ

FIG. 5. (Color online) Correlation volume exponent ν̄ vs ρ. Inset:
ν = ν̄/D(ρ) with D(ρ) given by (3). The horizontal lines are the
mean-field value, 1/2, and the value corresponding to the 3d XY
model (Ref. 57): ν3d = 0.6717(1). The blue triangles are the results
of an apart analysis [x−1 from Eq. (C1)]; cf. Appendix C.

144104-6



CRITICAL BEHAVIOR OF THE XY MODEL IN . . . PHYSICAL REVIEW B 88, 144104 (2013)
γ
/ν̄

ρ

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4

γ

ρ

ρ = 0

1 − 2β/ν̄

FIG. 6. (Color online) Estimations of γ /ν̄ (squares) and of
1 − 2β/ν̄ (triangles). The horizontal line indicates the value of
γ3d/3ν3d (Ref. 57), while the black curve is Eq. (26). For 3 < ρ < 4,
the points indicate the average of two values of γ /ν̄ corresponding
to two temperatures in the error interval of the estimated critical
temperature: T = 1.75 and T = 1.76 for ρ = 3.307933 and T =
1.744 and 1.75 for ρ = 10/3. The inset shows the value of γ obtained
multiplying the estimation of γ /ν̄ by the estimation of ν̄ in Fig. 5.
The magenta horizontal line indicates γ3d, while the green horizontal
stripe stands for the estimation of the ρ = 0 case.

superposition of the finite-size ξ/L curves corresponding to
different, sufficiently large, values of L (see Fig. 9, right
panel). In particular, this does not allow us to infer the critical
temperature from the FSS of crossing points of U4 or ξ/L.
We can, however, estimate Tc by means of the fixed U4 FSS
method described in Appendix C, yielding Tc = 0.89(1).

1
η
(T

)/
2

T

FIG. 7. (Color online) The critical exponent 1 − η/2 versus
temperature for—from left to right—the 2d model, ρ = 4.667, 3.875,
ρsr = 3.75, and ρ = 3.333, the latter being in the LR regime. The
horizontal line is the value in the SR universality class. The vertical
bars are the estimates of the critical temperature for the different
cases with their error bars. In all the cases with ρ � 3.75 the SR
critical value of the η exponent is compatible with our independent
estimates of the critical point. In the latter case, not belonging to the
SR universality class, this is clearly not occurring.

(2) Susceptibility scaling at criticality. The susceptibility
Eq. (14) at T = Tc is predicted to behave like

χ ∝ L2−η(ln L)−2r (27)

with η = 1/4 and r = 1/16.60 Numerically interpolating
Eq. (27) at different temperatures we found that the temper-
ature at which η = 1/4 is compatible, in the statistical error,
with our estimate for Tc. In Fig. 7 (leftmost curve) we plot
1 − η(T )/2 as estimated in this way. It can be graphically
seen that the KT value at criticality is, indeed, reached in
the right Tc interval. We can, vice-versa, interpolate a value
of Tc as the temperature at which η(Tc) = 1/4, yielding
Tc = 0.894(5) with our data, in agreement with recent very
precise simulations.61

(3) Absence of magnetization in the low-T phase. We find
numerical evidence of vanishing magnetization in the cold
phase by looking at the FSS of 〈m2〉, or, more precisely, at
χ/N = 〈m2〉 − 〈m〉2. The latter term 〈m〉2 is numerically not
strictly zero but turns out to be always much smaller than 〈m2〉
below the critical point and tends to decrease for the largest
sizes. The FSS behavior of χ and 〈m2〉 below criticality thus
turns out to be practically identical at the leading term:√

〈m2〉 �
√

χ/N = const N−η/4. (28)

We verified the goodness of this interpolation tending to
zero for N → ∞, compatibly with the observation of zero
magnetization61 characteristic of the KT transition. We notice
that the dependence in N is very slow because η/4 = 1/16 in
the short-range universality class.

(4) Continuous specific heat at the transition, as can be seen
in Fig. 8.

