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Propagating and annihilating vortex dipoles in the Gross-Pitaevskii equation
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Quantum vortex dynamics in Bose-Einstein condensates or superfluid helium can be informatively described
by the Gross-Pitaevskii (GP) equation. Various approximate analytical formulas for a single stationary vortex
are recalled and their shortcomings demonstrated. Significantly more accurate two-point [2/2] and [3/3] Padé
approximants for stationary vortex profiles are presented. Two straight, singly quantized, antiparallel vortices,
located at a distance d0 apart, form a vortex dipole, which, in the GP model, can either annihilate or propagate
indefinitely as a “solitary wave.” We show, through calculations performed in a periodic domain, that the details
and types of behavior displayed by vortex dipoles depend strongly on the initial conditions rather than only on
the separation distance d0 (as has been previously claimed). It is found, indeed, that the choice of the initial
two-vortex profile (i.e., the modulus of the “effective wave function”), strongly affects the vortex trajectories
and the time scale of the process: annihilation proceeds more rapidly when low-energy (or “relaxed”) initial
profiles are imposed. The initial “circular” phase distribution contours, customarily obtained by multiplying an
effective wave function for each individual vortex, can be generalized to explicit elliptical forms specified by two
parameters; then by “tuning” the elliptical shape at fixed d0, a sharp transition between solitary-wave propagation
and annihilation is captured. Thereby, a “phase diagram” for this “AnSol” transition is constructed in the space
of ellipticity and separation and various limiting forms of the boundary are discussed.
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I. INTRODUCTION

The Gross-Pitaevskii (GP) equation1–3 is widely accepted
as a basic model to study vortex dynamics in superfluid helium
or Bose Einstein condensates. It has the merit of providing an
effective quantum mechanical description of the vortex core
dynamics, while also allowing detailed predictions of vortex
reconnection,4–10 a phenomenon which is thought to centrally
affect the large scale behavior of quantum turbulence.11,12

The general focus of this present work is the specifica-
tion of appropriate initial conditions to perform systematic,
reproducible, vortex dynamics calculations through the GP
equation. This is a matter of some delicacy, because given
the nonlinearities involved one must rely almost entirely on
numerical solutions, which, as we will demonstrate, depend
strongly on the details of the initially imposed complex,
effective wave function �(x,t = 0). Of course, the boundary
conditions also play a role, although for the present purposes, a
less crucial one. In this study, we will always assume periodic
boundary conditions.

We address the general objective here by studying single
vortex profiles and vortex dipole dynamics, which may be
usefully relevant to physical situations that can be regarded
as two-dimensional, such as helium films,13 or experiments
performed in trapped Bose-Einstein condensates.14–17

In order to select initial conditions that lead to simu-
lated vortex dynamics, two conceptual steps are needed:
first, one needs to describe mathematically a quantum vor-
tex appropriately for the GP equation and, second, one
needs to set up one or more vortices in the computational
domain.

This second step has usually been achieved merely by mul-
tiplying together wave functions describing each individual

vortex.4,5,7,18 For exploratory purposes, this device is simple
and may well be adequate. However, if one wishes to address
more quantitative and subtle issues, such as arise naturally
in contemplating the wealth of experimental data11,19,20 and
what may be found in the future, a more systematic approach
is called for. Here, we describe a different attack which
exploits the properties of the diffusion equation associated with
the GP equation and thus allows one to impose low-energy
initial conditions. The use of the diffusive GP equation is
sometimes referred to as the imaginary time propagation
method.12,21,22

The mathematical description even of a single vortex entails
some complications. A single straight vortex in an infinite
domain is, in fact, optimally represented as a solution of
the stationary GP equation. However, there is no conve-
nient analytical form to express it precisely; as a result,
a numerical study is required. However, this may not be
convenient or practical when wave functions for multiple
vortices are required. Thus it has been customary to employ
some analytically convenient but intrinsically approximate
profiles. Various approximate profiles for a single straight
vortex have been proposed. We recall three of these, namely,
in order of increasing complexity, the Fetter,23 Kerr,10 and
Berloff24 approximants; however, as distinct improvements,
we propose new [2/2] and [3/3] Padé approximants. It is
worth stressing, in this regard, that the GP equation conserves
energy. Consequently, any energy imposed by means of vortex
initial conditions that exceeds the minimal energy entailed in
the exact vortex configuration is not dissipated but, rather,
dispersed by mechanisms which are not easy to predict a priori,
and often confusing to interpret.

