Conventional superconductivity and charge-density-wave ordering in Ba_{1−*x*}Na_{*x*}Ti₂Sb₂O

Fabian von Rohr,^{1,2[,*](#page-3-0)} Andreas Schilling,¹ Reinhard Nesper,² Chris Baines,³ and Markus Bendele⁴

¹*Physik-Institut der Universitat Z ¨ urich, Winterthurerstrasse 190, CH-8057 Z ¨ urich, Switzerland ¨*

²*Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Straße 10, CH-8093 Z ¨ urich, Switzerland ¨* ³*Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland*

⁴*Dipartimento di Fisica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 2, 00185 Roma, Italy `*

(Received 22 August 2013; revised manuscript received 13 September 2013; published 1 October 2013)

We have investigated the low-temperature physical properties of BaTi₂Sb₂O and Ba_{1−*x*}Na_{*x*}Ti₂Sb₂O ($x = 0.05$, 0.1, 0.15, 0.2, 0.25, 0.3) by means of muon spin rotation (*μ*SR) and SQUID magnetometry. Our measurements reveal the absence of magnetic ordering below $T_{\text{DW}} = 58 \text{ K}$ in the parent compound. Therefore the phase transition at this temperature observed by magnetometry is most likely due to the formation of a charge-denisty wave (CDW). Upon substitution of barium by sodium in $Ba_{1-x}Na_{x}Ti_{2}Sb_{2}O$ we find for $x = 0.25$ superconductivity with a maximum $T_c = 5.1$ K in the magnetization and a bulk T_c , bulk = 4.5 K in the μ SR measurements. The temperature dependency of the London penetration depth $\lambda^{-2}(T)$ of the optimally doped compound can be well explained within a conventional weak-coupling scenario in the clean limit.

DOI: [10.1103/PhysRevB.88.140501](http://dx.doi.org/10.1103/PhysRevB.88.140501) PACS number(s): 76*.*75*.*+i, 74*.*62*.*Bf, 71*.*20*.*Be, 74*.*25*.*−q

I. INTRODUCTION

Nesting at the Fermi surface is known to be a key feature for the occurrence of either charge- (CDW) or spin-density-wave (SDW) ordering, and it is considered to be of importance for the emergence of superconductivity in some materials [e.g., BaFe_{2−*x*}Co_{*x*}As₂ (Ref. [1\)](#page-3-0)]. The competition or coexistence of superconductivity and SDW ordering is one of the most extensively discussed topics for iron-based superconductors and for the stripe phases of cuprates. $2,3$ The competition or coexistence between superconductivity and CDW ordering at low temperatures is less often encountered [see, e.g., in $Cu_xTiSe₂$ (Ref. [4\)](#page-3-0), in 2H-NbSe₂ (Ref. [5\)](#page-3-0), and in $Ba_{1-x}K_xBiO₃$ (Refs. [6](#page-3-0) and [7\)](#page-3-0)], though the development of CDW order at zero field in the normal state of superconducting $YBa₂Cu₃O_{6.67}$ has been prominently discussed.⁸

The large family of stacked, layered titanium oxide pnictide compounds were long considered as potential host structures for superconductivity.^{[9](#page-3-0)} Most of these materials were identified to undergo magnetic or density wave (DW) ordering transitions at low temperatures, in the absence of superconductivity. For example, $Na₂Ti₂As₂O$ and $Na₂Ti₂Sb₂O$, which crystallize in a modified anti- K_2N i F_4 -type structure, were found to undergo transitions to SDW-ordered states at T_{SDW} of 320 K and 115 K, respectively.^{[10](#page-3-0)}

 $BaTi₂Sb₂O$ belongs to this family of compounds. Its structure consists of titanium, octahedrally surrounded by oxygen, leading to square planar $Ti₂O$ sheets.¹¹ This compound was found to undergo a phase transition to a SDW or CDW around $T_{DW} = 55$ K and it was proposed that below $T_c = 1$ K it is a superconductor.¹² Recently, it was shown that upon substitution of barium by sodium in $Ba_{1-x}Na_{x}Ti_{2}Sb_{2}O$, T_{DW} is lowered and eventually suppressed, while superconductivity reaches a maximum T_c of approximately $5 K¹³$

In this Rapid Communication we will show by a series of SQUID magnetometry and muon-spin rotation (*μ*SR) experiments that $Ba_{1-x}Na_xTi_2Sb_2O$ is another example for the coexistence and competition of the periodic modulations of CDW and superconductivity. Our results suggest that the CDW ordering competes with a conventional superconducting state in these materials.

