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Toward engineered quantum many-body phonon systems
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Arrays of coupled phonon cavities each including an impurity qubit in silicon are considered. We study
experimentally feasible architectures that can exhibit quantum many-body phase transitions of phonons, e.g.,
Mott insulator and superfluid states, due to a strong phonon-phonon interaction (which is mediated by the
impurity qubit-cavity phonon coupling). We investigate closed equilibrium systems as well as driven dissipative
nonequilibrium systems at zero and nonzero temperatures. Our results indicate that quantum many-body phonon
systems are achievable both in on-chip nanomechanical systems in silicon and distributed Bragg reflector phonon
cavity heterostructures in silicon-germanium. Temperature and driving field are shown to play a critical role
in achieving these phonon superfluid and insulator states, results that are also applicable to polariton systems.
Experimental procedures to detect these states are also given. Cavity-phoniton systems enable strong phonon-
phonon interactions as well as offering long wavelengths for forming extended quantum states; they may have
some advantage in forming truly quantum many-body mechanical states as compared to other optomechanical
systems.
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I. INTRODUCTION

Polaritons in coupled-cavity arrays have received great in-
terest for studies of strong correlations and collective behavior
in light-matter systems.1–4 Simultaneously, nanomechanics
and optomechanics are driving toward the truly quantum
regime of mechanical systems,5–9 where, for example, sin-
gle photons interact with the lowest mechanical mode of
a resonator. It is natural to consider whether these latter
systems could exhibit many-body quantum interactions in new
configurations, allowing for quantum many-body mechanical
systems. To provide coherent and strong interaction between
mechanical modes in a controlled way requires a nonlinearity,
however, analogous to a photon blockade.10

Optomechanical coupling—between photon and mechan-
ical modes—may provide one avenue8,9 to produce quantum
many-body mechanical systems. At present, however, optome-
chanical coupling must improve by a factor of ∼140 to reach
the quantum limit.9,11 Also, mechanical resonators, considered
as a quantum object, have very short de Broglie wavelengths
because of their mass, limiting the potential for extended
quantum states. An alternate system to enable strong coupling
has been proposed for acoustic phonons,12,13 where a cavity
phonon hybridizes with a semiconductor two-level system
(TLS) providing a true analog to the cavity polariton dubbed
a cavity phoniton, which can easily enter the strong-coupling
regime. In addition, bulklike single phonons in silicon can
have long thermal de Broglie wavelengths, enabling extended
quantum states.

In this paper, we introduce two experimentally feasible
systems in which manmade many-body phonon states can
be realized. We begin by identifying the physical parame-
ter regime in which many-body Jaynes-Cummings-Hubbard
Hamiltonians14–16 are realizable and finding such phases as,
e.g., the Mott-insulator states (“Mott lobes”). Then, as a
starting point for considering real experimental setups, we
consider a finite array consisting of only two cavity-TLS sites,
calculating the supersplitting, the phonon blockade effect, and
the response to the driving field strength which would be seen

in a measurement. We conclude by considering larger system
sizes, showing that extended arrays behave fundamentally
differently than the small two-site model under the same
hopping and driving field conditions.

Schematics of two possible realistic device designs are
shown in Fig. 1. Our first device proposal involves the acoustic
phonon cavities constructed from distributed Bragg reflector
(DBR) heterostructures via alternating layers of SixGe1−x .17–19

These structures can be further engineered to possess multiple
Si cavity regions in a row. In such a setup, the overall
reflectivity of the layers between any two Si cavities simply
relates to the phonon intercavity hopping frequency tij . A
suitable donor placed in each of these Si cavities can be
strongly coupled (a regime where coupling frequency is much
larger than the donor relaxation and cavity loss rates, g � �,κ)
to a specifically chosen single cavity-phonon mode ω.12 Our
second device design is directly borrowed from the concept
of nano-opto-mechanical phononic crystals. An engineered
disturbance in a periodic array of holes can be used for trapping
a desired phonon mode in a given region. Placement of an
acceptor impurity into each of these regions13 will lead to
cavity-phonitons with engineered intercavity tunneling.