(5) Exponential divergence: Kosterlitz-Thouless law. Sus-
ceptibility and correlation length behave at criticality accord-
ing to the law17

X = X0 exp

{
bX√

T − TX

}
(29)

with X = ξ,χ . Figure 9 illustrates FS behavior of χ and ξ .
As the size increases the behavior tends to Eq. (29) for a larger

0.7
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1.2

1.3

1.4
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1.6

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

c

T

N = 162

N = 322

N = 642

N = 1282

N = 2562

with derivative

FIG. 8. (Color online) Specific heat versus temperature for the
2d system in lattices of size N = 22n, n = 4, . . . ,8. The vertical line
indicates the estimated value of the critical temperature.
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FIG. 9. (Color online) Magnetic susceptibility (left) and correlation length (right) of the 2d model vs T . As N increases, χ (T ) becomes
more and more similar to the functional law Eq. (29). In the low-temperature phase the ξ curves collapse onto each other.

interval of temperature. Interpolating χ (T ,N ) with Eq. (29) at
fixed N with data in the high-T phase we obtain different
size-dependent curves with parameters χ0(N ), bχ (N ), and
Tχ (N ). A further estimate of the critical temperature may
then be obtained by extrapolating Tc = Tχ (∞) with the
law Tχ (N ) = Tχ (∞) + const N−3/2. With such a method we
obtain the critical temperature Tc = 0.893(4), compatible with
the other estimates.

B. Erdös-Rényi limit

As a further check we have studied the ρ = 0 limit,
corresponding to a random Erdös-Rényi graph with a Poisson
distribution of the degree of connectivity and average degree
equal to 4. We report numerical evidence for a second-order
mean-field phase transition. Our results are compatible with
the theoretical values of the critical exponents ν̄ = 2, γ = 1,
and α = 0, as argued in Sec. II, and are in agreement with
the numerical estimates of Refs. 35,36, where the mean-field

0
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0.4

0.6

0.8

1

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

U4

T

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60

t N1/2

1

10

100

100 1000 10000 100000

U̇4

N

∼ N1/2

FIG. 10. (Color online) Binder cumulant versus temperature for
ρ = 2.333 in the mean-field regime. The upper inset shows the scaling
(19) with ν̄ = 2.00(3) and the lower inset is the calculation of ν̄ with
the relation (30).

transition on Erdös-Rényi graphs of average degree 3 and 8,
respectively, have been analyzed.

As in the previous subsection, we now present the salient
analysis for the Erdös-Rényi case. The critical temperature
is estimated from the FSS of the value T (N ) at which the
cumulant U4(T ,N ) intersects with U4(T ,N/4). Assuming
the FSS T (N ) = CN−1/ν̄ + Tc, we obtain Tc = 1.93(1), in
agreement with the analytic value Tc = 1.9361.62 This is also
the point at which the specific heat curves for different sizes
cross each other, according to the scaling law Eq. (20).

The exponent ν̄ may be estimated by interpolating the
relation

∂U4(T ,N )

∂T

∣∣∣∣
U4=const

∼ N1/ν̄ , (30)

where the derivative of U4 with respect to the temperature is
evaluated at fixed values of U4 in the scaling critical region,
yielding ν̄ = 2.00(2), in agreement with the mean-field value
ν̄ = 2. Further numerical estimates for the mean-field critical
exponents may be found in the rescaling of the functions χ

and U4 as shown for qualitatively similar mean-field cases
(see later). We remark that, although the values of the critical
exponents are the mean field ones, the value of the critical
temperature is not a universal quantity and does not coincide
with the Gaussian mean-field value13 T = 2.

We also checked the Rushbrooke scaling relation 2β + γ =
2 − α by observing the right scaling of the magnetization with
the mean-field exponent β = 1/2. Indeed, an important feature
of this mean-field transition is that the low-temperature phase
presents a finite magnetization, and this is confirmed by FSS
analysis of 〈m2〉 in the low-T phase.

C. Long-range mean-field regime

We repeated the same analysis for ρ = 5/3, 7/3, and 17/6,
in the mean-field regime. The first value is nearer to the limit of
convergence (ρ = d = 2) of the fully connected model, where
the largest differences with the dilute model could possibly
arise. The last value of ρ is very near the mean-field threshold
ρmf = 3d/2 = 3. Through FSS of the Binder cumulant we
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FIG. 11. (Color online) Specific heat versus temperature for different Lévy lattices. Left: Dilute model with ρ = 7/3 in the mean-field
regime. Center: Dilute model with ρ = 10/3 in the non-mean-field long-range regime. Right: Dilute model with ρ = 14/3 in the short-range
regime. In the last case the large-N limit of c is regular and continuous at any T .

estimate Tc = 1.96(1),1.94(1), and 2.01(1), respectively. In
Fig. 10 we show the Binder cumulant and its scaling for
ρ = 7/3. The derivative of U4 with respect to T allows us
to estimate ν̄ = 2.00(3),2.00(3), and 2.00(2), respectively.
These are all compatible with mean-field theory; cf. Eqs. (23)
and (24).

