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Quasiparticle spectra of Abrikosov vortices in a uniform supercurrent flow

C. Berthod
DPMC, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

(Received 15 September 2013; revised manuscript received 9 October 2013; published 23 October 2013)

We calculate the local density of states of a vortex in a two-dimensional s-wave superconductor in the presence
of a uniform applied supercurrent. The supercurrent induces changes in the electronic structure for the isolated
vortex as well as the vortex lattice, which agree with the recent measurements in 2H -NbSe2 [Maldonado et al.,
Phys. Rev. B 88, 064518 (2013)]. We find that the supercurrent polarizes the core states when the vortices are
pinned. This shows that the transfer of momentum from the supercurrent to the bound states and the rigidity of the
wave functions must be considered for understanding the various forces acting on collectively pinned Abrikosov
vortices.
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The quantum states bound to magnetic vortices in type-II
superconductors carry information about the fundamental
properties of the superconducting state. The existence of bound
states was predicted long ago,1 but the direct observation
in NbSe2 awaited the invention of the scanning tunneling
microscope (STM).2 The complete mapping of the tunneling
conductance in real space as a function of applied bias provided
a large data set, in striking agreement with the BCS predictions
for the local density of states (LDOS) of a vortex.3 Since
then, several groups have investigated the vortex cores by
STM in NbSe2,4–6 in other classical superconductors,7–11 in
high-Tc cuprates,12 and, more recently, in the pnictides.13–16

While in classical superconductors, including the pnictides,
these studies usually reveal vortex-core spectra in good qual-
itative agreement with the BCS theory, significant deviations
are found in high-Tc superconductors, probably due to an
anomalous normal state.12 The interpretation of vortex-core
spectra in the cuprates remains an open question.

Recently, a measurement of the vortex electronic structure
in the presence of an in-plane current flow was performed
in NbSe2.17 When a supercurrent is established across a
vortex lattice, a “Lorentz force” acts on the vortices in the
direction normal to the applied current.18 In Ref. 17, the
current was sufficiently small for the force to remain below
the depinning threshold, and the authors could map the LDOS
of static vortices with and without the applied current. The
main observation of this experiment is that the application
of a current transfers low-energy spectral weight from inside
the cores, where the zero-bias conductance is reduced, to in
between the vortices where it is enhanced, while the converse
appears at the gap edges, where the spectral weight is enhanced
inside the cores and depleted outside. The measurements also
suggest that the current increases the size of the vortex cores.
To interpret these trends, the authors assume that the applied
current reduces the smallest gap on the two-band Fermi surface
of NbSe2. This would affect the formation of Andreev bound
states in the cores, diminishing their energy separation.

This interpretation refers to second-order changes in
the modulus of the order parameter but ignores that the
leading effect of the applied current is a distortion of the
order-parameter phase. From a mesoscopic point of view,
a uniform supercurrent in a vortex lattice can be regarded
as a distortion of the phase. The modulus of the pair wave

function �(r) = |�(r)|eiχ(r) vanishes at the vortex centers and
approaches the constant zero-field value at a distance rc ≈ ξ

from the cores, where ξ is the superconducting coherence
length. Its phase χ (r) winds by 2π around each vortex.
The topological defect associated with the phase winding is
responsible for the formation of the vortex bound states.19,20

The supercurrent Jχ ≈ (eh̄/m)|�|2∇χ (neglecting magnetic
contributions) circulates around each vortex. Its intensity
vanishes linearly in the cores, decreases as 1/r at intermediate
distances shorter than the penetration depth, and is maximum
at a distance ∼rc from the core centers. In the presence
of an applied uniform superflow, the pair wave function
becomes �(r) = |�(r)|ei[χ(r)+q·r], where the applied current
Jq ≈ (eh̄/m)|�|2q vanishes in the vortex cores like the
vortex-lattice supercurrent. The phase distortion displaces the
electronic levels by the Doppler shift effect,21 and is therefore
expected to change the vortex LDOS.

