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Temperature-dependent pressure-induced softening in Zn(CN)2
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We study the temperature dependence of the pressure-induced softening in the negative thermal expansion
material Zn(CN)2 using neutron powder diffraction and molecular dynamics simulations. Both the simulation
and experiment show that the pressure-induced softening only occurs above a minimum temperature and also
weakens at high temperatures.
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I. INTRODUCTION

The phenomenon of pressure-induced softening, whereby
the elastic stiffness of a material actually decreases on
compression, is a counterintuitive mechanical response that
is rarely observed in materials, at least over extended pressure
ranges. The few known examples from experiment include
silica glass1 and two negative thermal expansion (NTE)
framework materials ZrW2O8 (Ref. 2) and Zn(CN)2.3 We have
recently predicted the existence of pressure-induced softening
in a number of cubic zeolites, all of which show NTE.4

The intuition that materials should become stiffer under
compression is grounded in the observation that shortening
bonds increases the steepness of the corresponding potential
energy surface. Thus, there is a strong fundamental physics
interest in understanding the apparent violation of this basic
mechanical response. It is also likely that the existence of
this counterintuitive response in materials that display the
equally rare phenomenon of volume NTE is not coincidental.4

That pressure-induced softening may signal the existence of
a host of unusual thermodynamic responses (e.g., NTE) with
important technological applications acts as further motivation
to understand both its microscopic origin and its implications
for other material properties.

In high-symmetry structures, elastic stiffness can be char-
acterized by the bulk modulus B = −(∂ ln V/∂p)−1

T , where
V is the volume, p is the pressure, and T is the temperature.5

Typical values of B0 = B(p = 0) lie in the range 30–100 GPa,
with larger values corresponding to materials of increasing
mechanical stiffness.6 Experimentally, B0 is usually measured
by fitting the pressure dependence of the crystallographically
determined unit cell volume to an appropriate equation of
state.7 The pressure dependence of the bulk modulus is charac-
terized by the dimensionless parameter B ′

0 = (∂B/∂p)T |p=0,
which for many materials has a value in the vicinity of +4
at ambient temperature; indeed, this is the value to which
the widely used second-order Birch-Murnaghan equation of
state corresponds.7 So, in other words, for most materials one

expects an increase of 5%–10% in bulk modulus for each
1 GPa increase in hydrostatic pressure.

In this context, measured negative values of B ′
0 = −17

(B0 = 76 GPa) (Ref. 2) for ZrW2O8, and B ′
0 = −6.0(7)

[B0 = 34.19(21) GPa] (Ref. 3) or B ′
0 = −8.6(13) [B0 =

36.9(22) GPa] (Ref. 8) for Zn(CN)2 are strikingly anomalous.
In both cases, an applied pressure of 1 GPa causes the material
stiffness to decrease by ∼20%. Discussion of the origin of
pressure-induced softening has been given in Refs. 2, 9,
and 10, the first two corresponding in practice to a model
that represents a two-dimensional idealization of Zn(CN)2 (see
Appendix A). These works all associated the negative value
of B ′

0 with dynamical effects associated with low-frequency
phonon modes involving rotations of quasirigid polyhedral
groups of atoms.

What has not yet been seen at all is the dependence of
pressure-induced softening on temperature in any material.
In this paper, we study this effect in Zn(CN)2 using both
molecular dynamics (MD) simulations and variable-p/T

neutron powder diffraction. Our MD simulations reveal a very
strong temperature dependence to B ′

0, which even involves
a change in sign. Based on an interpretation of the relevant
fluctuations, we propose an empirical form for the B ′

0(T )
function. A simple single-particle Hamiltonian of a rigid-unit
mode system similar to Zn(CN)2 was analyzed in Ref. 2,
but this gives a prediction for the temperature dependence
of pressure-induced softening that differs from the results
presented in this paper; we discuss this in Appendix A.

This paper begins with a brief discussion of the lattice
dynamics of Zn(CN)2, from which we predict qualitatively
the form of the B ′

0(T ) function. We proceed to describe
first the MD simulations we have performed, which establish
the temperature dependence of B ′

0 for this material, and
second the neutron diffraction experiments that provide some
confirmation of the MD results. We conclude with a discussion
of the implications of our study for computational and
experimental investigations of pressure-induced softening in
related systems.
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FIG. 1. Crystal structure of Zn(CN)2 showing the two sublattices
where one is shown using photorealistic shading to represent the
atoms and the other with the atoms represented by open spheres.
The primary features are the tetrahedral coordination of the Zn atoms
(larger spheres) to the CN molecular anions (smaller spheres con-
nected by a short bond), and the linear Zn–cyanide–Zn connectivity.