II. EQUILIBRIUM, GRAND CANONICAL

To determine the parameter range for hopping and transition
frequencies of quantum phase transitions, we first consider an
equilibrium system in which the phoniton number density is
fixed. This is a good approximation when the phoniton lifetime
is longer than the thermalization time. For arrays consisting
of phosphorus donors (or boron acceptors) and phonons in
a silicon phononic crystal or a DBR array (see Fig. 1), the
total many-body Hamiltonian is given by the now standard
Jaynes-Cummings-Hubbard (JCH) model,3,14–16,20,21

HJCH = HJC −
∑
〈i,j〉

tij a
†
i aj , (1)

HJC =
∑

i

[εσ+
i σ−

i + ωa
†
i ai + g(σ+

i ai + σ−
i a

†
i )], (2)
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FIG. 1. (Color online) Schematic of a strain-matched sili-
con superlattice heterostructure (acoustic DBR with layers of
SixGe(1−x)/SiyGe(1−y)) consisting of multiple Si cavities, each trap-
ping a single phonon mode, is shown (left). Every Si cavity site with
a loss rate κ contains a single donor, acting as a TLS with an energy
splitting of ε and a relaxation rate of �, strongly coupled to a single
cavity phonon mode ω as well as to each other through an intercavity
phonon hopping frequency of t . A similar two-dimensional phononic
crystal structure with acceptors placed at the cavity sites is also shown
(right).

where ai (a†
i ) is the phonon annihilation (creation) operator

at a given cavity site i, whereas σ+
i (σ−

i ) is the excitation
(deexcitation) operator of the donor at that site. The intercavity
phonon tunneling is given by the hopping frequency tij for
the nearest-neighbor cavity sites i and j . The regular Jaynes-
Cummings Hamiltonian HJC corresponds to the interaction of
a single mode of the cavity phonon with a TLS.22 The fast
oscillating terms (i.e., σ+

i a
†
i ) responsible for virtual transitions

have been dropped via a rotating-wave approximation. The
third term in Eq. (2) is solely responsible for an effective,
nonlinear on-site phonon repulsion in analogy with a photon
blockade.21,23 The phase transition between a Mott insulator
(MI) and a superfluid phase (SF) can be determined in
the grand-canonical ensemble where a chemical potential
μ introduced as H = HJCH − μ

∑
i Ni fixes the number

density. The operator N = ∑
i Ni = ∑

i a
†
i ai + σ+

i σ−
i defines

the total number of excitations. For simplicity, one can
assume that the random on-site potential with zero mean
(e.g., fluctuations of the chemical potential), δμi , vanishes
and tij is assumed to be a uniform short-range hopping.3,20

In the no-hopping limit, tij = 0, each site is occupied by an
integer number of phonitons N which minimizes the on-site
energy ε(N ) = N (ω − μ) ± g

√
N , where ± distinguishes the

symmetric and antisymmetric dressed state doublets. However,
only the antisymmetric dressed states will be occupied due
to their lesser energy. For all values of

√
N − 1 − √

N <

(μ − ω)/g <
√

N − √
N + 1, each site is exactly occupied

by N phonitons. Since the number of particles cannot be a
negative quantity, only (μ − ω)/g < 0 is physically allowed.
If (μ − ω)/g is fixed at a value corresponding to N phonitons,
i.e., (μ − ω)/g = (

√
N − 1 − √

N + 1)/2 + α, the width of
(μ − ω)/g for a fixed N becomes β = 2

√
N − (

√
N + 1 +√

N − 1), and the parameter α lies in the range of −β/2 < α <

β/2. From Figs. 2(a) and 2(b), the physical meaning of β and
α can be readily identified as the N -dependent width of each
Mott lobe along the μ-ω axis and the given distance from the
center of each lobe, respectively. Now suppose a weak hopping
t is turned on, and it is smaller than the two on-site energies

FIG. 2. (Color online) (a), (b) For a many-body phonon-qubit
system involving P:Si donors (left) and B:Si acceptors (right), the SF
order parameter, ψ , is shown as a function of the phonon hopping
frequency t and chemical potential μ with a cavity frequency of
ω. MI lobes correspond to the regions of ψ = 0 (blue) where the
number of phonons in each lobe is constant (〈n〉 = 0,1,2, . . . ). SF
phase corresponds to ψ �= 0. (c) Thermal average phonon number
per site is shown for various temperatures at zero hopping. Plateaus
of constant 〈n〉 correspond to MI states. (d) Mott insulator phase
boundaries are shown with respect to increasing temperature.