In the GP equation unit vortex dipoles, characterized by
a separation distance d0, can either annihilate and emit their
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energy via outgoing waves, or, after a transient, propagate at
constant velocity in the form of solitary waves. Furthermore,
Ivonin25 and Ogawa et al.7 claimed there was a nonzero
critical value of d0, below which no solutions describing
dipoles moving uniformly were possible. However, Jones and
Roberts26 and Berloff24,27 found accurate numerical solutions
for constant velocity solitary waves at separations down to the
limit24 d0 = 0, which corresponded to a propagation velocity
U = 0.45, in dimensionless units where the speed of sound
is7,25 c = 1/

√
2. As we show, this discrepancy highlights the

importance of the initial vortex configurations in studying
solutions of the GP equation. In particular, the phase pattern of
the initial order parameter is significant. Indeed, by varying it,
we are able to generate solutions in which the vortex dipoles
either annihilate or propagate. Our GP calculations also serve
to check the dependence of the time-to-annihilation and of
the dipole propagation velocity, U , on the initial separation
as d0 → 0.

In Sec. II, we recall the Gross-Pitaevskii and we describe
the diffusive Gross-Pitaevskii (DGP) equation. Section III
is devoted to the study of single vortex profiles, while in
Sec. IV, we present some illustrative vortex dipole calculations
that demonstrate how different choices of even very similar
initial conditions significantly affect aspects of the observed
phenomenon. Finally, our results are summarized in Sec. V.

II. THE GROSS-PITAEVSKII EQUATION

The Gross-Pitaevskii equation,1–3 expressed in terms of
an effective complex bosonic or “condensate” wave function
�(x,t), where x is a d(=2 or 3)-dimensional spatial coordinate
with t denoting the time, is

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V0�|�|2 − μ�. (1)

Here, 2πh̄ is Planck’s constant, m is the mass of the Bose
particles being simulated, while μ is the chemical potential
and V0 represents the strength of the short-range boson-boson
repulsive potential. Evidently, the nonlinear term accounts for
the interatomic interactions.

This equation can be made dimensionless by rescaling the
coordinates x, t , and �(x,t), respectively, by a characteristic
length, the healing length3 ξ0 = h̄/

√
2mμ (of order 0.5 Å

for helium-4), by a characteristic time, t0 = mξ 2
0 /h̄ (of order

10−1 ps for helium-4), and by a characteristic modulus, chosen
as the value of the wave function in an infinite domain
prior to the onset of a disturbance28 |�∞| = √

μ/V0. The
dimensionless equation then becomes

−2i
∂�

∂t
= ∇2� + (1 − |�|2)�. (2)

The total energy, E, associated with this form, measured inside
a domain � with respect to the uniform state �∞ = 1 is
conserved, and is given by the sum of the kinetic energy EK ,
and the potential energy EI with28

EK = 1

2

∫
�

|∇�|2dx (3)

and

EI = 1

4

∫
�

(1 − |�|2)2dx. (4)

The kinetic energy can be further split into a classical kinetic
energy ECK and a quantum energy EQ, which are given by,
respectively,28

ECK = 1

2

∫
�

f 2(∇φ)2dx (5)

where � is expressed as � = f (x,t)eiφ(x,t), and

EQ = 1

2

∫
�

(∇f )2dx. (6)

It is useful, for thinking in physical terms, to define the density
of the condensate ρ as ρ = f 2, and the velocity field v as
v = ∇φ. These equivalences allow to write the GP equation
in a hydrodynamical form.29

The diffusion equation associated with the GP equation—
the DGP equation—is

2
∂�

∂t
= ∇2� + (1 − |�|2)�. (7)

This does not conserve energy; rather, when t → ∞, one has
� → �̄, where �̄ minimizes the total energy and coincides
with a stationary solution of the GP equation. Therefore the
DGP equation can be used to find fixed points for the GP
equation.30 (As noted above, this imaginary time propagation
method, has been often used by the BEC community.21,22)

However, even if the focus is rather on the dynamical
behavior of unstable structures, such as vortex dipoles or
antiparallel vortices with three-dimensional geometries, the
DGP equation can be conveniently exploited to find low-
energy initial conditions. Here, this is demonstrated for vortex
dipoles.

In more detail, two approaches have been used to prepare
the initial conditions for our GP calculations. The first one
consists in obtaining the overall initial wave function by
multiplying the single-vortex wave functions for the two
vortices inside the domain and their first eight periodic images
outside the domain. Images are added to ensure that � is
sufficiently smooth at the boundaries.4,10,31 Different choices
of the single-vortex wave function, corresponding to different
expressions for a single vortex profile, are possible. Such initial
conditions have been used for some of the calculations pre-
sented in Sec. IV A. The second approach consists in starting
from a trial initial condition (usually obtained following the
first approach) and diffusing it via the DGP equation while
imprinting a specific phase distribution. We explain further
how this is realized numerically in Sec. IV– see the second
paragraph after that containing Eq. (21). This second approach
allows us to obtain lower energy initial conditions; this has
been exploited in Secs. IV A–IV C

