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Evidence for Cooper pair diffraction on the vortex lattice of superconducting niobium
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We investigated the Abrikosov vortex lattice (VL) of a pure niobium single crystal with the muon spin
rotation (μSR) technique. Analysis of the μSR data in the framework of the BCS-Gor’kov theory allowed us
to determine microscopic parameters and the limitations of the theory. With decreasing temperature the field
variation around the vortex cores deviates substantially from the predictions of the Ginzburg-Landau theory and
adopts a pronounced conical shape. This is evidence of partial diffraction of Cooper pairs on the VL predicted
by Delrieu for clean superconductors.
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The Ginzburg-Landau (GL) theory for superconductors is
expressed in terms of an order parameter �(r). While the
absolute value of �(r) determines the local superfluid density,
its phase gradient is proportional to the local magnetic vector
potential. This phase variation leads to the magnetic flux
quantization and the formation of a periodic vortex lattice (VL)
in type-II superconductors as was predicted by Abrikosov.1

The VL field variation is uniquely characterized by two length
scales, the magnetic penetration depth λ and the coherence
length ξGL. This simple model turned out to be quite successful
in describing the behavior of a superconductor in a magnetic
field2,3 and serves as a basis for data analysis of experiments.4–6

However, as was shown theoretically by Delrieu,7 the GL
model is unable to describe the magnetic response in clean
superconductors at low temperatures and close to the upper
critical field Bc2.

Soon after the publication of the microscopic
Bardeen-Cooper-Schrieffer (BCS) theory for conventional
superconductors,8 using a Green’s function formalism
Gor’kov derived the GL equations from the BCS theory.9

Based on the Gor’kov’s equation Delrieu analyzed the field
variation for classical s-wave superconductors in the vicinity
of Bc2.7 He found that for clean superconductors the Cooper
pairs (CPs) with ballistic trajectories through the vortex cores
diffract on the periodic potential of the VL. As a result, in the
low-temperature limit close to Bc2 the spatial field variation
around a vortex core has a conical shape, rather than the
cosine-like GL behavior, and the fields at the minimum and
saddle points are interexchanged relative to the GL prediction.
Nearly at the same time Brandt came to the same conclusion
based on a nonlocal theory of superconductivity.10 To observe
the effect of diffraction of CPs, the carrier mean-free path
�mfp should exceed the intervortex distance, the measurements
should be done in the vicinity of Bc2(T ) such that the �(r)
gradient is negligible, and the temperature should be low to
minimize thermal fluctuations.

Although the theoretical study of the influence of the
diffraction of CPs on the field variation was already performed
in 1972, it has not been investigated experimentally in detail
so far. Early muon spin rotation (μSR) experiments revealed
a linear high-field tail in the magnetic field distribution

D
exp
c (BZ), in agreement with the theoretical expectation.11

However, as noticed recently,12 it occurred at an unexpectedly
high temperature. As we note below the temperature stability is
crucial in order to minimize experimental artifacts also leading
to a linear high-field tail in D

exp
c (BZ). On the other hand, a

μSR study of vanadium did not reveal any deviation from the
GL theory.13 Thus, superconductivity in the clean limit is one
of the critical conditions for the observation of the high-field
linear tail. Most of the novel high-temperature superconductors
(HTSs) are in the clean limit, and the tail should be observed
provided the measurements are performed close to Bc2 and
at low temperature. Such studies of HTSs still await to be
performed.

As a first superconductor to look for the effect of CP
diffraction, we have chosen metallic niobium (Nb), since it
is a simple BCS superconductor and pure single crystals are
available. It is a type-II superconductor (κ ≈ 0.8 > 1/

√
2 �

0.7), and therefore a VL is expected in the bulk when an
external field Bext larger than the lower critical field is applied.
As shown by small-angle neutron scattering, for Bext parallel
to the crystallographic 〈111〉 direction the VL exhibits a simple
triangular lattice.14–16

Our Nb sample was a single crystal disk of 13 mm diameter
and 2 mm thickness with the 〈111〉 axis oriented normal to the
disk. The samples studied here and in Ref. 11 come from
the same batch, so they should be of the same metallurgical
quality. The sample is further characterized when discussing
its value of Bc2(0) (see Supplemental Material17).