From the data reported in Fig. 11, left panel, one observes a
scaling of the type c(T ,N ) = c̃(t N1/2), suggesting that α = 0.
We checked the γ = ν̄/2 mean-field scaling relation for the
exponents by fitting the function ln χ (T ,N ) = γ /ν̄ ln N +
ln χ̃ (t̃) as a function of ln N for fixed values of t̃ in the
scaling regime obtaining γ = 1.00(4),0.99(6), and 0.97(4),
respectively. The rescaled χ curve for ρ = 7/3 is plotted in
Fig. 12, left panel.

Finally, one finds that there is spontaneous magnetization in
the low-temperature phase. The size dependence of the square
root of 〈m2〉 is very poor and practically no finite-size scaling
is observed at the largest simulated sizes. In Fig. 13 the plot
for ρ = 7/3 is shown (left panel).

These numerical results strongly hint that the system
belongs to the mean-field universality class in the range
ρ ∈ [0:3]. In the whole range the critical exponents are well
defined and estimated.

D. Long-range non-mean-field regime

An analogous investigation leads to a different behavior in
the non-mean-field regime, for 3 < ρ < 3.75. We simulated
systems at ρ = 3.3079 and 3.3333. The critical temperature
estimates obtained from the U4 crossing points (cf. Fig. 14
for ρ = 3.3333) are, respectively, Tc = 1.76(1) and 1.75(2).
The FSS analysis of Eq. (30) reveals a correlation volume
exponent larger that the mean-field value 2 and increasing
with ρ: ν̄ = 2.18(2) and 2.19(2).

In Fig. 14, next to the main plot, we show in the insets the
U4 rescaling at ρ = 10/3 both for lattices with periodic and
free boundary conditions. In the latter case Tc = 1.53(2) and
ν̄ = 2.20(3), the exponent being consistent with the FSS value
from lattices with PBC. Also the susceptibility exponent turns
out to be larger than its mean-field value, respectively, γ =
1.42(7) and 1.45(5). We, further, observe a low-T magnetized
state, 〈m2〉 �= 0, almost insensitive to size, as in the mean-field
case; cf. Fig. 15.

Comparison with three-dimensional critical exponents. In
Figs. 5 and 6 we also compare the values of the ν and γ

exponents at ρ = 3.307933 [for which the equivalent short-
range dimension is D = 3 according to Eq. (4)] with their
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FIG. 12. (Color online) Magnetic susceptibility versus T for different Lévy graphs Left: Susceptibility scaling, according to Eq. (19),
in the mean-field regime, ρ = 7/3, Tc = 1.94(1), ν̄ = 2.00(3). Inset: Finite-size behavior of ln χ at fixed t̃ , yielding γ = 0.99(6). Center:
Susceptibility scaling for ρ = 10/3, in the non-mean-field long-range regime; Tc = 1.75(2), ν̄ = 2.19(2). Inset: FSS of ln χ at fixed t̃ , yielding
γ = 1.45(5). Right: Susceptibility vs temperature for the Lévy short-range case ρ = 14/3. As the size increases, χ (T ) becomes more and more
similar to the functional law Eq. (29), with which we fitted the data of the systems of size N = 642,1282, and 2562 in a temperature interval
beginning at T = 1.48, 1.47, 1.45, respectively. The N dependence of the so obtained Tc is shown in the inset, together with the fit which
extrapolates to N = ∞.
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FIG. 13. (Color online) Square root of the average squared
magnetization versus temperature for ρ = 2.333, in the mean-field
regime. As N increases, the low-temperature phase exhibits finite
spontaneous magnetization.

value in the three-dimensional (3d) XY model, obtained from
a state-of-the-art numerical analysis.57

In particular, for ρ = 3.307933, we find γ = 1.42(7),
ν̄ = 2.18(2), β = 0.39(2) to be compared with the values
γ3d = 1.3178(2), ν̄3d = 3ν3d = 2.0151(3), β3d = 0.3486(1).
Apparently, apart from γ displaying the largest statistical
uncertainty, these values do not satisfy the quantitative
relationships following the LR-SR equivalence conjecture, cf.
Eq. (4) and Eq. (24), even though their difference is rather
small (a few percent), as can be appreciated looking at Figs. 5
and 6. The lack of accuracy in the determination of γ comes
from the fact that it is very sensitive to the value of the critical
temperature used (see Appendix C). The comparison is not any
better choosing ρ = 10/3 corresponding to a spectral, rather
than Euclidean, dimension d̄ = 3.
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FIG. 14. (Color online) Binder cumulant versus temperature for
ρ = 10/3 in the non-mean-field regime. The upper inset shows the
scaling as in Fig. 10 with ν̄ = 2.19(2), while the lower inset shows
the scaling in the ρ = 10/3 system with FBC and with ν̄ = 2.24(4).
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FIG. 15. (Color online) Square root of the average squared
magnetization versus temperature for ρ = 10/3 (right), in the non-
mean-field long-range regime. As N increases, the low-temperature
phase exhibits finite spontaneous magnetization.