δEa = g|β/2 − α| and δEr = g|β/2 + α| required to add or
remove one phoniton from the system, respectively. Then the
kinetic energy gained by adding a phoniton to the system and
allowing it to hop between sites is insufficient to overcome the
on-site potential cost. Therefore, for every integer value of N ,
there lies a finite region in the t-μ plane in which the number
of phonitons is constant at precisely N at each site. Hopping
of a phoniton in this region gains a kinetic energy of t while
losing a potential energy of δEa + δEr . If t < δEa + δEr , as
considered here, such hops are energetically not favorable. The
hopping probability of a phoniton through l number of sites
is roughly e−r/ξ , where ξ ∼ 1/ ln[(δEa + δEr )/t]. Therefore,
regions of constant N of the Mott lobes correspond to insulator
states wherein the density fluctuations are localized in a linear
size of ξ and the compressibility ∂ε/∂μ becomes zero, hence
leading to Mott-insulating phases. As previously reported,3

in the opposite regime with very large hopping, t/g � 1,
the potential term diminishes in comparison to the kinetic
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term. This yields the degenerate occupation of the lowest
localized ground state energy of ε(N ) = N (ω − μ) − Nzt ,
where the correlation number z is the number of nearest
neighbors in a given array geometry. Moreover, if zt > ω − μ,
adding additional phonitons to the system will lower the
ground-state energy further into the negative values, resulting
in an unstable regime. Therefore, the boundary between the
MI and the SF phases (Mott lobes) is determined by the
value of μ for which adding or removing a particle does
not require any energy. Introducing the SF order parameter,
ψ = 〈ai〉, via mean-field theory and applying the decoupling
approximation, i.e., a

†
i aj = 〈a†

i 〉aj + a
†
i 〈aj 〉 − 〈a†

i 〉〈aj 〉,14 we
obtain the mean-field Hamiltonian,

HMF = HJC −
∑

i

{ztψ(a†
i + ai) + zt |ψ |2 − μNi}. (3)

Minimization of the ground-state energy E of the mean-field
Hamiltonian for different parameter ranges of μ, ω, and t for
phosphorus (donor) and boron (acceptor) in silicon yields the
Mott lobes in Figs. 2(a) and 2(b).

For the calculation of Mott lobes, in the case of phosphorus
donor impurity, an acoustic DBR design with correlation
number z = 2 (Fig. 1) is used. The donor valley states 1s(A1)
and 1s(T2) make up the two-level system with a transition
frequency of ε = 0.7 THz corresponding to a wavelength of
roughly λ ≈ 12 nm.12 Due to this small wavelength, DBR
heterostructures capable of small cavity lengths are the most
suitable device structures for maximal coupling. Hence, the
large array of silicon–DBR heterostructure phonon cavities
can be designed to support a fundamental longitudinal acoustic
(LA) phonon mode in resonance with the donor transition
(ω = ε). In the case of the boron acceptor impurity, the
transverse acoustic (TA) phonon modes of the cavities are
reported to yield the maximum coupling.13 A TA phonon
cavity mode of ω = 14 GHz (λ = 390 nm) is needed to be in
resonance with the spin splitting (in the presence of a uniform
magnetic field of B = 1 T) of the boron valence band acting
as a TLS. However, at this large wavelength, DBR phonon
cavities are more difficult to construct due to the critical
thickness constraint,24 and two-dimensional (2D) phononic
crystal designs6 need to be implemented. For our calculations,
we used a quality factor of Q = 105 currently achievable
by both designs. Phonon decay due to anharmonicity and
scattering from isotopic point defects have been shown to be
smaller than the surface and interface scatterings for both P
donor and B acceptor in silicon12,13 where the cavity leakage
dominates (κ � {�anh,�imp}) (see Table I).

TABLE I. Parameters used for a cavity phonon–TLS pair consist-
ing of a phosphorus (P) donor or a boron (B) acceptor in silicon.