In our calculations,31 the DGP and the GP equations
have been integrated numerically through a split-step spectral
method32 in a periodic domain. The use of the discrete
cosine transform (DCT), rather than the discrete Fourier
transform (DFT), allows one to account for periodic images
by calculations in a domain smaller by a factor of four (in
two dimensions). The DCT, indeed, implies an even extension
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of the original function, which saves us from having to add
three reflections of each single vortex in the computational
box, a condition otherwise essential to meet the appropriate
periodicity conditions.31

III. VORTEX PROFILES

In the language of the GP equation, a vortex line is a
long, thin, locally cylindrical structure, straight, bent, or wavy,
defined by a linear locus of zeros of the effective wave function.
In particular, a quiescent straight vortex is represented by a
stationary axisymmetric solution of (2), which can be written
in cylindrical coordinates, (r , φ, z), as

�(r,φ,z) = f (r)e±iφn, (8)

where we may term f (r) the “profile,” while the phase φ

coincides with the azimuthal angle and n is an integer. Using
the GP equation (2) yields

f = −
[

1

r

d

dr

(
r

d

dr

)
− n2

r2

]
f + f |f |2, (9)

which can be integrated numerically in an infinite domain1,2 to
determine the nature of f (r). The boundary conditions require
that f (r) → 1 as r → ∞, while, in the core of the vortex,
f (r) → 0 as r → 0.

Since, as mentioned, there is no analytical expression
for f (r), various approximate formulas have been proposed.
Among these are (i) a [1/1] Padé approximant advanced by
Fetter,23 namely,

fF (r) =
√

rp

√
rp + 2

(10)

with p = 2; (ii) a “square core” approximant, introduced
by Kerr,10 say fK , also given by (10) but with p = 4. This
particular choice was introduced as a stratagem to ensure that
the initial density went smoothly from zero, on the vortex
core, to roughly the background density over the distance of
the healing length.10 Finally, (iii) Berloff24 derived a [2/2]
Padé approximant specified by

fB(r) �
√

r2(0.3437 + 0.0286r2)

1 + 0.3333r2 + 0.0286r4
. (11)

A precise stationary solution, which for convenience we
will call the diffused profile fD(r), can be found by evolving in
time through the DGP equation any one of these three profiles.
Since we are imposing periodic boundary conditions, we need
a large enough domain to minimize the influence of the images.
We have calculated fD(r) in a domain of size Lx = Ly = 200
using a grid spacing 	x = 	y � 0.098.

To improve on the options, we have generated a two-point
[2/2] Padé approximant33 in the form

f 2
[2/2](r) = a0 + a1r

2 + a2r
4

1 + b1r2 + b2r4
, (12)

and a corresponding [3/3] Padé approximant

f 2
[3/3](r) = c0 + c1r

2 + c2r
4 + c3r

6

1 + d1r2 + d2r4 + d3r6
. (13)

By recalling that, at small r , the profile f (r) can be expanded
as f (r) � ∑∞

i=1 pir
2i−1, with24 p1 � 0.582 781 1878, p2 =

−p1/8, and p3 = p1(p2
1 + 1/8)/24, while about r → ∞ one

has24 f (r) � ∑∞
i=0 qir

−2i , with q0 = 1, q1 = −1/2 q2 =
−9/8 and q3 = −161/16, we find, for f[2/2], a0 = 0, a1 = p2

1,
a2 = b2, and

b1 = 3p2
1

4
(
1 − p2

1

) � 0.3857,

(14)

b2 = p2
1

[
4p2

1 − 1

4
(
1 − p2

1

)]
� 0.0461.

The expressions for b1 and b2 are found by expanding (12)
in a Taylor series for small r and large r and equating the
coefficients of the second term, respectively, to p2 and q1.
This approximant then reproduces p1, p2 and q0, q1 correctly.

Following an analogous procedure we find, for f[3/3], c0 =
0, c1 = p2

1, c3 = d3, c2 � 0.0501, d1 � 0.3976, d2 � 0.0527,
and d3 � 0.0026. This approximant reproduces p1, p2, p3,
and q0, q1, q2. The f[2/2] and f[3/3] Padé and the Berloff
approximants are compared in Fig. 1 with respect to the
diffused profile fD . The [3/3] Padé approximant is the closest
to the diffused profile followed by the [2/2] Padé approximant
and, lastly, the Berloff approximant.

It is observed that expanding fF , fK , and fB in power
series, and examining the limits for small and large r , yields
a variety of results, none of which reproduces p1, p2, and q1.
Explicitly, for small r , one has

fF � r√
2

− r3

4
√

2
+ O(r5),

fK � r2

√
2

− r6

4
√

2
+ O(r10), (15)

fB �
√

0.3437r − 0.2501
r3

2

√
0.3437 + O(r5),

FIG. 1. Difference between the Berloff approximant and the
diffused solution (dash-dotted line), between the [2/2] Padé approx-
imant and the diffused profile (dotted line), and between the [3/3]
Padé approximant and the diffused profile (dashed line). (Inset) Time
decay of the ratio between the total energy E and the total initial
energy E0 for the [2/2] Padé approximant evolved through the DGP
equation.
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TABLE I. L0 parameter for the five different approximate profiles
and the numerical diffused profile.