II. LATTICE DYNAMICS AND
A PHENOMENOLOGICAL MODEL

From a lattice-dynamics perspective, the key point of
interest concerning zinc cyanide has always been its NTE
behavior:11 the volume of its cubic unit cell decreases on
heating at a rate that is more than double that of longer-
established NTE systems such as ZrW2O8.12 The crystal
structure of Zn(CN)2 (Ref. 13) can be described as a network
of zinc atoms connected via linear Zn–C–N–Zn linkages
as shown in Fig. 1. Each Zn center is coordinated in a
tetrahedral fashion by four C or N atoms.14 It is thought
that, to a first approximation, these tetrahedral units are not
readily deformed,11,15 so the dominant vibrational motion in
zinc cyanide involves flexing of the Zn–C–N–Zn linkages
as propagated in a family of low-energy transverse acoustic
phonon modes with energies less than 1 THz.16–19

In the case of amorphous silica, molecular dynamics simu-
lations suggested a relation between the bulk compressibility
and the extent of network flexibility as measured by the
magnitude of fluctuations involving whole-body rotations of
SiO4 tetrahedra.10 We can propose a similar explanation for
the case of Zn(CN)2, where at some finite temperature the
structure is buckled through rotations and translations of the
Zn(C/N)4 tetrahedra and cyanide bridges, the same fluctuations
that are responsible for NTE. An initial application of negative
pressure to expand the structure will first be accommodated
through straightening of the Zn–C–N–Zn linkages and align-
ment of the Zn(C/N)4 tetrahedra, which costs relatively little
energy. This process will then be followed later by stretching
of the Zn–C–N–Zn linkages which costs rather more energy.
Thus, the bulk modulus is expected to increase with negative
pressure, which implies that ∂B0/∂p takes a negative value.

T0 T1

β

T

B
0 0

FIG. 2. Schematic curve showing the predicted variation of B ′
0

with temperature T according to Eq. (1). This schematic defines the
meanings of the parameters β, T0, and T1.

This explanation suggests that the magnitude of the
pressure-induced softening should depend on temperature. At
low temperature there will be no fluctuations to accommodate
stretching of the structure, and we therefore expect a positive
value of B ′

0. Indeed, without fluctuations, compression of
the structure will also require compression of bonds. Thus,
we expect pressure-induced softening to occur only when
there are thermal fluctuations, and we expect that on heating
B ′

0 will initially have a positive value, which will reduce
and become negative at some finite temperature. At higher
temperatures, we might expect not to see the transition between
straightening the fluctuations and stretching of bonds, so that
B0 will become relatively constant with pressure and hence B ′

0
will tend towards zero from its negative value.

We model the variation of B ′
0 with temperature T in

Zn(CN)2 using the following phenomenological form:

B ′
0 = −β

(
T − T0

T0

)
exp

(
− T

T1 − T0

)
, (1)

parametrized by the variables β, T0, and T1. This is illustrated
in Fig. 2. We will find in the following that the temperature
dependence of B ′

0 in Zn(CN)2 obtained from both molecular
dynamics simulations and neutron powder diffraction experi-
ments is described well by this phenomenological model.

III. MOLECULAR DYNAMICS SIMULATIONS

A. Method

Molecular dynamics (MD) simulations were performed
along isotherms of Zn(CN)2 at selected temperatures with
an interatomic potential model developed from ab initio
calculations.19 Atomic charges were obtained from a dis-
tributed multipole analysis.20,21 Morse potentials were used
to describe the energies of chemical bonds, and bond angle
terms were used to define the Zn(C/N)4 tetrahedra. A linear
three-body potential EL = K(1 − cos ϕ) was used to describe
the transverse vibrations of C and N in the linkages Zn–
C(N)–N(C)–Zn. For these potentials, parameters were tuned
by fitting to quantum mechanical calculations based on small
clusters. The dispersion interactions between carbon and
nitrogen atoms were modeled using the Buckingham potentials
of Ref. 22. Further details are given in the Supplemental
Material23 and Ref. 19; Ref. 19 also provides comparison of
the performance of the model against experimental data.
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FIG. 3. Simultaneous fit to (a) the isotherm data sets (open
squares) at (from up to down in the plot) 1, 10, 25, 30, 50, 75,
100, 150, 200, 250, 300, 400, 500, and 600 K from the MD; (b) the
isotherm data sets (open squares) at (from up to down in the plot) 30,
50, 75, 150, 200, 250, and 300 K from the neutron diffraction, using
the third-order Birch-Murnaghan equation of state. V0(T ) and B0(T )
in the equation of state were expressed as quadratic polynomials.
B ′