The effect of this phase distortion on the LDOS is
studied here in a simple one-band tight-binding model in two
dimensions. This is not intended to be a realistic model for
NbSe2. However, the features demonstrated here are expected
to be generic, and to apply to more sophisticated models as
well. The tight-binding and superconducting parameters are
chosen in a way that allows a semiquantitative comparison with
NbSe2. In a previous study, it was shown that the vortex-core
LDOS is weakly sensitive to distortions of the phase which are
random but is qualitatively modified by distortions which carry
a topological defect, like a nearby antivortex.20 The case of a
uniform distortion was not considered. In the present study,
we keep the modulus of the order parameter fixed and perturb
the phase in order to simulate a uniform applied current. This
produces an exchange of spectral weight between the core and
the outside and an apparent increase of the vortex-core size,
both for an isolated vortex and for a vortex lattice. All trends
observed in the NbSe2 experiment17 can therefore be attributed
to the first-order effect of the applied current, without resorting
to a reduction of the order-parameter amplitude and/or to
multiband effects.

The model is a tight-binding square lattice with a dispersion
ξk = −2t[cos(kxa) + cos(kya)] − μ and an s-wave supercon-
ducting gap �. We use � as the unit of energy, the lattice
parameter a as the unit of length, and we set the chemical
potential to μ = 2t > 0. This locates the van Hove singularity
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at the positive energy 2t and produces an electronlike Fermi
surface corresponding to an electron density n ≈ 0.4 and a
Fermi wave vector kF ≈ π/2. With this choice, and if � < t ,
the normal-state DOS is approximately constant—reducing
the band-structure effects to a minimum—in the energy range
±3�, where we aim to study the effect of the applied current.
The isolated vortex and the vortex-lattice structures are studied
in a finite mesh of size M × M (M = 71). After computing
the lattice Green’s function,

Gr r ′(ε) = G0
r r ′(ε) +

∑

r1 r2

G0
r r1

(ε)�r1 r2 (ε)Gr2 r ′(ε), (1)

the relation N (r,ε) = −(2/π )Im Gr r (ε) allows one to obtain
the LDOS. The normal-state Green’s function G0

r r ′(ε) =
(1/N2)

∑
k eik·(r−r ′)/(ε − ξk + i0+) is calculated on a much

larger N × N mesh (N = 1024), taking advantage of the
translation invariance. The self-energy is22

�r r ′(ε) = −�(r)G0
r ′ r (−ε)�∗(r ′), (2)

where the local s-wave order parameter �(r) describes an
isolated vortex at the central site or a vortex lattice, as well as
the applied current.

In the experiment,17 the zero-field spectrum is considerably
broadened as compared to an ideal s-wave superconducting
DOS. This is not due to the finite temperature, as the latter was
set to 200 mK, which is ∼100 times smaller than the NbSe2

gap of ∼1.3 meV. Impurity scattering is the next candidate. We
introduce a phenomenological impurity scattering through the
substitution ε → ε + i	 in the definition of G0

r r ′(ε). Setting
	 = 0.1, we obtain a zero-field spectrum in good qualitative
agreement with the NbSe2 spectrum. This value of 	 will
be used throughout. Before fixing the hopping t , we need to
consider finite-size effects. The latter are often overlooked in
LDOS calculations for vortices, but can be significant, even
on a mesh as large as 71 × 71. In our setup, the finite-size
effects increase with increasing t , as shown in Fig. 1. In
order to have small finite-size effects with M = 71, we
must take t � 2.5. This is not far from the quantum limit
kFξ = 1. Using the BCS relation kFξ = 2EF/(π�) and the
value EF = 2t corresponding to our dispersion, we estimate
kFξ = (4/π )(t/�) � 3. The typical value for NbSe2 may
be estimated as kFξ = m∗vFξ/h̄ ∼ 11–14, using the values
m∗ = 2m, vF = 8.2 × 106 cm/s, and ξ = 79–100 Å reported
in Ref. 3. The calculation for higher values of kFξ require
larger M , but the calculation scales as M4. One may however
argue that the variations of the LDOS induced by the applied
current are less sensitive to the boundary than the LDOS itself.
Hereafter we will present results for t = 2.5 and for t = 10
(kFξ ∼ 13), focusing in the latter case, which is relevant for a
comparison with NbSe2, on the LDOS variations induced by
the applied current.