Profile L0

fF 0.403
fK 0.604
fB 0.390
fP [2/2] 0.382
fP [3/3] 0.381
fD 0.377

while the behavior for large r is

fF � 1 − 1

r2
+ O

(
1

r4

)
,

fK � 1 − 1

r4
+ O

(
1

r8

)
, (16)

fB � 1 + 2

11r2
+ O

(
1

r4

)
.

Notice that, even though fB → 1 as r → ∞, the Berloff
profile, fB , exceeds unity somewhat in an intermediate range
of r , which is qualitatively incorrect.

By imposing the Fetter and Kerr profiles as initial conditions
and by evolving them through the GP equation in a periodic
domain, it is also discovered that, as a consequence of being
less accurate approximants, they are markedly unstable, see
Fig. 2 of Meichle et al.30 Indeed, the core region first relaxes
toward the exact profile, while the excess energy released
is successively propagated outwards as waves. These remain
localized in the outer region of the domain, where they persist
and are responsible for background oscillations which one
might be tempted to identify as “thermal noise.” If these
vortex profiles are imposed for two-vortex initial conditions,
and vortex annihilation or vortex reconnection are studied, it
is observed that the presence of these background “acoustic”
waves strongly affects the vortex trajectories and the speed
of the process.31 In particular, vortex trajectories become
more wavy and annihilation or reconnection take longer to
occur. One may speculate that in the presence of a “thermal
background” some effective frictional effects are generated;
we comment on this further in the following section.

Being a stationary solution of the GP equation, the exact
single vortex profile minimizes the Hamiltonian. For this
reason the value of the total energy is indicative of the accuracy
of the approximate profiles. The energy per unit length of a
single vortex with n = 1 in a cylindrical domain of radius R

is given by28

E′ = π

{∫ R

0

[
df (r)

dr

]2

rdr +
∫ R

0

f 2(r)

r
dr

+ 1

2

∫ R

0
[1 − f (r)2]2rdr

}
, (17)

where the first term gives the quantum energy E′
Q, the second,

the classical kinetic energy E′
CK , and the third, the potential

energy E′
I .

For large R, we have f (r) � 1 and (17) simply gives
E′ ≈ π ln R. For greater asymptotic precision, Pitaevskii2

found E′ = π [ln(R) + L0], with L0 = 0.38. The values of the
parameter L0 for all the five profiles and for the numerically
diffused profile are reported in Table I.

IV. VORTEX DIPOLE DYNAMICS

Customarily, as mentioned in Introduction, initial condi-
tions for multiple vortices have been constructed simply by
taking the product of the wave functions for each individual
vortex,4,5,7 that is,

�0(x,t = 0) =
∏
j

fj e
iφj , (18)

where fj (x) and φj (x) are the profile and phase of the j th
vortex with specified core-locus. In the case of a vortex dipole
characterized by a separation distance d0, different two-vortex
profiles provide different choices of fj [see Fig. 2(a)], while the
sum of the phases φj leads for all cases to the “circular” phase
contours, illustrated in Fig. 2(b). We have, in addition, taken
account of the periodic images in accord with the explanations
at the end of Sec. II above.31

In our vortex dipole calculations, we have used a 2D domain
of size Lx = Ly = 50, spanning the coordinate range

−25 � x � 25, −25 � y � 25, (19)

with x = 0 and |y| = a = d0/2 setting the location of the
vortex cores. The initial global phase φ0, according to (18), is
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t(a)

(b)
x

(d)

(c)

Etot

FIG. 2. (Color online) (a) Two-vortex profiles viewed along (x =
0, y), for d0 = 2.5, obtained by multiplying wave functions for each
of the two vortices as in (18): the Fetter profile (green, dashed line),
the Kerr profile (black stars), and the Berloff profile (blue circles); or,
by relaxing through the DGP equation any one of the three previous
two-vortex profiles while keeping the initial phase contours fixed
(red, solid line); (b) phase contours given by (20), associated to the
profiles shown in (a) and plotted every π/4; (c) total energy per unit
mass for the two-vortex Fetter profile (diamond), Kerr profile (star),
Berloff profile (circle), and time decay of the total energy observed
letting the DGP equation evolve from the two-vortex Fetter profile
(dotted line). In this plot, the maximum value is normalized to unity;
(d) density distribution, i.e., |�|2 contours, for the diffused profile.
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then

φ0(x,y; t = 0) = φ1 + φ2

= tan−1

(
y − a

x

)
− tan−1

(
y + a

x

)
,

= tan−1

( −2ax

x2 + y2 − a2

)
. (20)

Now consider an alternative approach in which (i) the phase
contours (20) are generalized to the elliptical distributions

φ0(x,y; t = 0) = tan−1

{ −2aux

K[(ux)2 + y2 − a2]

}
, (21)

with u and K as parameters; (ii) the profiles for a trial initial
condition are obtained using (18), but are relaxed through the
application of (7), namely the DGP equation [see Fig. 2, parts
(c) and (d)], while the phase is fixed by (21). Clearly, the values
K = u = 1 correspond to the circular profile given by (20).