0(T ) was put into the phenomenological form of Eq. (1).

The MD simulations were performed using the DL_POLY

code,24 using a sample described as a 10 × 10 × 10 supercell
containing 10 000 atoms. Normal periodic-boundary condi-
tions were used. A constant-stress and constant-temperature
ensemble with a Nosé-Hoover thermostat25 was used. The
equations of motion were integrated using the leapfrog
algorithm with a time step of 0.001 ps.

Each simulation was performed with an equilibration
time of 20 ps followed by a run of 40 ps from which an
average volume was calculated from writing the instantaneous
volume at every 0.02 ps. Altogether, we performed 242 MD
simulations.

B. Equation of state from simulation data

Plots of sample volume as a function of pressure for the
range of temperatures are given in Fig. 3(a). Values of B0 and
its derivative B ′

0 for each temperature were obtained by fitting
a third-order Birch-Murnaghan equation of state to the data,
treating each temperature run separately, and shown in Fig. 4
and provided in Table I for later comparison with experimental
data.

As a subsequent task, we refitted the data in Fig. 3(a)
by expressing B ′

0 by the phenomenological form of Eq. (1)
and using quadratic polynomials to describe the zero-pressure
volume V0(T ) and the zero-pressure bulk modulus B0(T ) as
functions of temperature. In this case, we performed an overall
fit rather than fitting to each temperature data separately,
adjusting the values of the parameters β, T0, and T1 in Eq. (1),
together with the parameters in the polynomials of volume
and bulk modulus. Figures 3(a) and 4 show the good quality of
the fit, and highlight the consistency of the phenomenological
model with the MD data.

The fitted values of β, T0, and T1 in Eq. (1) are 5.4(4),
34(2) K, and 168(8) K, respectively. From the simultaneous
fit, we also obtained the coefficient of thermal expansion
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FIG. 4. (Color online) Bulk modulus at zero pressure B0 and its
first derivative B ′

0 as functions of temperature, obtained from fitting
the third-order Birch-Murnaghan equation of state to the simulated
isotherms of Zn(CN)2. Values at zero temperature calculated in
harmonic lattice dynamics using GULP (Ref. 26) are also included in
the plot (blue cross). Red curves show the calculated B0(T ) and B ′

0(T )
using values of the parameters from the simultaneous fit, where B0(T )
was described by a quadratic polynomial and B ′

0(T ) was expressed
by Eq. (1).

α = ∂ ln V0/∂T and the derivative ∂B0/∂T ; values for T =
300 K are given in Table II for later comparison with the
experimental results (below). According to the thermodynamic
expressions for α and B combined with the Maxwell relation
∂2V/(∂T ∂p)p,T = ∂2V/(∂p∂T )T ,p, the variation of α with
pressure can be calculated as

(
∂α

∂p

)
T

= 1

B2

(
∂B

∂T

)
p

. (2)

TABLE I. Simulation (Sim) and neutron powder diffraction
(Exp) values of B0 (units of GPa) and B ′

0 obtained as described
in the text. Most of the simulation results are obtained using the MD
method; the exceptions are the values at 0 K, which are taken from
a separate simulation of the equation of state using the lattice energy
code GULP (Ref. 26).