II. EXPERIMENTAL

Standard solid-state reactions were employed to synthesize polycrystalline samples of $Ba_{1-x}Na_{x}Ti_{2}Sb_{2}O$ with $x = 0$, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30. BaO (99.99%), BaO₂ (95%), Na₂O₂ (95%), Ti (99.99%), and Sb (99.999%) were mixed and pressed into pellets in an argon-filled glove box. The pellets were sealed in argon-filled niobium ampules and then sintered at $1000 \degree C$ for 24 h. Then the samples were reground under inert atmosphere, repelletized, and sintered again for 36 h at 1000 ◦C. The purity, symmetry, and cell parameters were checked by x-ray powder diffraction using a Stoe STADIP diffractometer (Cu-K_{α1} radiation, $\lambda = 1.54051$ Å, Ge monochromator).

The magnetic properties were studied using a Quantum Design Magnetic Properties Measurement System (MPMS XL) equipped with a reciprocating sample option (RSO). Transverse-field (TF) and zero-field (ZF) *μ*SR experiments were carried out at the LTF instrument at the π M3 beamline, and at the Dolly instrument at the *π*E1 beamline at the Paul Scherrer Institute (PSI), Switzerland. The superconducting pellets were cooled from above T_c in a field of $\mu_0 H = 35$ mT for the TF experiments. The occurrence of magnetism was investigated in these samples with the ZF experiments. The μ SR time spectra have been analyzed using the free software package musrffit.^{[14](#page-4-0)}

III. RESULTS AND DISCUSSION

In Fig. $1(a)$ we show magnetization $M(T)$ data of the parent compound BaTi₂Sb₂O, in a field of $\mu_0 H = 1.0$ T, showing a distinct kink at $T_{DW} = 58$ K. This discontinuity was earlier attributed to either a SDW or a CDW ordering transition.^{[12](#page-4-0)}

The ZF and weak TF muon time signals for $BaTi₂Sb₂O$ were measured above and below T_{DW} at $T = 1.5$ K and $T = 100$ K, as shown in Figs. $1(b)$ and $1(c)$. The measurements show neither indications of static nor fluctuating magnetism

FIG. 1. (Color online) Parent compound, $BaTi₂Sb₂O$, characterized by (A) the temperature-dependent susceptibility in a field of $\mu_0 H = 1$ T, (B) the ZF μ SR spectra at 1.5 K and 100 K (the dashed lines are fits to the Gaussian Kubo-Toyabe function), and (C) TF *μ*SR spectra (the dashed lines are fits to Eq. (1) at temperatures $T = 1.5$ K and 100 K).

down to $T = 1.5$ K. Moreover, the relaxation rates are small and show only little differences between the measurements at high temperatures and at 1.5 K. The ZF spectra are well described by a standard Gaussian Kubo-Toyabe (GKT) function, 15 which is typical for nuclear moments. The zerofield μ SR spectra above and below T_{DW} do not exhibit any noticeable change in the relaxation rate, indicating the absence of a spontaneous internal field at the muon stopping site (within the sensitivity of μ SR). This is further supported by the weak TF measurements [Fig. $1(c)$], where no reduction of the asymmetry is observed, as would be expected in case of magnetic ordering. Therefore, we can exclude that the observed transition at T_{DW} is caused by SDW ordering in the parent compound $BaTi₂Sb₂O$. The observed transition is therefore most likely caused by CDW ordering. These findings are in agreement with recent NMR measurements.¹⁶