In (21), the loci of fixed φ0 are ellipses that pass through
the dipolar cores at (x, y) = (0, ± 1

2d0) with axes parallel to
the x and y axes. When φ0 = ±π/2, the ellipse is centered
at the origin and has width x0 = ±(a/u). If u → 0, this ellipse
degenerates into a pair of parallel horizontal straight lines.
When φ0 is small the center of the ellipse is displaced to x0 ≈
−1/Kuφ0 and the width increases by a factor

√
1 + 1/φ0Ku.

Finally, for u < 1, the ellipse is elongated along the x axis,
but for u > 1, along the y axis, while, when K < 1, the phase
contours at fixed φ0 are further apart than when K = 1. See
Fig. 3 for an illustration.

Note that two antiparallel vortices forming a vortex dipole
are not a fixed point of the GP equation. Hence, if such a
configuration is allowed to diffuse fully through the DGP
equation, it converges to the flat solution, �̄ = 1. However,
when phase contours are enforced, i.e., held fixed while
diffusing, a two-vortex combined profile relaxes to a lower

FIG. 3. (Color online) Phase contours given by Eq. (21) and
plotted every π/4 for different values of the elliptical parameters
u and K .

energy solution, which preserves the presence of both vortices
as illustrated in Fig. 2.

In the split-step spectral method, each time increment 	t

is divided into two steps: the first integrates the nonlinear
term in the Cartesian frame of reference and the second
integrates the linear term in spectral space. The desired phase
φ0 is imposed by redefining, after each step, a wave function
�enforced phase given by the modulus, |�|, of the wave function
just calculated times the exponential of φ0 as specified in (21)
so that �enforced phase = |�|eiφ0 .

A hint as to the outcome one may expect from the time
evolution of such initial conditions is obtained by analyzing
the linearized GP equation,34 which, in fact, is simply the
time-dependent one-particle Schrödinger (OPS) equation. By
applying a phase shift � = 
eit/2 and neglecting the nonlinear
term, the GP equation reduces to the OPS equation which, in
terms of 
(x,t), is

2i
∂


∂t
+ ∇2
 = 0. (22)

Given the elliptical phases (21), the chosen initial condition
becomes

�0 = (ux)2 + y2 − a2 + 2iaxu/K

P(r)
, (23)

where P(r) is any appropriate polynomial that allows for the
correct asymptotic behavior of |�0| for r close to and far from
the vortex cores. For the sake of illustration and to simplify
the calculations, we take P = 1; in doing so, however, the
correct asymptotic behavior is not guaranteed, especially for r

far from the vortex cores since |�| → ∞ as r → ∞. In (23),
the imaginary and real parts of �0 are simultaneously zero at
(x = 0, y = ±a), which, indeed, provides the location of the
vortex lines.

The solution of (22) with 
(x,t = 0) = �0, is found to
have real and imaginary parts given by

Re(
) = (ux)2 + y2 − a2,
(24)

Im(
) = 2axu/K + t(u2 + 1),

which simultaneously vanish when

x = −t(u2 + 1)K/2au,
(25)

y1,2 = ±
√

a2 −
[
t(u2 + 1)K

2a

]2

.

Hence, in this limit, the vortex cores move linearly with time
in the direction of negative x along the ellipse which coincides
with Re(�0) = 0. On equating the first space-derivative of
|
(x,t)|2 to zero one finds two solutions: the first reproduces
(25) and corresponds to the moving cores, i.e., the zero-density
points, but the second one is given by y = 0 and

u4x3 + a2u2x(2/K − 1) + aut(u2 + 1)/K = 0, (26)

which can be solved using Cardano’s formula for the roots of
a cubic equation. The real root of this equation corresponds to
the location of the minimum density points after annihilation
of the vortex dipole.
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We conclude that, given the elliptical phase initial config-
uration, a vortex dipole with P constant or of first order in
(x,y) should be expected to annihilate via the linearized GP
equation in accord with (24). If P is of higher order, (24)
represents an approximate solution accurate to first-order in
time. The approach that lead us to find solution (24) has been
proposed and followed by Nazarenko and West.34

Observe that if u → 0 and uw = K → 0, that is, u and
K go to zero, but in fixed proportion with w as the control
parameter, the condition (23) becomes

�0 = (y2 − a2) + 2iaxw. (27)

The OPS solution for this is


(x,t) = y2 − a2 + i(t + 2axw). (28)

The time behavior of the vortex core is then given by

y1,2 = ±a and x = −t/2aw. (29)

Thus the vortex dipole now does not annihilate but, rather,
moves with a fixed velocity of propagation inversely propor-
tional to a and w.