The value of the current flowing around the vortices below
the STM tip is not known precisely.17 Our approach to calibrate
the current in the model is to require that its effect on the
zero-field LDOS is similar to the observations made at zero
field in NbSe2. We consider a uniform superflow along x at
zero field by setting �(r) = �e−iqx in Eq. (2). The resulting
LDOS is compared with the zero-current LDOS in Fig. 2.
The applied current increases the conductance in the gap and
decreases the conductance at the gap edges, consistent with

FIG. 1. (Color online) Finite-size effects. The thick solid lines
show the exact DOS calculated for each value of t at zero field and
without applied current. The thin lines show the LDOS calculated at
the central site of a M × M mesh, setting �(r) = � in Eq. (2). Finite-
size effects are small for t = 2.5 and M = 71 but remain significant
for the largest M if t = 10, even at subgap energies.

the observations.17 We obtain a semiquantitative agreement
with the measurements performed in a current of 10.6 mA,
namely, an ∼20% drop of the conductance at the peak energy,
by setting q = 0.05 for t = 2.5, and q = 0.02 for t = 10. With
these values, the applied current remains much smaller than the
largest supercurrent circulating around vortices, as discussed
below.

We now turn to the case of an isolated vortex in a
uniform applied current. For the order parameter we assume
the form �(r) = � tanh(r/rc)e−i(ϑ+qx), where r = (x,y) =
r(cos ϑ, sin ϑ), the origin being at the center of the M × M

FIG. 2. (Color online) (a) Zero-field LDOS at the center of the
71 × 71 mesh in the absence of superflow (dotted line), and in a
uniform superflow with q = 0.05 (solid line) and q = 0.1 (dashed
line). (b) Relative variation of the LDOS at zero energy and at the
gap edge versus the applied current. The solid lines are for t = 2.5
(kFξ ∼ 3); the dashed lines are for t = 10 (kFξ ∼ 13). Due to finite-
size effects, the gap edge is at 1.3 for t = 10.
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FIG. 3. (Color online) (a) LDOS along the (0,1) direction for an
isolated vortex at position (0,0) with t = 10 and rc = 4. The dotted
lines are for q = 0 and the solid lines for q = 0.02. The inset shows
the direction of the applied current; �0 is the vortex magnetic flux
vector. The zero-energy LDOS along the diagonal and along the y axis
are shown in (b) and (c), respectively, without (full symbols) and with
(empty symbols) the applied current. The insets show dN (r,0)/dr

obtained by numerical differentiation.

mesh. The vortex-core radius rc is estimated as rc ∼ ξ , with
kFξ = (4/π )(t/�), and kF ≈ π/(2a). We thus obtain rc/a =
(2/π )2(t/�). The ratio of the applied and vortex currents
is Jq/Jχ = qr , and the vortex current is largest at r = rc.
Therefore, if qrc � 1, the applied current is much smaller
than the maximum vortex-induced supercurrent. For t = 2.5
and t = 10, we have rc ≈ 1 and rc ≈ 4, respectively, such that
the condition is satisfied with the respective values q = 0.05
and q = 0.02. The model assumes that the vortex is pinned
without being actually close to a pinning center. This is
appropriate in a regime of collective pinning, as in the NbSe2

experiments.
For q = 0, the calculated vortex LDOS shown in Fig. 3(a)

exhibits the well-known structures common to BCS s-wave
vortices:1,3,23–25 a low-energy peak at the vortex center, which
splits with increasing distance from the center. In the presence
of the current, the central peak is reduced, while the zero-
energy LDOS increases with respect to the zero-current case
when moving outside the core. The trend is opposite slightly
below the gap edges: the LDOS is enhanced in the core and
reduced outside the core. Figures 3(b) and 3(c) compare the
zero-energy LDOS and its numerical derivative, with and
without the current, on the lines going from the center of
the vortex along the (1,1) and (0,1) directions, respectively.
These results show striking similarities with the experiment,17

in particular, an apparent increase of the vortex-core size
revealed by a displacement of the minimum in the LDOS
derivative. The figure also suggests that the energy separation
between the core states is reduced by the uniform current
for r � rc and increased for r > rc. The same behavior is

FIG. 4. (Color online) (a) Zero-field LDOS at the center of the
71 × 71 mesh (top panel) and LDOS in a triangular vortex lattice at
equal distance from three neighboring vortices (bottom panel: the data
of the top panel is repeated for comparison). The dotted lines are for
q = 0 and the solid lines for q = 0.02. (b) LDOS in real space for
a vortex core in a vortex lattice at various energies without (left)
and with (right) an applied current. The region shown is the 51 × 51
central part of the 71 × 71 mesh. The color scale is the same in all
images. The green dot is the point where |�(r)| = 0.

observed for t = 2.5, which excludes a finite-size effect. This
phenomenon is related to the polarization of the vortex-core
states, as discussed further below.