T (K) B0 (Sim) B0 (Exp) B ′
0 (Sim) B ′

0 (Exp)

0 46.37(17) 7.2(3)
1 45.54(2) 7.1(1)
10 45.15(17) 4.1(6)
25 44.15(29) 3(1)
30 44.07(16) 39.1(7) 1(1) −2(7)
50 43.5(4) 38.5(9) −3(1) −3(6)
75 42.0(5) 38.8(10) −4(1) −8(5)
100 40.8(3) −4.2(6)
150 39.8(6) 36.8(4) −6(1) −7(1)
200 38.2(4) 36.1(3) −6.7(5) −8.1(8)
250 36.1(3) 35.6(3) −5.3(5) −9.0(7)
300 34.5(3) 33.4(3) −4.2(5) −4(1)
400 32.2(3) −3.1(5)
500 30.11(28) −1.8(5)
600 28.79(18) −1.6(3)
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TABLE II. Comparison of the values of α (MK−1), ∂B0/∂T (GPa/K) (T = 300 K), and ∂α/∂p (MK−1GPa−1)
(T = 300 K) from the MD and experimental studies.

α ∂B0/∂T ∂α/∂p

−48.9 to −40.9 (10 to 100 K) (Ref. 19)
MD −30.1(4) (300 K) −0.027(2) −23(2)
Exp −47.7(7) (averaged over 30 to 300 K) −0.035(23) −31(21)

The value of ∂α/∂p at p = 0 and T = 300 K is also given in
Table II.

In the limit of the temperature decreasing to zero, the
value of B ′

0 from the MD simulations becomes positive.
The zero-temperature value given in Table I and Fig. 4 has
been computed from a lattice-energy calculation using the
GULP code.26 It is clear from Fig. 4 that the MD results are
tending towards the zero-temperature lattice-energy result. The
ambient-temperature values of B0 and B ′

0 calculated by MD
are consistent with those reported in previous experimental
studies cited in the Introduction.3,8

It is possible that the values of B0 and B ′
0 obtained from

fitting to the MD isotherms might not be directly comparable
with experiment at low temperatures because the MD simu-
lations follow the classical equipartition of energy. However,
for NTE materials such as Zn(CN)2, most of the flexibility
comes from vibrational modes that have low frequencies of
the order of � 1 THz. These modes contribute most strongly
to NTE through their large negative Grüneisen parameters,19

which suggests that even at low temperatures such as ∼50 K,
these modes remain populated and hence contribute to the
dynamics of the material. This is borne out from measurements
of the variation of α with temperature,11 which show little
sign of departure from the classical equipartition of energy
down to very low temperatures. Another possible concern
is that zero-point motion of the NTE modes is sufficient to
allow a bond-bending deformation mechanism even in the
limit T → 0 K. Using harmonic lattice dynamics calculations
performed using the GULP code,26 we have estimated the
zero-point contribution to B ′

0 at 0 K to be � −0.1 (as shown in
Appendix B), and hence a negligible correction to the values
given in Fig. 4. For these two reasons, we do not anticipate
much discrepancy between the classical MD results and the
true quantum picture even at relatively low temperatures.

IV. NEUTRON POWDER DIFFRACTION

A. Method

In order to confirm the predicted variation of B0 and
B ′

0 with temperature, we carried out a neutron powder
diffraction experiment using the GEM diffractometer at ISIS.27

A polycrystalline Zn(CN)2 sample was contained within
a Ti-Zr alloy pressure cell, which produces a featureless
background in the diffraction pattern; this was itself contained
within a closed-cycle refrigerator, allowing us to control both
temperature and pressure. Hydrostatic pressure applied to the
sample was generated by an external pressure intensifier unit
to an accuracy of 1 bar. The sample temperature was controlled
by a closed-cycle refrigerator (CCR) that can operate within
a temperature range of 4 to 325 K. Diffraction data were

collected at various pressures from 5 bar to a value limited
by the phase diagram of helium gas at temperatures of 30,
50, 75, 150, 200, 250, and 300 K.23 Measurements at lower
temperatures could not be carried out because the helium gas
would readily have liquefied at low pressure, making the true
sample pressure unknown. For the same reasons, the accessible
pressure range is much lower for the very low-temperature
data points. This limitation has the unfortunate consequence
of increasing the experimental uncertainty in the derived values
of B0 and B ′

0 for temperatures below 100 K.
Rietveld refinement of the neutron diffraction patterns using

GSAS (Ref. 28) and EXPGUI (Ref. 29) yielded satisfactory
fits, as shown in Fig. 5, and enabled determination of the
unit-cell volume to an accuracy of 0.001 Å3. The structural
model used was that described in Ref. 14, which takes into
account the head-to-tail disorder of the cyanide ions. The