In the following, we solve numerically the nonlinear GP
equation for different vortex-dipole initial conditions and we
show (a) how annihilation of a vortex dipole may be affected
by the choice of different initial profiles fj ; (b) how, given
circular phase contours and a diffused two-vortex profiles,
the solution depends on the initial separation distance d0; and
(c) how, the vortex-dipole dynamics is influenced by varying
the initial phase configurations via the elliptical parameters u

and K in (21).

A. Sensitivity to choice of initial profiles

In the first case, we take K = u = 1 in (21), i.e., circular
phase contours, and examine different two-vortex initial
profiles. We find that if the diffused structure (at fixed phase
distribution) for a vortex dipole is imposed as an initial condi-
tion for the GP equation, the annihilation mechanism proceeds
at a markedly different rate than when the initial condition is
obtained by multiplying the two single-vortex profiles: see
the open-circles plot in Fig. 4. Evidently, the diffused profile
commences annihilating sooner and the annihilation process

0 2 4 6 8 100

0.1

0.2

t

|Ψ|min
2

Berloff

diffused

Kerr

     Fetter

[3/3] Padé

FIG. 4. (Color online) Time evolution of the minimum density
for two antiparallel vortices with initial separation d0 = 2.5, starting
from four different initial conditions: the two-vortex Fetter (violet
dots), Kerr (black stars), Berloff (blue crosses), and [3/3] Padé (green
triangles) profiles and any of the previous conditions diffused through
the DGP equation, (7), keeping the phase contours fixed (red open
circles).

0 1 2 3 4−2

−1

0

1

2

x

y
t

diffused

Kerr

FIG. 5. Position in the (x, y) plane of the vortex cores as time
proceeds, comparing the cases when the initial profiles are derived
from the Kerr (stars), Berloff (crosses), Fetter (dots), [3/3] Padé
approximants (diamonds), with the relaxed or diffused two-vortex
profile (circles).

proceeds more rapidly than do the other three profiles. This
may be rationalized by noting that the nondiffused profiles
possess excess energy that needs to be radiated away from the
cores before the annihilation itself can get properly underway.

In confirmation of this interpretation, the Kerr profile is
the one which starts the annihilation process most slowly,
followed in order by the Fetter, Berloff, [3/3] Padé, and
diffused profiles. The detailed trajectories of the vortex centers
before annihilation are also strongly influenced by the choice
of the initial condition as illustrated in Fig. 5 for the case
d0 = 3. For these simulations, the conservation of the total
energy 	E is accurate to within 0.3%.

The dipole annihilation mechanism can be thought to
proceed generally in two stages: (i) the two vortices translate
and move towards one another while the phase reduces its
range of variation everywhere except close to the vortices,
see Figs. 6(a) and 6(b), and (ii) the cores merge together,
annihilation occurs, and the minimum density increases while
the whole structure continues to move forward radiating
acoustic waves, see Figs. 6(c) and 6(d). This description is
consistent with the results reported by Ogawa et al.7

By choosing a two-vortex diffused profile and repeating
the calculations for different initial separations, it is found
that annihilation always occurs when d0 � 3. If, instead, the
initial separation exceeds d0 � 4 the vortex dipole eventually
propagates as a solitary wave (albeit usually with associated
oscillations). It transpires, however, that this observation is
deeply connected with the specific choice of the initial phase
distribution. We note, indeed, that the phase contours entailed
in the approximate solitary-wave solutions found by Berloff24

for d0 = 1.8 are more-or-less elliptical in shape, rather than
circular, as those imposed here, see Fig. 7(a). Interestingly,
when our d0 = 4 initial condition is evolved through the
GP equation, it behaves as a solitary wave and its phase
distribution, which is initially circular as in Fig. 2(c), and
relaxes to an elliptical-like configuration rather similar to
Berloff’s result as shown in Fig. 7(b).
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FIG. 6. Annihilation process through the GP equation for d0 =
1 showing only a small portion of the domain. At t = 0.25:
(a) distribution of |�|2; (b) phase contours at multiples of π/20.
At t = 2: (c) distribution of |�|2 after annihilation, the minimum
density exceeding zero; (d) phase distribution now confined to the
interval −π/20 � φ � π/5.