Parameter Symbol P:Si (Ref. 12) B:Si (Ref. 13)

Resonance frequency ωr/2π 730 GHz 14 GHz
Coupling strength g/2π 1 GHz 21.4 MHz
Wavelength λ ∼12 nm ∼390 nm
Cavity lifetime 1/κ 22 ns 1.14 μs
TLS lifetime 1/� 8.2 ns 0.14 μs
No. Rabi flops 2g/(κ+�) ∼102 ∼34

The thermal average phonon number 〈n〉 per site versus
μ for various temperatures is shown in Fig. 2(c). It is
defined by

〈n〉 = 1/Z0

∑
n,±

ne−En,±/kBT , (4)

En,± = (ω − μ)n + (� ±
√

�2 + 4g2n)/2, (5)

where En,± are the energy eigenvalues of HMF with zero
hopping and Z0 = Tr[e−HMF/kBT ] is the grand-canonical par-
tition function for the unperturbed (t → 0) system. The stable
MI states (compressibility, ∂〈n〉/∂μ = 0) quickly shrink with
increased temperatures. The maximum temperature allowed
to access the first MI state is given as T = 0.04–0.06 g/kB in
terms of coupling strength.

We also show the temperature dependence of the Mott-
insulator phase boundaries in Fig. 2(d) calculated by an imagi-
nary time-evolution formalism of the mean-field Hamiltonian,
similar to the Matsubara treatment of temperature.25 In this
formalism, the second term of the mean-field Hamiltonian
in Eq. (3) defining the hopping between sites is treated
as a perturbation Ht , whereas the Jaynes-Cummings term
HJC is assumed to be the homogeneous part. Therefore, the
grand-canonical partition function can be defined as

Z = Tr

{
exp (−βHJC)T̂ exp

[
−

∫ β

0
dτHt (τ )

]}
= Tr {exp (−βHJC)U (β)} , (6)

where the imaginary time (τ = −it ′) is defined in the range of
0 � τ � β (β = 1/kBT ). T̂ and U (β) are the time-ordering
and imaginary-time evolution operators, respectively. The
Dyson series expansion of the exponential with an integral,

exp

[
−

∫ β

0
dτ Ht (τ )

]
= U (β) =

∞∑
0

Un(β)

=
∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτnT̂

× [Ht (τ1) · · ·Ht (τn)] , (7)

yields the series expansion of the grand partition func-
tion Z = Z0[1 + U1(β) + U2(β) + · · · ]. The thermal average
for an operator is given by O = Tr {O exp (−βHJC)} /Z0

with respect to the unperturbed Hamiltonian, where Z0 =
Tr {exp (−βHJC)}. With this expansion, the definition of free
energy F = − ln Z/β can be put into the form of F =
− ln Z0/β + ∑

i αψ2 + o(ψ4) for all sites i with superfluid
order parameter ψ up to second order. The solutions for α = 0
where the symmetry breaking occurs yields the boundaries
of the Mott-insulator–superfluid phase transition as shown in
Fig. 2(d).

III. NONEQUILIBRIUM, DRIVEN, DISSIPATIVE

Let us assume that the many-phoniton system is driven at
each site by a phonon field of amplitude �i and frequency ωd .
Switching to the rotating frame of the driven field yields the
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time-independent Hamiltonian given by

HS =
∑

i

[�εσ+
i σ−

i + �ωa
†
i ai + g(σ+

i ai + σ−
i a

†
i )]

−
∑
〈i,j〉

tij (a†
i aj + aia

†
j ) +

∑
i

�i(a
†
i + ai), (8)

where �ε = ε − ωd (�ω = ω − ωd ) is the detuning between
the driving field and the TLS (cavity). In the case of dissipation
defined by the cavity loss rate (κ) and the qubit relaxation
rate (�), the master equation for the density matrix is
given by

ρ̇ = −i[HS,ρ] + κ
∑

i

L[ai]ρ + �
∑

i

L[σ−
i ]ρ, (9)

where the Lindblad superoperator is defined as L[Ô]ρ =
ÔρÔ† − {Ô†Ô,ρ}/2.26 The number of elements of the den-
sity matrix ρi,j that needs to be determined from Eq. (9) is
given by [2(� + 1)]2nc , where nc is the number of cavities
with a single donor or acceptor inside.