FIG. 5. (Color online) A representative Rietveld fit to the neutron
diffraction data collected using the GEM instrument at ISIS. These
data correspond to a sample temperature of 300 K and a hydrostatic
pressure of 1.2 kbar. Data points are shown as black crosses, the fit as
a red line, the background function as a green line, and the residual
(data fit) as a blue line.
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FIG. 6. (Color online) Bulk modulus at zero pressure B0 and its
first derivative B ′ as functions of temperature, obtained from fitting
the third-order Birch-Murnaghan equation of state to the experimental
isotherms of Zn(CN)2. Solid curves show the calculated B0(T ) and
B ′

0(T ) using values of the parameters from the simultaneous fit,
where B0(T ) was described by a quadratic polynomial and B ′

0(T ) was
expressed by Eq. (1). The relatively large deviation of the B ′

0 curve
from the data points beyond 150 K is consistent with the relatively
large fitting error for the corresponding isotherms in Fig. 3(b). Dashed
curves are the results from the MD for comparison (also seen in
Table I).

refined structural parameters were the position of the C/N
atoms (constrained by the Pn3̄m crystal symmetry to a single
parameter), the anisotropic atomic displacement parameters
for the C/N atoms (constrained to be the same for C and N),
and the Zn isotropic atomic displacement parameter. A table
of refined structural parameters for all data sets is given in the
Supplemental Material.23

B. Equation of state from experimental data

Values of B0 and B ′
0 were extracted from the experimental

lattice parameter data using the same approach as in the
analysis of the MD results, fitting each isotherm to a third-order
Birch-Murnaghan equation of states.7 The corresponding
thermal evolution of derived values of B0 and B ′ is shown
in Fig. 6, and the numerical values of B0 and B ′

0 are listed
in Table I for comparison with the results from the MD
simulations. We consider that the agreement between the
experimental and MD values is reasonable given the difficulties
in the experiment and the fact that the intermolecular potential
was not tuned against experimental data. We will comment
more on the level of agreement below.

We further carried out a simultaneous fit to all the p–V data
sets as we did for the MD data. The quality of the fitting is
shown in Figs. 3(b) and 6. The values of β, T0, and T1 in Eq. (1)
obtained from this simultaneous fit are 4(5), 22(14) K, and
145(29) K, respectively. These are in reasonable agreement
with the values obtained by fitting to the MD data (Fig. 4),
albeit with rather larger values of the standard deviations on
each parameter. The consistency between the MD and neutron
diffraction results is highlighted by comparing the fitted curves
for B0 and B ′

0(T ) in Fig. 6. In the case of B0, agreement is
within 10%, although the curvature differs at low temperature.
This may be a systematic error coming from the fact that at low

temperature we had access to a much more restricted range of
pressures. On the other hand, the agreement between the MD
and neutron diffraction results for B ′

0 is much closer.
Values of α and ∂B0/∂T at 300 K extracted from our

data are given in Table II, together with the value of ∂α/∂p

obtained from Eq. (2). The value of α we have determined
from experiment is consistent with the results reported in other
experiments.3,11 Altogether, the experimental values given in
Table II are in fair agreement with the results from the MD
simulations, when account is taken of the relatively large
errors for the experimental data. We note that the value of
α from experiment agrees well with the values from MD in the
temperature range of 10–100 K, but the value of α from the MD
simulations decreases faster on heating than in the experiment,
suggesting an overestimate of anharmonicity in our model
at high temperatures. Despite the different low-temperature
curvatures of the fitted B0(T ), the MD values of ∂B0/∂T and
∂α/∂p at 300 K agree to the experiment within the error as
shown in Table II.

While we have not been able to measure diffraction data at
sufficiently low temperatures to observe a definitive transition
from negative to positive values of B ′

0, so that Fig. 6 can
not be said to confirm the detailed MD results exactly, the
agreement between the fitted B ′

0 curve and the data points
nevertheless demonstrates that our data remain consistent with
the phenomenological model embodied by Eq. (1).

V. CONCLUSIONS

We have proposed a phenomenological model of pressure-
induced softening in zinc cyanide, based on the well-
established difference in energy between vibrations that
involve sideways buckling of the cyanide ions and those that
involve bond stretching. The functional form of Eq. (1), chosen
to illustrate this qualitative model, is consistent with both
experimental and simulated data.