Upon substitution of barium by sodium in $Ba_{1-x}Na_{x}Ti_{2}Sb_{2}O$, we find superconductivity with a maximum $T_c = 5.1$ K in the magnetization, and a bulk $T_{c, bulk} = 4.5$ K in the μ SR measurements, for $x = 0.25$. The temperature-dependent measurements of the DC magnetic susceptibility in the vicinity to superconductivity (1.8 K to 10 K), measured in zero-field-cooled (ZFC) mode in an external field of $\mu_0 H = 1$ mT, are shown in Fig. [2\(a\).](#page-2-0) The transitions to the superconducting state are depicted for six representative members of the series, $x = 0.05, 0.1, 0.15, 0.2$, 0.25, and 0.3. In Fig. $2(b)$ we show the ZF muon time signals for the optimally doped sample $x = 0.25$ at $T = 1.5$ K and above T_c (6 K). The ZF spectra are well described by a GKT function and are overlapping for both measurements, revealing no magnetic ordering down to 1.5 K. The relaxation above T_c in the TF measurements in a field of $\mu_0 H = 35$ mT is shown in Fig. $2(c)$. Similar to the ZF measurements [Fig. $2(b)$], only a small relaxation arising from the randomly aligned nuclear magnetic moments is observed. The strong additional relaxation in the TF measurements below T_c , however, is solely due to the formation of the flux-line lattice (FLL) in the Shubnikov phase. As shown by Brandt, the second moment of the resulting inhomogeneous field distribution is related to the magnetic penetration depth λ as $\langle \Delta B^2 \rangle \propto \sigma_{sc}^2 \propto \lambda^{-4}$, whereas *σsc* is the Gaussian relaxation rate due to the formation of the FLL.^{[17,18](#page-4-0)} The TF μ SR time evolutions were analyzed using the following functional form for the polarization:

$$
A(t) = A(0) \exp\left[-\frac{\sigma_{sc}^2 + \sigma_{nm}^2}{2}t^2\right] \cos(\gamma_\mu B_{\text{int}}t + \varphi) + A_{\text{BG}}.\tag{1}
$$

Here, $A(0)$ and φ are the initial asymmetry and the phase of the muon ensemble, respectively, σ_{nm} is the damping arising from the nuclear magnetic dipole moments, which we assumed to be temperature independent and fixed to the value obtained above T_c , $\gamma_\mu/(2\pi) = 135.5$ MHz/T is the muon gyromagnetic ratio, and B_{int} represents the internal magnetic field at the muon stopping site. For the low-temperature measurements in the LTF instrument, part of the muon beam is stopped in the silver sample holder, resulting in a background denoted as A_{BG} .

For a weak-coupling BCS superconductor and $B_{ext} \ll B_{c2}$, *λ* does not depend on external magnetic fields, whereas, e.g., in

FIG. 2. (Color online) (A) The magnetic susceptibility of Ba_{1−*x*}Na_{*x*}T₁₂Sb₂O for $x = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$ measured in a field of $\mu_0 H = 1$ mT. (B) The ZF μ SR spectra for $x = 0.25$ above (6 K) and below (1.5 K) T_c (the dashed lines are the fits to the Gaussian Kubo-Toyabe function). (C) The TF *μ*SR spectra for $x = 0.25$ above (6 K) and below (1.5 K) T_c (the solid lines are fits to Eq. [\(1\)\)](#page-1-0). The strong relaxation of the signal at 1.5 K can be ascribed to the presence of the flux-line lattice.

FIG. 3. (Color online) (A) Field dependence of the muon depolarization rate σ_{sc} at $T \simeq 1.5$ K for the optimal doping $x = 0.25$. The solid line corresponds to a fit of the experimental data to Eq. [\(2\).](#page-3-0) The insets show the corresponding field dependence of λ^{-2} (in the Shubnikov phase). (B) The diamagnetic field shift in the superconducting state with respect to above T_c ($B_{int} - B_{appl}$) for $x =$ 0*.*25. (C) The temperature dependence of the muon polarization rate $\sigma_{sc}(T)$ measured in $\mu_0 H = 35$ mT. (D) The temperature dependence of λ^{-2} for $x = 0.2$ as reconstructed from $\sigma_{sc}(T)$ (shown in B), measured in $\mu_0 H = 35$ mT. The solid line corresponds to a fit to Eq. [\(3\)](#page-3-0) with $2\Delta/(k_B T_c) = 2.9$. Squares: Dolly instrument, circles: LTF instrument.

a multiple gap or nodal superconductor *λ* can be significantly field dependent.^{19–22} In the case of an ideal vortex lattice of an isotropic *s*-wave superconductor within the Ginzburg-Landau theory, the relaxation rate σ^2 in the superconducting state should follow the expression 18

$$
\sigma_{sc} = a \left(1 - \frac{B}{B_{c2}} \right) \left[1 + 1.21 \left(1 - \sqrt{\frac{B}{B_{c2}}} \right)^3 \right] \lambda^{-2}.
$$
 (2)