E. Short-range regime

The cases ρ = 3.75,3.875, and 4.667 have been simulated
and analyzed finding evidence that they belong to the KT
universality class of the 2d short-range XY model. They
also display some peculiar features that we compare to
the numerical fingerprints of the KT transition reported in
Sec. IV A.

(1) Scale invariance at the critical point. First of all we
estimate the critical point. We can do this by FSS of the
crossing points of U4(T ,N ). Such estimate is, however, more
and more difficult as ρ increases because the low-T behavior
of U4(T ,N ) is less and less size dependent than the high-T
behavior as N increases, as shown in Fig. 16. This appears to
be a precursor of the low-T size independence occurring in 2d
at the KT transition, as we already mentioned. Nevertheless we
obtain Tc = 1.62(2),1.57(1), and 1.38(2) for ρ = 3.75,3.875,
and 4.667, respectively. We can, otherwise, estimate Tc by
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FIG. 16. (Color online) Binder cumulant versus temperature for
ρ = 4.667 in the short-range regime. There is evidence for the scale-
invariance of this quantity for T < Tc in the large-N limit.
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FIG. 17. (Color online) Scaling of
√

χ/N vs N−η/4 at T < Tc for three values of ρ in the SR regime and for ρ = 10/3 < ρsr. The black
lines are linear fits and the y-axis intercept μ is reported. For the three cases in the SR regime, the fitted value of μ is compatible with zero.

means of the fixed-U4 FSS method, yielding Tc = 1.63(1),
1,58(1), and 1.36(1), respectively. One can notice that the
estimates for ρ = 4.667 do not coincide because of the
mentioned limits of the crossings method.

(2) Susceptibility scaling at criticality. In the 2d XY
model the susceptibility at criticality behaves like Eq. (27)
with η(Tc) = 1/4.60 We numerically interpolated Eq. (27)
at different temperatures for different ρ in the candidate
short-range regime and also for ρ = 10/3 < ρsr. The behavior
of η(T ) is reported in Fig. 7 for all these cases. As a reference,
in the figure we also display the critical temperature intervals
(vertical stripes), as estimated by the FSS method at fixed
U4. For all ρ � 3.75 we find that the temperature at which
η = 1/4 is compatible, in the statistical error, with our estimate
for Tc. This is not the case, instead, for ρ = 10/3. This
hints that the conjectured ρsr = 3.75 is actually the threshold
between LR and SR universality classes. In terms of the SR-LR
equivalence, formulated in Eq. (4), this confirms that ρsr is
equivalent to D = 2.

As a further confirmation of the fact that ρsr = 3.75, we
present in Fig. 17 the behavior of the quantity [χ (T ,N )/N]1/2

vs N−η(T )/4 for four values of ρ and for T values below the
critical temperature. This allows for a self-consistency test of
the scaling χ ∼ N1−η/2 supposed in Fig. 7. In the SR regime,
this quantity should behave as [χ/N]1/2 ∼ N−η/4 for large N .
As can be seen in Fig. 17, this is verified for ρ � 3.75 and
clearly not for ρ = 10/3.

Once we are convinced that for ρ � 3.75 the system is in the
KT universality class, we can, vice versa, interpolate a value
of Tc as the temperature at which η(Tc) = 1/4, yielding by a
simple linear interpolation, Tc = 1.60(2),1.56(1), and 1.37(1)
for ρ = 3.75, 3.875, and 4.667, respectively.

(3) Magnetization in the low-T phase. The behavior of the
magnetization below criticality is peculiar and might not be
the same for all values of ρ in the SR regime. Analytic results
for XY spins on a random graph of spectral dimension d̄,15