The μSR experiments were performed at the Swiss Muon
Source (SμS), Paul Scherrer Institute (PSI), Switzerland, using
the general purpose spectrometer (GPS) for T � 1.6 K and the
low-temperature facility (LTF) for T � 1.6 K. A field-cooled
procedure was used with Bext perpendicular to the sample plane
(parallel to the 〈111〉 axis). The μSR spectra were recorded
in the transverse field geometry; i.e., the initial muon spin
polarization Sμ was perpendicular to Bext. By definition, Bext

is parallel to the Z axis of the laboratory orthogonal reference
frame. With this geometry the field distribution in the bulk
of a superconductor can be probed D

exp
c (BZ).18 We explicitly

distinguish Dc(BZ) from D
exp
c (BZ), since Dc(BZ) only stands

for the distribution of a perfect VL without crystal disorder.
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FIG. 1. (Color online) Bc2(T ) for Bext ‖ 〈111〉 as determined
by μSR measurements for our Nb single crystal sample (circles).
The dashed line corresponds to the equation Bc2(T ) = Bc2(0)(1 −
τ 2)/(1 + τ 2) proposed in Ref. 19. Here τ = T/Tco with Tco = 9.25 K
and Bc2(0) = 430 (2) mT. The crosses indicate the points in the
field-temperature diagram at which the field distributions displayed
in Fig. 2 were measured. Inset (a) shows μSR asymmetry spectra
A(t) recorded at 1.6 K in the normal (◦) and in the mixed (•) states
for Bext = 450 and 360 mT, respectively. The solid lines are fits
of Eq. (1) to the data. The spectra are shown in a rotating frame
of 440 and 350 mT, respectively. Inset (b) shows the effect of the
sample temperature stability on D

exp
c (BZ). The two measurements

were performed at Bext = 165 mT and T = 5.9 K with different
temperature regulation systems. For one of them the temperature was
found to oscillate periodically around an average with a period of a
few seconds and a peak-to-peak amplitude of 150 mK. For the other
system this amplitude was reduced to about 20 mK.

The forward and backward positron detectors with respect
to Sμ were used to build the μSR asymmetry time spectra
A(t) recorded with total statistics ranging from 1.0 × 107

to 8.0 × 107 positron events. Typical A(t) in the normal
and the superconducting states are displayed in inset (a) of
Fig. 1. Note that in contrast to the normal state, a strong
damping of A(t) in the superconducting state is observed
which is characteristic of the local magnetic field variation
due to the VL. From these kinds of measurements Bc2(T ) was
determined, yielding Bc2(0) = 430(2) mT (see Fig. 1). This
value is smaller than Bc2(0) = 443 mT reported for a sample
with a residual resistivity ratio RRR = 750.20 Hence, for our
sample the RRR > 750. Our value of Bc2(0) indicates that the
sample is of high quality and pure.21

As shown in inset (b) of Fig. 1 the temperature stability
is important for recording high-quality data close to Bc2.
Large fluctuations of temperature may lead to substantial
smearing of the measured spectra. The experimental and
theoretical field distributions presented in this Rapid Com-
munication were obtained by Fourier transformation (FT) of
the Gaussian apodized time spectra (i.e., Fourier transform of
A(t) exp[−(t/σapp)2/2], where σapp = 4.7 μs). Note that the

apodization has no influence on the analysis, since we directly
fit A(t), rather than D

exp
c (BZ).