Here, *a* is a coefficient given by the symmetry of the vortex lattice (with $a = 4.83 \times 10^4$ nm²/ μ sec for triangular and $a = 5.07 \times 10^4$ nm²/*μ*sec for a rectangular vortex lattice geometry^{18,23}), *B* is the magnetic induction, for which we may assume $B \simeq B_{ext}$ in the region $\mu_0 H_{c1} \ll B_{ext} \ll \mu_0 H_{c2}$ (with H_{c1} the lower and H_{c2} the upper critical field, respectively). Equation (2) in general accounts for the reduction of σ_{sc} due to the stronger overlap of the vortices with increasing field. A fit of the measured σ_{sc} according to Eq. (2) describes the data reasonably well and yields $B_{c2} = 1.5(1)$ T and $\lambda^{-2} =$ 10[−]5(0*.*01) nm[−]² at *T* = 1*.*5 K for *x* = 0*.*25 [see Fig. [3\(a\)\]](#page-2-0). The value of B_{c2} , for the optimal doping $x = 0.25$, is in excel-lent agreement with previous measurements.^{[24](#page-4-0)} The parameter *a* was fitted to $4.87(5) \times 10^4$ nm²/*μ*sec indicating that the vortex lattice in Ba1[−]*x*Na*x*Ti2Sb2O has triangular shape. To obtain maximum field contrast, we chose the magnetic field $\mu_0 H = 35$ mT to study the temperature dependence of $\lambda(T)$ for the optimally doped sample $x = 0.25$. Measurements down to $T = 0.02$ K and $T = 1.5$ K were performed in the LTF and Dolly instruments, respectively. A diamagnetic shift of the internal magnetic field B_{int} is observed below T_c [Fig. [3\(b\)\]](#page-2-0). The resulting temperature dependence of σ_{sc} is shown in Fig. $3(c)$. In Fig. $3(d)$ we show the temperature dependence of $\lambda^{-2}(T)$ as reconstructed from $\sigma_{sc}(T)$, using Eq. (2). The temperature dependence of $B_{c2}(T)$, used in the corresponding calculation according to Eq. (2) , was assumed to follow the theoretical Werthamer-Helfand-Hohenberg relation.^{[24,25](#page-4-0)}

These measurements suggest that λ^{-2} is virtually temperature independent below $T \simeq 1$ K for the optimally doped sample. The obtained experimental temperature dependence of $\lambda^{-2}(T)$ was tentatively analyzed within the clean limit approach for a London superconductor with an *s*-wave ga[p26](#page-4-0)

$$
\frac{\lambda^{-2}(T)}{\lambda^{-2}(0)} = 1 + 2 \int_{\Delta(T)}^{\infty} \left(\frac{\partial f}{\partial E}\right) \frac{E}{\sqrt{E^2 - \Delta^2(T)}} dE.
$$
 (3)

Here $\lambda(0)$ is the zero-temperature value of the magnetic penetration depth, $f = [1 + \exp(E/k_B T)]^{-1}$ is the Fermi

* vonrohr@physik.uzh.ch

- 2H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, [Nat.](http://dx.doi.org/10.1038/nmat2397) Mater. **8**[, 305 \(2009\).](http://dx.doi.org/10.1038/nmat2397)
- ³A. R. Moodenbaugh, Y. Xu, M. Suenaga, T. J. Folkerts, and R. N. Shelton, Phys. Rev. B **38**[, 4596 \(1988\).](http://dx.doi.org/10.1103/PhysRevB.38.4596)
- 4E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Nat. Phys. **2**[, 544 \(2006\).](http://dx.doi.org/10.1038/nphys360)
- 5D. E. Moncton, J. D. Axe, and F. J. Di Salvo, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.34.734) **34**, [734 \(1975\).](http://dx.doi.org/10.1103/PhysRevLett.34.734)