indeed, prove that for d̄ � 2 the magnetization is zero in the
thermodynamic limit and it is nonzero for d̄ > 2. For ρ large
enough the squared magnetization goes to zero with the same
scaling of the susceptibility (∼N−1/16); see Sec. IV A, Eq. (28).
For ρ = 4.667, e.g., for which d̄ = 2, we plot (〈m2〉)1/2 in
Fig. 18. As ρ decreases below 4 we have d̄ > 2. This implies a
nonzero asymptotic value for 〈m〉2 as ρ < 4 and, thus, different
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FIG. 18. (Color online) Magnetization versus temperature for
ρ = 4.667 in the short-range regime. In the low-T phase the
magnetization monotonically decreases with N .
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scalings for χ and (〈m2〉)1/2. In particular, the Lévy graph
with ρ = 3.875 has d̄ = 4/(ρ − 2) = 2.1333 . . . and ρ =
3.75 has spectral dimension d̄ = 2.2857 . . .. Unfortunately,
because of the very slow scaling of the susceptibility it
is rather hard to tell whether the asymptotic limit of the
magnetization is compatible with a strictly positive value. As
ρ is near the SR threshold ρ = 3.75 we can, actually, not
detect any relevant discrepancy with the χ scalings reported
in Fig. 17.

(4) The specific heat is not divergent nor discontinuous at
the transition; cf. Fig. 11, right panel.

(5) Kosterlitz-Thouless law. We have estimated the critical
temperature in the SR regime using Eq. (29) at different sizes
and taking the FSS of the fit parameter estimates, as we did for
the square lattice case in Sec. IV A. We obtain Tc = 1.59(1) for
ρ = 3.875 and Tc = 1.34(2) for ρ = 4.667. These estimates
agree with the ones obtained from the FSS of the temperature
at which the system presents a given value of U4, Tf (U4,N ).

We summarize our results in all regimes in Table II.

V. CONCLUSIONS AND PERSPECTIVES

The outcome of extensive numerical simulations on the 2d
Lévy lattice yield evidence for three different critical regimes,
corresponding to given intervals in the Lévy exponent ρ

governing the topology of the graphs: short-range ρ ∈ [ρsr,∞),
non-mean-field long-range ρ ∈ (ρmf,ρsr), and mean-field ρ ∈
[0,ρmf], with ρmf = 3 and ρsr = 3.75. The SR threshold value
has been determined in Sec. IV E, where we found evidence
that η = 1/4 for ρ � 3.75 from the susceptibility scaling.

Studying the spectral dimension we verified that its ex-
pression, Eq. (9), holding for fully connected long-range
models still holds in the dilute case. The identification d̄(ρ) =
2d/(ρ − d) appears, indeed, to be confirmed by a numerical
estimation; see Fig. 3 and Appendix A. Furthermore, for
ρ → d, d̄ diverges. An infinite spectral dimension, indeed,
occurs in the Bethe lattice limit and, generally, in any graphs
not satisfying the polynomial growth condition.54 The spectral
dimension does not depend on the symmetry of the system but
only on the topology of the graph.

In the mean-field regime we measured the critical exponents
that we found always consistent with the mean-field values
γ = 1, α = 0, and ν̄ = 2. The latter is the correlation volume
exponent, related with the correlation length exponent that
we found always consistent with their mean-field values
ν = ν̄/Du = 1/2. These exponents agree with the already
mentioned theoretical predictions for the D-dimensional
equivalent model in the mean-field regime: νρ , ηρ , γρ (see
Sec. IV C). In the long-range non-mean-field regime, instead,
we find a continuous phase transition with different critical
exponents and a low-temperature phase exhibiting sponta-
neous symmetry breaking. Finally, we report evidence for
the onset of a KT-like transition in the short-range regime
for ρ � ρsr = 2 + d − ηsr(2) = 3.75. In this regime we have
the value ρ = 4 corresponding to a spectral dimension d̄ = 2.
It is known15 that the XY model exhibits zero magnetization
in graphs with d̄ = 2 [i.e., for ρ � 4; see Eq. (9)], whereas
for d̄ > 2 (ρ < 4) a finite magnetization should occur.14 Due
to the very slow FSS of the magnetization (∼N−1/16 if the
asymptotic value is zero), however, and because of the fact

that for ρ � 4 the asymptotic magnetization is expected to be
small, we have not been able to identify a spontaneous O(2)
symmetry breaking for ρ < 4 with the simulated sizes.

For each value of ρ, the critical behavior can be conjectured
to be in a one-to-one correspondence with a short-range XY
model in D dimensions. This short-range effective dimension
is exactly D = d = 2 for ρ � ρsr(d), and D = 2d/(ρ − d)
for ρ ∈ (d,3/2d), cf. Eq. (3), in the mean-field regime. As
ρ → d, D tends to infinity. This is the value of ρ for which
the fully connected version of the model displays a divergent
energy.