In this model, the parameter T0 represents the temperature
above which B ′

0 becomes negative, and as such it is a
measure of the temperature at which the structure starts to
crumble. In other words, it corresponds to the temperature at
which the vibrational modes responsible for negative thermal
expansion begin to be substantially occupied. Encouragingly,
these modes are known to have an energy less than 1 THz
= kB × 48 K,16–19 which agrees with the values of T0 obtained
from fits to the experimental and MD data.

The importance of revealing the temperature dependence
of B ′

0 transcends the specific case of Zn(CN)2, as important
as this particular material is. We have suggested elsewhere4

that a negative value of B ′
0 is a common feature of NTE

materials, having shown through extensive simulations of
many cubic zeolites that almost all exhibit both NTE and
pressure-induced softening effects. Indeed, the establishment
here of a temperature dependence in which the parameter
changes sign on cooling is crucial for the interpretation of
simulation studies. We envisage that the striking prediction of
negative values of B ′

0 in many NTE materials will stimulate
a growing number of ab initio studies, but we caution that
without accounting for thermal fluctuations, such calculations
may predict incorrectly a positive value of B ′

0.
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FIG. 7. Representation of the two-dimensional model presented
in Ref. 2, where we represented the square containing nonbridging
vertex bonds of the original model by a rod that could represent the
CN molecular ion of Zn(CN)2. The model of Ref. 2 has a single
rotational variable for each square and, by extension, to each rod.
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APPENDIX A: SOME COMMENTS ON THE
SINGLE-PARTICLE HAMILTONIAN OF REF. 2

Reference 2 presents an experimental study of the pressure
dependence of the elasticity of ZrW2O8, showing pressure-
induced softening. A simple model initially presented in
Ref. 30 was used to provide an interpretation. The model is
a two-dimensional array of corner-sharing squares, with one
quarter of the squares missing, giving a structure with three
polyhedra per unit cell of which two have have their bonds not
connected to another square. This could be said to represent the
existence of the nonbridging W–O bonds in ZrW2O8. However,
the squares with two nonbridging bonds could be replaced by a
rod connecting the fully connected squares with no changes to
the model, as developed in Ref. 9 and shown in Fig. 7. As such,
the model is more accurately a two-dimensional representation
of Zn(CN)2, albeit with some significant differences.31

In the analysis of Ref. 2, a model Hamiltonian was
constructed. This involves a single variable per square, namely,
the rotation angle θi , and involves two energy terms. The first

is a pV -like term32

EpV = −p (1 − cos θi) , (A1)

where the volume V is reduced by rotations of the squares.
This term automatically lowers the energy for rotations of the
square since these lead to a reduction in the volume. The second
term is an anharmonic restoring force in even powers of θi ,

Erot = 1
2Kθ2

i + 1
4γ θ4

i + 1
6δθ6

i + · · · (A2)

and gives a rise in energy for rotations of the squares.
Because there is no coupling between the squares, the

phonons will all have frequencies that are independent of
wave vector. This is a reasonable approximation for a system
in which all phonons are rigid unit modes.33 However, in
the case of Zn(CN)2 there is a significant coupling term that
gives a dependence of frequency on wave vector, which in the
two-dimensional model would mean that counter-rotations of
nearest-neighbor squares (modes whose wave vectors are at
the edge of the two-dimensional Brillouin zone) will have a
much lower frequency than the zone center modes where all
squares rotate in the same direction.

At temperature T = 0 there are two states differentiated by
the value of p, namely, the state at low p in which the energy
is dominated by Erot leading to the preference for θi = 0 for
all values of i, and the state for p above a critical value in
which the energy is dominated by EpV leading to nonzero
values of θi and a lowering of the volume in equilibrium. The
transition between these two states is increasingly blurred at
high temperature. The variation of volume around the critical
pressure gives a variation in the bulk modulus that changes
with pressure. This is not a real phase transition because the
Hamiltonian does not contain terms that couple the rotations
of neighboring squares.