If the vortex belongs to a vortex lattice, we found that
the core spectra are slightly broadened with respect to those
in Fig. 3 but that the general trends remain unchanged. We
considered a triangular vortex lattice with a nearest-neighbor
vortex distance of 50. With this value, the LDOS far from
vortices differs from the zero-field LDOS, as shown in
Fig. 4(a): there are more states in the gap at finite field,
the peaks are reduced, and the gap appears slightly larger, in
good qualitative agreement with the NbSe2 data.17 Figure 4(b)
compares the vortex-core LDOS in a vortex lattice with and
without the applied current. The current-induced expansion of
the core size can be distinguished at low energy (we used here
a larger current q = 0.04 in order to emphasize this). Note
that the LDOS has an energy-dependent fourfold anisotropy
due to the underlying square symmetry of the model.26 At
higher magnetic fields (intervortex distance �30), a sixfold
anisotropy develops due to the vortex lattice.

The images in Fig. 4(b) for q = 0.04 show a systematic
deformation in the direction (0,−1), which is the direction
of the force Jq × �0 (downwards in the figures). At zero
energy, the LDOS peak does not coincide with the point where
|�(r)| = 0 but is shifted by the applied current in the direction
of the force. In Figs. 3 and 4(b), this has been corrected by
displacing the origin in the direction (0,−1) by two and three

134515-3



C. BERTHOD PHYSICAL REVIEW B 88, 134515 (2013)

lattice spacings, respectively, in the finite-current data. With
increasing energy, the center of gravity of the vortex bound
states moves further in the direction of the force. Thus the
whole electronic structure of the vortex is bent by the applied
current. The spatial separation between the zero of |�(r)| and
the center of the bound states is another illustration of the key
role played by the order-parameter phase in the formation of
the vortex states, and the marginal relevance of its modulus.20

A displacement of the LDOS peak with respect to the phase
singularity point was also found in vortex-antivortex pairs.27

Because �(r) is artificially pinned in our non-self-consistent
calculations and the high-energy states must remain orthogonal
to the low-lying ones, the wave functions sharpen on one side
of the vortex and extend on the other side, leading to the
characteristic polarization seen in Fig. 4(b). This polarization
explains the shift of the core-state peaks to higher energies
in Fig. 3(a). In the direction (0,1), the bound states pile
up more densely in real space, and the core-state peaks
disperse more rapidly with distance. The opposite behavior
occurs in the direction (0,−1), where the core-state peaks
are shifted to lower energies (not shown in the figure) with
respect to the zero-current LDOS. No energy shift, but a slight
deformation of the peaks, is observed in the x direction parallel
to the current. Observing the polarization of the LDOS in the

direction normal to the current is an interesting challenge for
future STM experiments.

The origin of the force acting on vortices in the presence
of a supercurrent has been discussed by many authors.19,28–32

Our calculations show that the superflow transfers momentum
into the bound states, resulting in a polarization of the wave
functions if the vortex is pinned. On one side of the vortex,
the bound states are more localized, because the applied
supercurrent is contrary to the vortex supercurrent and the
superfluid velocity is reduced. On the other side, the two
supercurrents add up and the wave function is more extended.
This effect may be considered to have a magnetic origin,
the vector potential of the applied current changes the phase
relation between the electron and hole parts of the Bogoliubov
excitations in the vortex, but is obviously different from the
electromagnetic interaction between the applied supercurrent
and the magnetic flux carried by the vortex. The polarizability
of the vortex-core states has not been considered so far in the
study of the interaction between currents and vortices, and
between different vortices. A microscopic calculation of the
vortex energy in a uniform applied current would be a first step
in this direction. This is not an easy task, however, because
a self-consistent determination of the fields and currents is
required for a precise comparison of the various forces.
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