The most delicate regime is the non-mean-field long-range
one, for which Eq. (3) does not hold anymore and the
dimensional relationship derived from the SR-LR equivalence
hypothesis is conjectured to be given by Eq. (4). This can
be derived, e.g., from a free energy scaling argument51 or by
requiring the exact match with the SR regime at ρsr.43 As said
in Sec. I, Eq. (4) has been tested in the 1d Lévy Ising spin
glass and in the 2d (fully connected) ordered Ising model.
In the first case the correspondence between short-range and
long-range critical behavior is actually consistent both for
D = 3 and for D = 4, the compatibility improving the higher
D.51 In the Ising ferromagnet case, on the other hand, such a
correspondence is consistent nearer to the mean-field threshold
(D = 2), but for ρ = 1.875, for which D = 3, the critical
exponents are no longer compatible with the 3d ones. In the 2d
XY model, we do not observe a strong disagreement for D(ρ) =
3, that is, for ρ = 3.307933, but our more refined estimates
are not compatible with the 3d results within the statistical
error. Indeed, we obtain γ = 1.42(7),ν̄ = 2.18(2), and β =
0.39(2) to be compared with the values γ3d = 1.3178(2),
ν̄3d = 2.0151(3), and β3d = 0.3486(1) of Ref. 57. We stress
that the 2d limit is quite peculiar due to the uncommon
specific critical properties of the KT transition, where the
low-temperature phase is unmagnetized and it is critical at
all T � Tc with temperature-dependent critical exponents and
where χ and ξ diverge exponentially rather than with a power
law and the very definition of ν̄ = ν/2 and γ lacks, for
ρ < ρsr = 3.75. The 3d values nevertheless seem to be not
too far away from the approximated SR-LR correspondence
expressed by Eqs. (4), (24), and (26).

We have further determined that the spectral dimension is
related with the dimension D of a short-range lattice equivalent
to the Lévy lattice for what concerns the critical behavior.
The two are identical in the mean-field regime, ρ � 3; cf.
Eq. (3) and Eq. (9). In this regime the structure of the
graph alone is enough to determine the universality class of
the system, independently of the symmetries of the system
variables. Beyond the mean-field threshold symmetries of the
specific system defined on the graph become relevant and
the identification does not hold anymore until ρ � 4 and the
graph is by all means a bi-dimensional lattice: d̄ = d = 2.
The result D = d̄ , valid in the mean-filed regime, implies
that the critical behavior of the O(2) model on a graph
characterized by a spectral dimension d̄ coincides with the one
of the short-range d̄-dimensional O(2) model, allowing for a
deeper understanding of the physics of interacting systems
on nonregular structures and extending the known universal
properties of the spectral dimension of the O(n → ∞) model11

to finite n.
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Summarizing, we have found that the critical properties of
the O(2) model in a graph can be divided into three regimes
characterized by the spectral dimension of the graph. In the
mean-field regime it plays the role of the dimension of a short-
range model with common critical properties. In the infrared
divergent long-range regime d̄ and D do not coincide but are,
somewhat, related, though the conjectured relationship Eq. (3)
does not seem to hold for ρ ∈ [ρmf : ρsr]. As a perspective,
we propose to investigate how the introduction of disorder and
a different short-range kind of criticality would change this
scenario.53 This is the object of ongoing research.
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APPENDIX A: SPECTRAL DENSITY ESTIMATION

In order to estimate d̄ we have studied the histogram
of return times of a collectivity of 4 × 104 random walkers
averaging over 20 different finite-size realizations of 2d dilute
graphs with power ρ = ∞, 5, 4.5, 4, 3.8, 11/3, and 10/3. We
have performed random walks on lattices of size N = 1282,
1962, 5122 and, for the smallest value of ρ, N = 7682. We
have taken average coordination numbers z = 4 and, for a
comparison, z = 8. Changing the average connectivity of
the sites does not change the spectral dimension, within the
statistical errors, at any given size. Finite-size effects are there,
instead, as ρ decreases, as discussed in Sec. II B.

The histogram of return times is proportional to the
probability of self-return of a random walker in the graph
after a time τ : P (τ ). For large values of ρ > 2 + d and in the
square lattice case the estimation of d̄ is very accurate since the
function P presents a very clear power-law behavior even at
large times and finite-size effects are not an issue. For smaller
values of ρ, however, such a measure becomes less and less
accurate. This is due to the presence of “shortcuts” on the graph
that take the walker to the boundaries of the original lattice,
where the probability P is overestimated, and to the existence
of low-connected nodes. To cope with these drawbacks, for
ρ > 4 our random walkers start from the center of the original
finite-size 2d lattice, while for ρ � 4, each realization of the
walker starts from a node which is chosen at random between
the subset of nodes whose degree is larger than two. In Fig. 19
we present the P histograms (up to an arbitrary, ρ-dependent
constant) for each studied value of ρ, from which the data of
Fig. 3 have been inferred.
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FIG. 19. (Color online) Logarithm of the histogram of self-return
times of a random walker in dilute 2d graphs of size N = 1962

with different values of ρ. Points are the numerical measures, while
lines are the fits with a linear function (their end points indicate the
corresponding fit intervals). The slope of the fits is −1/2 times the
spectral dimension (see Fig. 3).