function (with k_B the Boltzmann constant), and $\Delta(T) =$ $\Delta(0)\Delta(T/T_c)$ represents the temperature dependence of the energy gap, which can be approximated to sufficient precision as $\tilde{\Delta}(T/T_c) = \tanh\{1.82[1.018(T_c/T - 1)^{0.51}]\}^{27}$ $\tilde{\Delta}(T/T_c) = \tanh\{1.82[1.018(T_c/T - 1)^{0.51}]\}^{27}$ $\tilde{\Delta}(T/T_c) = \tanh\{1.82[1.018(T_c/T - 1)^{0.51}]\}^{27}$ The results of this fit are $T_c = 4.49(6)$ K and $\Delta(0) = 0.56(1)$ meV with a zero-temperature magnetic penetration depth $\lambda = 307(10)$ nm. This corresponds to a ratio $2\Delta/(k_B T_c) = 2.9$, which is quite close to the value of a weak-coupling BCS superconductor $2\Delta/(k_BT_c) = 3.5$. There are no signs of multigap superconductivity in these data (compare Refs. [19–22\)](#page-4-0), and the presented low-temperature $\lambda^{-2}(T)$ data taken in a low magnetic field seem to be incompatible with a possible *d*-wave scenario.²⁸

IV. CONCLUSION

We have presented magnetization and *μ*SR results on the density wave (DW) ordering transition in $BaTi₂Sb₂O$, and on the transition to superconductivity in $Ba_{1-x}Na_{x}Ti_{2}Sb_{2}O$. The observed absence of a magnetic contribution to the *μ*SR data related to the phase transition at $T_{DW} = 58$ K of the parent compound $BaTi₂Sb₂O$ is strong evidence against the SDW ordering transition theoretically proposed in Ref. [29.](#page-4-0) Therefore the observed phase transition is most likely due to CDW ordering that competes with a superconducting state. Upon substitution of barium by sodium in $Ba_{1-x}Na_xTi_2Sb_2O$ we find superconductivity with a maximum $T_c = 5.1$ K in the magnetization, and a bulk $T_{c, bulk} = 4.5$ K in the μ SR measurements, for $x = 0.25$. In the TF μ SR spectra for $x = 0.25$ below *Tc* a strong relaxation of the signal is observed, which is due to the formation of the flux-line lattice. This is strong evidence for the bulk nature of the superconductivity in this material. The obtained experimental temperature dependence of $\lambda^{-2}(T)$ can be reasonably well explained within the clean limit approach for a conventional London superconductor, which is consistent with recently published NMR and specific-heat results, as well as theoretical calculations. $16,24,30$

ACKNOWLEDGMENTS

F.v.R. acknowledges a scholarship from Forschungskredit UZH, Grant No. 57161402. M.B. acknowledges the financial support of the Swiss National Science Foundation (Grant No. PBZHP2143495).

- 6L. F. Mattheiss and D. R. Hamann, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.60.2681) **60**, 2681 (1988). 7D. E. Cox and A. W. Sleight, [Solid State Commun.](http://dx.doi.org/10.1016/0038-1098(76)90632-3) **19**, 969 [\(1976\).](http://dx.doi.org/10.1016/0038-1098(76)90632-3)
- 8J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. von Zimmermann, E. M. Forgan, and S. M. Hayden, [Nat. Phys.](http://dx.doi.org/10.1038/nphys2456) **8**[, 871 \(2012\).](http://dx.doi.org/10.1038/nphys2456)
- ⁹D. Johrendt, H. Hosono, R.-D. Hoffmann, and R. Pöttgen, [Z. Kristallogr.](http://dx.doi.org/10.1524/zkri.2011.1363) **226**, 435 (2011).
- 10R. H. Liu, D. Tan, Y. A. Song, Q. J. Li, Y. J. Yan, J. J. Ying, Y. L. Xie, X. F. Wang, and X. H. Chen, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.80.144516) **80**, 144516 [\(2009\).](http://dx.doi.org/10.1103/PhysRevB.80.144516)
- 11A. Adam and H.-U. Schuster, [Z. Anorg. Allg. Chem.](http://dx.doi.org/10.1002/zaac.19905840115) **584**, 150 [\(1990\).](http://dx.doi.org/10.1002/zaac.19905840115)

¹J. Paglione and R. L. Greene, Nat. Phys. **6**[, 645 \(2010\).](http://dx.doi.org/10.1038/nphys1759)