First, we examine the single-phoniton system under differ-
ent driving field and hopping conditions. This can be done
by driving and measuring the heterodyne amplitude of a
single site in the case of zero hopping (t = 0) and resonance
(ε = ω). As seen from the Fig. 4(a) (green line), for weak
driving field strengths smaller than the critical value � < �c =
(κ + �)/4,27 the system initially lies in the linear-response
regime and it exhibits a Lorentzian response to the driving field
frequency. The critical coherent drive strength is estimated as
�P

c ∼ 42 MHz or �B
c ∼ 2 MHz for a phoniton composed of

a phosphorous donor or boron acceptor, respectively. With
increasing field strengths, this response breaks down and a
supersplitting27 of the phonon field amplitude occurs (blue
line). Intuitively, this behavior can be understood as a coupling
of the driving field only with the antisymmetric first dressed
state [(|0,e〉 − |1,g〉)/√2] and the ground state |0,g〉, therefore
forming a TLS as shown in the top row of Fig. 3(a). TLS
treatment will stay valid with the driving field strength as
long as the nonlinearity of the Jaynes-Cummings Hamiltonian
will only allow single-phonon excitations, preventing access
to the higher multiple excitation manifolds, and therefore
causing a phonon blockade. In a single cavity system, the
lowest two and single excitation energies are given by
ε2 = 2ω − g

√
2 and ε1 = ω − g, respectively. This yields

the necessary condition �i � g(2 − √
2) (�i � ε2 − 2ε1) of

single-excitation-only subspaces of the system, also known as
the “dressing of the dressed states.”28,29 As the single-phoniton
system still exhibits supersplitting [� = (κ + �)/2], turning
on the hopping parameter (t = 0.2 g) makes the two-phoniton
states (one phoniton in each cavity) available for occupation.
This results in a clear shift in eigenfrequencies and an appear-
ance of a third peak (red line) at the heterodyne amplitude
spectrum.

A. Measurement

The MI and the SF states exhibit different coherence
characteristics which can be accessed via coherence (cor-
relation) function measurements30,31 in setups similar to a
modified homodyne or heterodyne setup or a Hanbury-Brown-
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FIG. 3. (Color online) (a) Energy schematics of a single, two
coupled, and an infinite array of coupled cavity phonon-donor pairs
are shown. Phosphorus donor energy splitting is ε between intervalley
states T2 and A1. Cavity antisymmetric (AS) and symmetric (S)
eigenstates split by the hopping bandwidth ∝ 2t are shown for
the coupled two and the infinite array systems. Energy diagrams
are given in terms of lower phoniton (LP) and upper phoniton
(UP) quasiparticle branches in the dressed state representation.
(b) Experimental read-out scheme from a single site by a homodyne
or heterodyne or modified HBT setup.

Twiss setup.22 Each of these techniques generally requires
single-phonon detectors. However, even with single-phonon
detectors unavailable, another useful tool, a so called phonon-
to-photon translator (PPT),32 can be deployed to coherently
convert phonons to photons, therefore allowing the optical
detection techniques to be applied on the cavity phonon–TLS
if necessary [see Fig. 3(b)]. The zero-time delay second-order
coherence function is defined by g(2)(0) = 〈a†a†aa〉/〈a†a〉2 =
[〈(�n)2〉 − 〈n〉]/〈n〉2 + 1, where the variance is �n = n −
〈n〉. The MI phase corresponds to a constant phonon number
with zero variance �n = 0; hence, it is identified by g(2)(0) =
1 − 1/〈n〉 < 1. On the other hand, the SF phase possesses
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a constant phase with fluctuating phonon numbers and is
represented by a coherent state. Using the definition for
coherent states a|α〉 = α|α〉, the correlation function for the
SF state yields g(2)(0) = 1.33

For the two-coupled-phoniton case, we calculated the
second-order coherence function g(2) versus the hopping
frequency for different field strengths. Throughout all hopping
frequencies, qubits were kept detuned from their encapsulating
cavity mode by � = ω − ε = t to ensure a resonance with
the symmetric mode (lowest) of the overall coupled cavity
mode. An energy level schematic for this configuration is
shown in the middle row of Fig. 3(a). At this detuning choice,
the eigenenergy difference between the ground state (GS)
and the lower phoniton (LP) branch is given by a simple
relation �E = ω − g − t . The driving field always kept in
resonance with this energy difference ωd = �E to simulate
a TLS system. However, for resonant driving purposes, this
detuning is not necessary, as long as one can determine
the energy difference between the GS and the LP each
time hopping and/or coupling parameters are changed. As
shown in Fig. 4(b), even in the case of a strong driving
field, � � �c, the two-phoniton system exhibits a phonon
antibunching.