APPENDIX B: DETAILS OF THE ALGORITHM

We present here a detailed description of the algorithm used:
a home-made high-performance parallel code for the Monte
Carlo dynamics of spin models defined on general networks.
The software is developed for GPU architecture and it has been
developed with the CUDA programming model. A single-spin-
flip Metropolis update has been used, with nonconnected spins
being updated in parallel by different GPU cores. Though this
might not be the optimal algorithm for the specific case of
the long-range ferromagnet, the kind of parallel programming
we propose has rather competitive performances and, on top of
that, is straightforwardly exportable to any kind of system with
continuous variables, including models with random bonds
and fields.

1. Graph coloring

This procedure requires the coloring of each realization of
the randomly generated graph before dynamics starts. The
graph nodes are colored with the same color if they are
not connected to each other. During the simulation, sites
with a common color are Metropolis-updated synchronously,
and subsets of the set of vertexes corresponding to different
colors are processed sequentially on each MCS. This is
a generalization of the so called red-black Gauss-Seidel
algorithm used in the parallelization of spin operations in
bipartite graphs, such as hypercubic lattices.

We approximately color the graph using a variant of the
smallest-last-ordering (SLO) algorithm,63,64 costing O(N ).
For the simulated sizes (N � 216) the number of colors (equal
to 2 in the ρ = ∞ case) turns out to be never larger than 6.
As one can see in Fig. 20, with our coloring procedure the
distribution of noninteracting sets becomes more and more
homogeneous as N increases, thus automatically enhancing
the algorithm efficiency.64
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FIG. 20. (Color online) Coloring a dilute Lévy 2d graph with
power ρ = 1 and N = L2 = 28−14 nodes with the SLO algorithm.
The larger the graph, the more homogeneous is the partition of the
set of graph nodes in subsets corresponding to different colors.

2. Improved equilibrium dynamics

In our code, besides the Metropolis algorithm, also the par-
allel tempering (PT)65 and overrelaxation (OR)66 algorithms
are implemented. Both algorithms reduce the correlation
time of the Monte Carlo Markov processes and improve the
equilibration.77

PT swap attempts are performed (in CPU) every MCS, with
replicas at different temperatures being updated in parallel, as
explained in Ref. 67. Figure 21 illustrates the rate of PT swaps
between configurations with adjacent temperatures at fixed
intervals of �T = 0.005, as a function of the temperature for
a system with N = 216 in the 2d square lattice, for which the
critical temperature is known to be T c = 0.8929....

3. Memory management

We have used a storage of the degrees of freedom in the
global device memory of the GPU architecture,67,68 each thread
accessing the O(2) angle of its corresponding graph node in
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FIG. 21. Exchange rate between nearby heat baths in the PT
algorithm in a square lattice with N = 216 sites. The distance between
consecutive temperatures is �T = 0.005.

TABLE III. Computational time of different algorithms per spin.
It is the total computation time of a run divided by N , by the number
of copies NT at different temperatures in the PT algorithm, and by
the number of MCSs.

Algorithm Precision Trig. function Time per spin (ns)

MET + PT single fast 1.88
MET single fast 0.635
MET single cosf 0.865
OR single fast 0.36
OR single cosf 0.54

such a way that sites with a common color are consecutive in
the array, favoring coalesced memory access. Each thread,
then, accesses an array in global memory, from which it
reads the list of sites connected to the corresponding site.
An independent random number generator of the Fibonacci
type67 is associated to each device thread. We used double
floating-point precision for storing observables, and single
precision for the calculation of the trigonometric functions
in the evaluation of the energy and magnetization of each site.
In the latter case we adopted the special fastmath function of
the GPU architecture, a faster routine specific of the GPU
architecture.