Note that a vortex-dipole propagating at constant speed is a
stationary solution of the GP equation written in a moving
frame of reference. However, this does not imply that a
solitary-wave solution can be found by means of the DGP
equation similarly expressed in a moving coordinate system
since it does not satisfy a minimal energy condition.

B. Dependence on the initial separation distance d0

Starting from circular phase contours (K = u = 1) and
a two-vortex diffused profile, we first report in Fig. 8(a)
the annihilation time, tAn(d0), needed to just complete the
merging of the two distinct cores. The approximately quadratic
dependence of tAn on d0 observed might have been anticipated

FIG. 7. (a) Phase distribution of the solitary-wave approximant
derived by Berloff24 for steady velocity U = 0.4, to be compared
with (b) the phase distribution at t = 20 for an initial condition
characterized by d0 = 4 after evolution by the GP equation.

from the solution (25) of the linearized GP (or OPS) equation
(22). Indeed, this yields an annihilation time

t0
An(d0) = b0d

2
0 with b0 = 1/2K(u2 + 1), (30)

where the superscript denotes the linearized derivation, despite
which the result seems likely to be generally valid for d0 → 0.
Accordingly, in Fig. 8(a), where K = u = 1, we present a fit
using

tAn(d0) � 1
4d2

0 [1 + b1d0] (31)

with b1 = 0.39. Clearly, these limited data are consistent with
the form (30); however, while recognizing the relatively large
uncertainties involved in these calculations, it should, perhaps,
be mentioned that a direct estimate of b0 yields a somewhat
larger value around 1/3.

Once the vortex dipole has been annihilated, there remains
only a “dip” characterized by a minimal density, |�(t)|2min,
which, as t grows above tAn, increases monotonically from
zero but initially fairly slowly: see the plots in Fig. 8(b),
especially those for d0 > 1.5. Then, for larger times, the
density minimum evidently approaches a plateau. The process
depends strongly on the initial separation d0 in a manner that
seems linked to the total missing mass associated with original
vortices, namely,

∫
A

(1 − |�|2)dA. Furthermore, the visually
quite varied plots in Fig. 8(b) can be reduced to a single “master
growth curve,” as seen in Fig. 8(c), by rescaling the time by
tAn(d0) and the density by a characteristic density |�(d0)|2An. To
determine |�|2An, we used the value |�(d0; t = 2tAn)|2 which,
as reported in Fig. 8(d), initially rises linearly with d0 with a
slope (indicated by a dashed line) of about 0.033.

C. Sensitivity to initial phase configuration

As our last study a set of initial conditions, with profiles
relaxed via the DGP equation, are imposed by enforcing the
elliptical phase contours stated in (21) for a range of the param-
eters u and K . The resulting transition between the annihilating
and propagating behavior of the vortex dipoles is evident in
Fig. 9 for the three separation values: (a) d0 = 1.8, which
is the separation for which Berloff derived a solitary-wave
approximant;24 (b) d0 = 2.7 and (c) d0 = 4.0, the value for
which we originally observed solitary-wave behavior with
initially circular phase contours. The annihilation-solitary
wave (or AnSol) boundary clearly depends on both the
ellipticity parameters, K and u, and on the separation d0

between the parallel vortices.
Note, first, that the data suggest quite strongly that the

AnSol boundary approaches the (K , u) origin linearly when u

(and K) become small. In this limit, we find the boundary is
reasonably well represented by

Kc(u; d0) � c0ud2
0 , (32)

with c0 � 0.056 for d0 � 4. On the other hand, a theoretical
justification of this expression even, say, for d0 → 0 (for
example on the basis of solutions of the linearized GP equation
or the corresponding solitary-wave GP equation)24 appears
nontrivial.
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Then on noting the distinct vertical scales in Fig. 9, we see
that for large u the AnSol boundary becomes independent of u

so that Kc(u; d0) → K∞(d0) as u → ∞. However, the larger
the vortex separation d0, the larger the value of K at which the
AnSol transition is realized. In fact, it seems that

K∞(d0) � c∞d0, (33)

with c∞ � 0.091 provides, within rather large uncertainties, a
tolerable description.

Lastly, it appears that at least for d0 � 2, the AnSol
boundary is nonmonotonic in u; rather Kc(u; d0) displays
a maximum around u = 1–2 which, relative to K∞(d0),
also increases quite dramatically with d0. More extensive
calculations would be needed, however, to provide more
quantitative conclusions.