Figure 2 displays the field distributions measured in the
vicinity of Bc2(T ) from a temperature of 7.8 K close to Tc0

(critical temperature at low field) down to 0.02 K [see Fig. 1
for the location of the points (crosses) in the field/temperature
diagram]. For each D

exp
c (BZ) measured at LTF a relatively

intense sharp peak is present at a field slightly larger than
Bext, in contrast to the GPS data for which only a small hump
is found. This field structure (sharp peak and small hump)
originates from the muons stopped in the cryostat walls and
sample holder (background signal). The present GPS data
are therefore of a much better quality than previous results
obtained in the same temperature range showing an intense
background signal.11 Qualitatively, a linear high-field tail in
D

exp
c (BZ) is inferred at maybe 1.2 K and certainly at the lower

temperatures, but not at higher temperature. On the other hand,
this tail is already seen at 2.6 K in the published data.11,18

A μSR spectrum is described by the sum of two contribu-
tions:

A(t) = A0[ FsRs(t) + (1 − Fs)Rbg(t) ], (1)

where A0 is the total initial asymmetry and Fs the fraction
of muons stopped in the sample. From analysis we determine
A0 = 0.211 (2) [0.217 (2)] and Fs = 0.993 (2) [0.817 (2)] for
measurements carried out with the GPS [LTF] spectrometer.
The function

Rs(t) = e− 1
2 σ 2

s t2
∫

Dc(BZ) cos(γμBZt + φ0)dBZ (2)

describes the time evolution of Sμ in the sample while Rbg(t) =
exp(−σ 2

bgt
2/2) cos(γμBZ

bgt + φ0) accounts for the background.
Here γμ = 851.6 Mrad s−1 T−1 is the muon gyromagnetic
ratio, σbg � 0.22(2) μs−1 stands for the background damping,
and φ0 is the initial phase. The mean field for the background
BZ

bg is only slightly different from Bext (see Fig. 2). We write
σ 2

s = σ 2
nu + σ 2

dis, where σnu accounts for the damping due to
the nuclear 93Nb spins, and σdis is the parameter describing
the effect of VL disorder. As usual, we assume the effect
of disorder to be modeled by a Gaussian function with a
field standard deviation σdis/γμ.22 Although this is a crude
approximation, we note that the influence of VL disorder on
the high-field tail of D

exp
c (BZ) is relatively moderate compared

to its effect on the low-field side.23

We determine Dc(BZ) from the real space field map
BZ(r) of the two-dimensional VL: Dc(BZ) = ∫

u.c. δ(BZ(r) −
BZ)d2r, where the integral extends over the VL unit cell. In
terms of its Fourier components,

BZ(r) =
∑
Km,h

BZ
Km,h

exp(iKm,h · r), (3)

where the sum is over the reciprocal space.
First we analyze the data with the numerical solution of

the GL (NGL) model for BZ
Km,h

using Brandt’s method.4 It
only depends on λ and ξGL. The fit for the highest temperature
data is reasonable [see Fig. 2(b)]. We get λ = 59.4 (2) nm
and σs = 0.72 (1) mT, with ξGL = 66.5 (2) nm estimated
from the measured Bc2(7.8 K) and using the GL formula:
ξGL = (�0/2πBc2)1/2. Here, �0 is the flux quantum. As
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FIG. 2. (Color online) Field distributions D
exp
c (BZ) of Nb single crystal obtained in the vicinity of Bc2(T ) with the LTF spectrometer (a)

and the GPS (b). The solid lines represent best fits of Eqs. (1)–(3) to the data. The fitting parameters are given in Table I of Ref. 17. Leaving
the last available parameter vF free leads to proper fits for T � 0.8 K, but not below. The blue dashed-dotted lines in panel (a) represent the
results for T = 0.5, 0.1, and 0.02 K. At 0.5 K the misfits are small, but still present. The solid lines for T � 0.5 K are computed with the fixed
value c̃ = 0.08 for T = 0.6 K. The blue dotted lines in panel (b) correspond to fits with NGL, while the red dashed and blue dashed-dotted
lines visualize the differences between D

exp
c (BZ) and the BCS-Gor’kov and NGL predictions, respectively. Panels (c) and (d) illustrate field

variation and contour plot of BZ(r) obtained with BCS-Gor’kov model for the parameters at 7.8 and 0.5 K. BZ
vc denotes the vortex core field.