4. Computational speed

We now present some details about the performance of our
algorithm, referring to a calculation performed in an nVidia
GPU GTX480 Fermi card. In Table III the reader may find
the computation time per spin involved in the Metropolis and
OR algorithms in a square lattice with N = 214 sites and PBC,
for different choices of the floating point precision and of the
routine used for the computation of trigonometric operations.
In Fig. 22 a comparison of the computation time for the PBC
square and Lévy lattice with ρ = 7/3 with different sizes is
shown. Since in a general graph colored with Q colors our
algorithm is nearly Q/2 times slower than the code in the
square lattice, we also show 2/Q times the computation time
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FIG. 22. (Color online) Computational time per spin of the
Metropolis algorithm versus N for the square nearest-neighbor
lattice and ρ = 7/3 Lévy lattice. The serial-CPU run is shown for
comparison: a speedup of several hundreds of times can be observed.
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in the Lévy graph for comparison with the square lattice case.
The minimum time peaks for Metropolis and OR algorithms
are 0.55 ns and 0.36 ns respectively, a mark which is competi-
tive with state-of-the-art highly optimized GPU simulations of
spin glasses69 [a direct comparison is not possible since their
benchmark refers to the O(3) model] and represents a speedup
of several hundred times with respect to a serial C code running
on an Intel i7 CPU with 2.67 GHz. All of the simulations in this
work have been performed using single precision (4 bytes) for
the storing of floating-point numbers and the fast math CUDA
functions. We ran simulations changing both precision and
trigonometric routines, and introducing OR sweeps, without
finding essential accuracy improvements. An upgraded and
generalized version of this algorithm, designed for the study
of random laser modes70–73 in arbitrary topologies, will be
extensively reviewed and presented in a forthcoming work.64

APPENDIX C: FINITE-SIZE SCALING ANALYSIS
OF CRITICAL PARAMETERS

Critical temperature. For each value of ρ, we have
estimated Tc both from the FSS of the crossing points of U4

at different sizes (see, e.g, Figs. 10, 14) and from the FSS of
the temperature at which a finite-size system exhibits a given
value U4 of the Binder cumulant:

Tf (U4,N ) = Tc + AN−x, (C1)

Tc = Tf (U4,∞) being the critical temperature, independent
from the specific U4 value chosen for the fit, and x, a quantity
in principle depending on U4, and that can be identified with
1/ν̄ for ρ < 3.75 (cf. Fig. 4). In order to find Tc, (i) we take
different values of the Binder cumulant U

(j )
4 , j = 1 . . . nd , in

a reasonable range around the critical region; (ii) we construct
nd apart data sets {Tf (U (j )

4 ,N )}j ; and (iii) we interpolate all
data sets simultaneously with common parameter Tc and set-
depending parameters A(j ), x(j ). The resulting temperatures
are reported in Table II and plotted in Fig. 4 together with the
Tc estimated from the FSS of the crossing points. In practice,

for ρ < ρsr = 3.75, we fix x to be common to all U4 values,
while for ρ > 3.75 it is U4 dependent.

Correlation volume exponent. Besides estimating ν̄ from
the interpolation with Eq. (C1), in order to have a more precise
determination we estimated the correlation volume exponent
from the logarithm of the temperature derivative of the binder
U̇4(T ,N ) at fixed U4, performing a simultaneous FSS fit over
apart data sets at different values of the Binder cumulant with
the law

ln U̇4(Tj ,N ) = cj + 1

ν̄
ln N (C2)

and with a common value of ν̄ for all data sets. We obtain the
results plotted in Fig. 5 and reported in Table II.

Susceptibility exponent. The γ /ν̄ exponent has been deter-
mined from the FSS (21) in the approximated form

ln χ (T ,N ) = cte(T ) + x(T ) ln N (C3)

where x(Tc) can be identified with γ /ν̄ in the MF, LR regimes,
and x(T ) can be identified with 1 − η(T )/2 in the SR regime,
when T � Tc. We have interpolated x(T ) for several values of
the temperature in the scaling region, (as shown in Fig. 7), and
estimated the values of γ /ν̄ from the values of x(T ) with T in
the error interval of Tc, estimated as explained above. Finally,
γ is obtained by multiplying the interpolated γ /ν̄ by the ν̄

obtained from the U4 fit. The resulting values of γ and of γ /ν̄

so computed are shown in Fig. 6.
Magnetization exponent β. The exponent β is estimated

in a similar way as done for the γ in Eq. (C3), assuming
the FSS:

1
2 ln 〈m2〉(T ,N ) = cte(T ) − x(T ) ln N, T < 0; (C4)

identifying x(Tc) with β/ν̄ yields the estimates reported in
Table II. It is interesting to remark that the (Rushbrooke-
Widom) scaling relation between critical exponents γ /ν̄ =
1 − 2β/ν̄ is satisfied. The quantity 1 − 2β/ν̄ is reported in
Fig. 6 for several values of ρ, illustrating the validity of the
Rushbrooke-Widom relation.
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