- 12T. Yajima, K. Nakano, F. Takeiri, T. Ono, Y. Hosokoshi, Y. Matsushita, J. Hester, Y. Kobayashi, and H. Kageyama, [J. Phys.](http://dx.doi.org/10.7566/JPSJ.82.033705) Soc. Jpn. **82**[, 033705 \(2013\).](http://dx.doi.org/10.7566/JPSJ.82.033705)
- ¹³P. Doan, M. Gooch, Z. Tang, B. Lorenz, A. Möller, P. C. W. Chu, and A. M. Guloy, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja3078889) **134**, 16520 [\(2012\).](http://dx.doi.org/10.1021/ja3078889)
- 14A. Suter and B. Wojek, [Physics Procedia](http://dx.doi.org/10.1016/j.phpro.2012.04.042) **30**, 69 (2012).
- 15R. Kubo and T. Toyabe, *Magnetic Resonance and Relaxation* (North-Holland, Amsterdam, 1967).
- 16S. Kitagawa, K. Ishida, K. Nakano, T. Yajima, and H. Kageyama, Phys. Rev. B **87**[, 060510 \(2013\).](http://dx.doi.org/10.1103/PhysRevB.87.060510)
- 17E. H. Brandt, Phys. Rev. B **37**[, 2349 \(1988\).](http://dx.doi.org/10.1103/PhysRevB.37.2349)
- 18E. H. Brandt, Phys. Rev. B **68**[, 054506 \(2003\).](http://dx.doi.org/10.1103/PhysRevB.68.054506)
- ¹⁹M. Bendele, S. Weyeneth, R. Puzniak, A. Maisuradze, E. Pomjakushina, K. Conder, V. Pomjakushin, H. Luetkens, S. Katrych, A. Wisniewski, R. Khasanov, and H. Keller, [Phys.](http://dx.doi.org/10.1103/PhysRevB.81.224520) Rev. B **81**[, 224520 \(2010\).](http://dx.doi.org/10.1103/PhysRevB.81.224520)
- 20J. Sonier, J. Brewer, and R. Kiefl, [Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.72.769) **72**, 769 [\(2000\).](http://dx.doi.org/10.1103/RevModPhys.72.769)
-
- 21R. Khasanov, A. Shengelaya, D. Di Castro, D. G. Eshchenko, I. M. Savic, K. Conder, E. Pomjakushina, J. Karpinski, S. Kazakov, and ´ H. Keller, Phys. Rev. B **75**[, 060505 \(2007\).](http://dx.doi.org/10.1103/PhysRevB.75.060505)
- 22S. Serventi, G. Allodi, R. De Renzi, G. Guidi, L. Romano, P. Manfrinetti, A. Palenzona, Ch. Niedermayer, A. Amato, and Ch. Baines, Phys. Rev. Lett. **93**[, 217003 \(2004\).](http://dx.doi.org/10.1103/PhysRevLett.93.217003)
- 23R. Khasanov, P. W. Klamut, A. Shengelaya, Z. Bukowski, I. M. Savic, C. Baines, and H. Keller, Phys. Rev. B **78**[, 014502 \(2008\).](http://dx.doi.org/10.1103/PhysRevB.78.014502)
- 24M. Gooch, P. Doan, Z. Tang, B. Lorenz, A. M. Guloy, and Paul C. W. Chu, arXiv[:1308.1880.](http://arXiv.org/abs/1308.1880)
- 25N. R. Werthamer, E. Helfand, and P. C. Hohenberg, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.147.295) **147**, [295 \(1966\).](http://dx.doi.org/10.1103/PhysRev.147.295)
- 26M. Tinkham, *Introduction to Superconductivity* (Krieger Publishing Company, Malabar, FL, 1975).
- 27A. Carrington and F. Manzano, Physica C **385**[, 205 \(2003\).](http://dx.doi.org/10.1016/S0921-4534(02)02319-5)
- 28M. H. S. Amin, M. Franz, and Ian Affleck, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.84.5864) **84**, 5864 [\(2000\).](http://dx.doi.org/10.1103/PhysRevLett.84.5864)
- 29D. J. Singh, New J. Phys. **14**[, 123003 \(2012\).](http://dx.doi.org/10.1088/1367-2630/14/12/123003)
- 30A. Subedi, Phys. Rev. B **87**[, 054506 \(2013\).](http://dx.doi.org/10.1103/PhysRevB.87.054506)