expected, κ = λ/ξGL = 0.89 (1) > 1/
√

2 � 0.7. The results
for T � 5.9 K in Fig. 2(b) were obtained with λ, ξGL, and σs as
free parameters. The GL model fails to describe the high-field
tails in D

exp
c (BZ). In addition, unreasonably large κ values are

derived. For example, κ = 48.7/28.5 = 1.7 at 1.6 K. If κ had
been taken temperature independent as it should, the misfits
would be even worse. As expected, the GL model can only
describe D

exp
c (BZ) very near Tco.

Next we analyze the data with the BCS-Gor’kov
theory.7,12,24 First we discuss the characteristics of BZ

Km,h
in

the vicinity of Bc2(T ). We use the notations of Ref. 12. The
Fourier component is a function of four parameters: BZ

Km,h
=

fm,h(ã,b̃,c̃,d̃).7,12,24 Here, ã = −μ0N0�
2
0c̃/2BZ does not

influence the shape of BZ(r) and therefore Dc(BZ), but only
determines the scale of the field variation. It is proportional
to the density of states at the Fermi level N0 (per spin,
volume, and energy), the quantity �2

0 = |�(r)|2 (|�(r)|2 is
the spacial average of |�(r)|2), and is inversely proportional
to the average field BZ(r). The dimensionless parameters b̃,
c̃, and d̃ determine the shape of Dc(BZ) and are expressed by
the ratios of four length scales: b̃ = (�/πξB)2, c̃ = �/ξT ,
and d̃ = �/�mfp. Here, � = [�0/(2πBZ)]1/2 is a length
parameter proportional to the intervortex distance. The field
and temperature dependent length scale ξB = h̄vF/(π�0)
diverges at BZ → Bc2, i.e., b̃ → 0, while ξT = h̄vF/(2πkBT ).

The parameter c̃ is strongly temperature and field dependent.
It vanishes as T → 0 and diverges at T → Tc0.12 Finally,
for clean superconductors d̃ is negligibly small, since �mfp

significantly exceeds the intervortex distance.
Cooper pair diffraction may influence Dc(BZ) when three

experimental conditions are met: � 
 �mfp, � 
 πξB , and
� 
 ξT .7,12,24 The first condition implies a clean supercon-
ductor, the second is only satisfied in the vicinity of Bc2(T ),
and the third one is only possible at low T . Thus, the minimum
of {�mfp, πξB , ξT } determines the effective diffraction length
scale of CPs relative to the intervortex distance 2.693 × �.

The data analysis was done with b̃ � 0.110(1 − b)/b fixed
[b = BZ/Bc2(T ) � Bext/Bc2(T )].12,17 For Nb we get 0.01 <

b̃ < 0.02, except for the spectrum at 7.8 K for which b̃ = 0.04.
Since

c̃ =
√

�02πkBT√
BZh̄vF

�
√

�02πkBT√
Bexth̄vF

, (4)

the BZ
Km,h

depends on ã, d̃ , vF, T , and Bext.17

The analysis of A(t) for T � 0.8 K shows that d̃ � 0.01,
which agrees with the estimate of �mfp � 7 μm for the Nb
sample with RRR = 750.20 Consequently, we are in the clean
limit and d̃ has a negligible influence on Dc(BZ). The results
of the analysis are presented in Fig. 2 here and in Table I of
Ref. 17. The BCS-Gor’kov model describes the high-field tail
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significantly better at low temperatures while at the highest
temperature both models reproduce the data equally well. The
deviation from the GL theory and the gradual disappearance
of the cutoff singularity at the maximal field is a result of the
conical shape of the spatial field variation at the vortex cores
[see Fig. 2(d)], which in turn is a consequence of the partial
CP pair diffraction. This deviation cannot be explained by
the presence of significant temperature and field fluctuations
resulting in a large smearing parameter σs.22 If produced
artificially the cutoff singularity in D