From Fig. 5 in Ref. 2 we can see (although this is not
articulated in Ref. 2) that this model predicts B ′

0 = 0 at T = 0,
with a value of B ′

0 that becomes negative and increasingly so
with higher temperature. This behavior at p = 0 arises because
of the blurring of the transition at higher temperature. Where
the model differs from the result presented in this paper is
that we observe B ′

0 > 0 at low T , only becoming negative for
temperatures above a particular temperature. This difference
arises from the neglect in Ref. 2 of the stiffness of the squares
except in an unspecified post hoc manner. Thus, to become
consistent with this study, the model should be extended
by allowing an explicit noninfinite stiffness of the squares.
This would give a finite compressibility at zero temperature,
leading to a positive value of B ′

0. We have shown separately
(to be submitted) that the model described by Fig. 7 with
a finite compressibility of the squares does indeed lead to
a variation of B ′

0 with temperature that closely follows the
phenomenological form of Eq. (1).

APPENDIX B: EFFECT OF ZERO-POINT MOTION

Here, we calculate the effect of zero-point energy on the
value of B ′

0, which was not included in the lattice dynamics or
the MD simulations that gave a positive value of B ′

0 at T = 0.
Thermodynamic calculations show that the contribution from
the zero-point energy term to the value of B ′

0 of Zn(CN)2 is a
negligibly small negative number.
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To derive B ′
0, we start from the pressure of an insulating

crystal34

p = −∂	

∂V
+

∑
s

(
h̄ωs

V
γsns

)
, (B1)

where 	 is the lattice energy of the crystal at zero temperature.
The sum is over all the phonon modes s = j,k in the system
with the angular frequency ωs and Grüneisen parameter γs .
The average phonon occupation number of each mode is

ns = 1

exp(h̄ω/τ ) − 1
+ 1

2
(B2)

with τ = kBT the temperature in units of energy. At zero
temperature, ns = 1

2 and

p|τ=0 = −∂	

∂V
+ 1

2

∑
s

h̄ωs

V
γs = −∂	

∂V
+ π0, (B3)

where

π0 = 1

2

∑
s

h̄ωs

V
γs (B4)

is the contribution from zero-point energy. According to ther-
modynamic relations, the bulk modulus at zero temperature is

B|τ=0 = −V
∂p|τ=0

∂V
= V

∂2	

∂V 2
− ∂π0

∂ ln V
(B5)

and the first derivative of bulk modulus at zero temperature is

B ′|τ=0 = ∂B|τ=0

∂p

= − V

B|τ=0

[
∂2	

∂V 2
+ V

∂3	

∂V 3

]
+ V

B|τ=0

∂

∂V

(
∂π0

∂ ln V

)

= B ′∣∣LD

τ=0 + B ′|ZP
τ=0 (B6)

with V the volume of the crystal. In Eq. (B6),

B ′∣∣LD

τ=0 = − V

B|τ=0

[
∂2	

∂V 2
+ V

∂3	

∂V 3

]
. (B7)

TABLE III. The values of cell volume and π0 [Eq. (B4)] calculated
at different pressures using the Zn(CN)2 potential model (Ref. 19).
These values were further used to calculate B ′|ZP

τ=0 using Eqs. (B7)
and (B8).

P (GPa) V (Å3) π0(×10−3) (GPa) ∂π0/∂ ln V (GPa) B ′|ZP
τ=0

0.0 207.2201 2.0 0.12 −0.13
0.2 206.3314 1.5 0.14
0.4 205.4938 0.92

This term can be obtained from a harmonic lattice dynamics
calculation. Here,

B ′∣∣ZP

τ=0 = V

B|τ=0

∂

∂V

(
∂π0

∂ ln V

)
(B8)

is the contribution from the zero-point energy. Using Eq. (B4),
we estimated this term with the phonon frequencies at different
volumes using our Zn(CN)2 potential model.19 The derivatives
were approximated by

∂π0

∂ ln V
≈ V1

π0 (V2) − π0 (V1)

V2 − V1
(B9)

and

∂

∂V

(
∂π0

∂ ln V

)

≈ V2
π0 (V3) − π0 (V2)

(V3 − V2) (V2 − V1)
− V1

π0 (V2) − π0 (V1)

(V2 − V1)2 ,

(B10)

where V3 < V2 < V1 are equilibrium volumes at different
pressures, and V1 corresponds to T = 0 and p = 0. Table III
lists the data from the lattice dynamics of the potential model.19

The calculated B ′|ZP
τ=0 using these data is −0.13. Thus, for

Zn(CN)2, the contribution from the zero-point energy to the
value of B ′

0 is negative, and the obtained values from the
lattice dynamics and MD in the paper should be corrected
accordingly, although this correction is too small to have any
significant effect on the results.
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