V. CONCLUSIONS

A single straight vortex is usually regarded as a stationary
axisymmetric solution of the Gross-Pitaevskii equation. We
have demonstrated, however, that some approximate vortex
profiles proposed in the literature contain a significant excess
of energy which, under time development, leads to the
outwards propagation of compressional waves. These effects
prove quite small for the particular Padé approximant proposed
by Berloff24 and are certainly negligible for our newly pro-
posed exact two-point [2/2] and [3/3] Padé approximants.33

Thus these profiles qualify as good candidates to perform
low-energy calculations: a desirable condition, since the
background “thermalization” which arises from less accurate
profiles is an uncontrolled and, initially at least, an unwanted
effect. Furthermore, the undetermined excess energy interferes
with the precise quantitative measurements one should hope
to perform. It may be expected, moreover, that real physical
systems in which energy dissipation (not included in the GP
model) is to be anticipated, will tend to assume minimal energy
configurations when feasible.

The second part of our study has been devoted to the
dynamics of vortex dipoles, characterized by a separation
distance d0 between two parallel counter-rotating infinite
straight line vortices. It was demonstrated that such a dipole
can either annihilate or propagate steadily as a solitary
wave. Both the qualitative and the quantitative behavior
depend strongly on the initial vortex profile and on the initial
phase contours. Starting from an initial condition obtained
through multiplication of two single-vortex wave functions,
one typically observes annihilation for an initial separation, d0,
smaller than three intrinsic units, but solitary-wave behavior
for an initial separation larger than four units. When d0 is small,
a good approximation for the dynamical behavior is given by
the linearized GP equation. The linear term then dominates
and annihilation is observed, as predicted by the one-particle
Schrödinger equation. If lower energy initial profiles are
used, annihilation occurs faster. The d0 dependence of the
solutions has been explored by determining the low-energy
initial conditions via the diffuse GP equation and the time
evolution via the GP equation.

When the separation distance is larger, the linearized
solution is no longer valid, the nonlinear term plays a role and

its interplay with the linear terms determines the solitary-wave
behavior; of course, this is a typical nonlinear phenomenon as
observed, e.g., in the Korteweg-de Vries equation.35,36 It is
interesting to note that, in this case, starting with a rough,
approximate solitary wave as the initial condition, the solution
rapidly descends, as time develops, into the “solitary-wave
valley” in an idealized landscape map of possible solutions. On
the other hand, when the initial separation distance is small,
this outcome is rarely observed and requires precise initial
conditions.

We have confirmed in our present work the existence of
propagating vortex-dipole solutions even for small separation
distances. This fact was stated by Jones and Roberts,26 who
found approximate solitary-wave solution for d0 = 1.78 and
3.5; it was later corroborated by Berloff24 who derived
an approximate solitary-wave solution for the limiting case
d0 = 0. However, these results have been challenged by later
studies.7,25 We have resolved this contradiction by showing
that the propagating or annihilating behavior is primarily
determined by the specific choice of the phase distribution.
While annihilation is predicted by the linear equation and is
expected when d0 → 0, propagating behavior is a nontrivial
fact at small distances and is not easy to observe. We have
presented, for any given value of d0, a general procedure
which allows one to systematically observe the sharp transition
between annihilation and propagation.

More quantitatively, we have thus studied a class of explicit
initial phase configurations that yield elliptical phase contours
specified by two parameters, K and u: see the expression
(21) and Fig. 9, which reveals well-defined annihilation versus
solitary-wave (or AnSol) boundaries of characteristic form.
Note that the area of the (K , u) plane under the AnSol boundary
shrinks quite rapidly as d0 is reduced, so confirming that a more
restricted set of initial parameters is needed for propagation.

In conclusion, we remark, in more general terms, that
vortices are specified by the intersections of the zeros of the
real and imaginary parts of the effective wave function: these
form “zero lines” (or linear loci) in two spatial dimensions, or
“zero planes” (or planar manifolds) in three dimensions. There
are many possible topologies, and functional forms associated
with them, that allow for vortex intersections. Fixed points of
the GP equation then correspond to well defined topologies;30

but for dynamical structures such as a vortex dipole or recon-
necting vortices the choice of initial configurations remains
arbitrary and may strongly influence the outcome. One must
conclude that the custom of representing the various topologies
merely by the product of approximate wave functions derived
from straight vortices is likely to be a significant limitation
in developing a valid perspective for understanding the entire
dynamic landscape more fully.

Finally, in considering the possible application of our
calculations to the understanding of experimental data, such as
those of Paoletti et al.11 on the decay of turbulence in superfluid
helium, it is clear that some account of thermal fluctuations
associated with finite temperature should be taken. There are
various possible approaches to this issue; but one interesting
possibility is the application of the thermodynamic/kinetic
description of the condensation of classical waves advanced
by Pomeau and associates.37

134522-9



RORAI, SREENIVASAN, AND FISHER PHYSICAL REVIEW B 88, 134522 (2013)

ACKNOWLEDGMENTS

We thank Daniel P. Lathrop, Robert M. Kerr, David P.
Meichle, and Enrico Fonda for their scientific interest and

useful discussions and the referees for helpful suggestions.
Cecilia Rorai gratefully acknowledges support from Universitá
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