exp
c (BZ) at BZ

vc vanishes
as is the case in the distribution labeled 150 mK in inset (b)
of Fig. 1.17,23 Based on the generalized Bloch equations25–27

and the analysis18,28 of zero-field μSR result we found that
the muon diffusion29–31 is negligible in the studied Nb sample
(see Ref. 17). A weak pinning17 excludes also an influence of
the peak effect32–34 on the measured field distributions. The
BCS-Gor’kov model breaks down for T � 0.5 K as shown
by the dashed-dotted lines in Fig. 2(a). A proper description
requires us to consider BZ

Km,h
as a function of ã and c̃ rather

than of ã and vF, and to keep the value of c̃ at T = 0.6 K for
the lower temperatures [solid lines in Fig. 2(a)].17 This means
that the sharpness of the BZ(r) cones is limited by a physical
process. Referring to Eq. (3), we suggest that the VL structural
disorder may round off the cones, as observed experimentally.

We get vF = 2.0 (2) × 105 m/s from the fits for T � 0.8 K.
This value is compatible with vF = 2.73 × 105 and 2.94 ×
105 m/s determined from magnetization measurements.20,35

From the measured ã and c̃ we determine the condensation
energy Ec = −2BZã/μ0c̃ = 2 × N0�

2
0/2.2,36 While N0 is a

constant, �2
0 is field and temperature dependent. At T = 0 and

interpolating �2
0 to zero field with a conventional formula,12

[−2BZã/μ0c̃]/{1 − [BZ/Bc2(0)]} = N0�
2
0(0), where �0(0)

is the s-wave BCS gap which is temperature independent
for T → 0.2 From �0(0) = 1.45 meV (see Ref. 19) and our
estimate for the ground state Ec(0) = N0�

2
0(0) = 2.47(9) ×

104 J m−3, we obtain N0 ≈ 4.6 × 1047 J−1 m−3 spin−1 ≈
1.3 eV−1 atom−1 spin−1. Considering the approximate nature
of the linear field interpolation, these results are quite close
to the specific heat result N0 = 0.85 eV−1 atom−1 spin−1 (see
Ref. 37) and the GL condensation energy B2

c /2μ0 = 1.6 × 104

J m−3 for the thermodynamic critical field Bc = 0.20 T.19 In
our measurements all the conditions for the observation of
partial CP diffraction are met at T � 1.2 K: �/πξB � 0.11 

1, �/�mfp � 0.01 
 1, and �/ξT = 0.16 
 1.

To conclude, we investigated the magnetic field distribution
for the vortex lattice (VL) of a pure Nb single crystal
with the μSR technique. The data were analyzed using the
solution of the BCS-Gor’kov equation proposed by Delrieu,7

a microscopic description in contrast to the conventional GL
picture. As a result, we found strong evidence for partial
Cooper pair (CP) diffraction on the periodic potential of
the vortex lattice reflected in the conical narrowing of the
real space field variation around the vortex cores and in the
presence of a high-field linear tail in the field distribution down
to 0.02 K, as expected by the BCS-Gor’kov theory. However,
the BCS-Gor’kov description is only partially successful as the
prediction for the low-field tail at the zero-temperature limit
deviates from the experimental observation, presumably due
to the residual VL disorder. From the analysis we determined
the Fermi velocity vF = 2.0 (2) × 105 m/s and the ground state
condensation energy N0�

2
0(0) = 2.47(9) × 104 J m−3 which

are in reasonable agreement with literature results.19,20,35 The
observation of partial CP diffraction should not be restricted
to Nb. Under proper experimental conditions it should also be
seen for any clean type-II superconductor.

This work was performed at the Swiss Muon Source (SμS),
Paul Scherrer Institut (PSI), Switzerland, and partly supported
by NCCR MaNEP sponsored by the Swiss National Science
Foundation.
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