For large cavity arrays [bottom row of Fig. 3(a)], the
mean-field theory and density matrix master equation can
be applied together for weak coherent drive and the strong-
coupling regime.30,34 Starting from the Hamiltonian in Eq. (8),
application of the mean field ψ = 〈a〉 and the decoupling
approximation yields

H′
MF =

∑
i

[�εσ+
i σ−

i + �ωa
†
i ai + g(σ+

i ai + σ−
i a

†
i )

− zt(a†
i ψ + aiψ

∗ − ψ2) + �i(a
†
i + ai)], (10)

in the presence of a coherent driving field. Including the
cavity loss and qubit relaxation, the master equation is the
same as Eq. (9), only with the driven system Hamiltonian
HS replaced by the mean-field Hamiltonian H ′

MF. Similar to
the two-phonon–qubit site (however, now with a cooperativity
of z = 2 due to two nearest neighbors for each site), donors
are kept detuned by � = 2t to be in resonance with the LP
branch and driving field applied in resonance with the two-
level splitting of ωd = ω − g − 2t . The SF order parameter
ψ is evaluated by the self-consistency check ψ = Tr (ρa).
For phonitons composed of P donors, we calculated the
second-order coherence function g(2) versus the hopping
frequency for two different field strengths, � � �c and
� = 2�c = 84 MHz, in Fig. 4(c). For our particular donor
choice, the critical drive strength is much smaller than the
coupling strength �c/g ∼ 0.006 due to already small amounts
of donor relaxation and cavity loss. For a boron B acceptor,
the ratio is estimated as �c/g ∼ 0.094. The infinite phoniton
array exhibited a smooth transition from the incoherent to the
coherent case, as expected, indicating a phase transition from
the MI to the SF state by increasing the hopping frequency.

In the case of finite temperature for the infinite array
of phonon cavity/qubit sites [bottom row of Fig. 3(a)], the
nonequilibrium driven dissipative density matrix includes the
cavity phonon field damping due to the coupling to the thermal
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FIG. 4. (Color online) (a) For two coupled cavities each contain-
ing a resonant phosphorus P donor, the transmission amplitude vs the
detuning between the coherent drive (ωd ) of strength � = 2�c and the
cavity field (ω) is shown for hopping frequencies of t = 0,t = 0.2g.
For a weak drive (� < �c) and zero hopping t = 0, the system
exhibits a Lorentzian response (green line). (b) The second-order
coherence function g(2) vs the hopping frequency for drive strengths
of � = 2�c and � = 5�c, both in resonance with the LP branch
(ωd = ω − g − t). Donors are detuned by the hopping bandwidth
� = t and in resonance with the symmetric cavity-phonon mode.
(c) For an infinite array, g(2) vs hopping for � � �c and � = 2�c.
Donors detuned by � = 2t .

phonons of the environment, given as

ρ̇ = −i[H′
MF,ρ] + κ

{∑
i

(nth + 1)L[ai]ρ + nthL[a†
i ]ρ

}

+�
∑

i

L[σ−
i ]ρ, (11)

in terms of the average thermal phonon number nth =
[exp (h̄ω/kBT ) − 1]−1. From this, we construct the free
energy, F = E − T S = Tr(ρH′

MF) + kBT Tr(ρ ln ρ), in terms
of the average energy E, the entropy S, and the temperature
T , where kB is the Boltzmann constant. The mean-field
order parameter ψ is obtained by minimizing the free energy
F consistent with the constraint Tr(ρ) = 1. Driving and
detuning conditions are kept the same as in the case of zero
temperature. The second-order coherence function g(2)(0) for
temperatures of T = 1, 5, and 10 K is shown in Fig. 5(a).
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FIG. 5. (Color online) (a) For an infinite array of qubit/phonon
cavity sites, the second-order coherence function g(2) vs the hopping
frequency for a drive strength of � = 2�c, both in resonance with the
LP branch (ωd = ω − g − 2t). Donors are detuned by the hopping
bandwidth � = 2t . (b) Entropy S of the overall system is shown for
T = 1, 5, 7, and 10 K under the same driving and detuning conditions.

The smooth transition of g(2) from phonon antibunching
to bunching with increasing hopping t is persistent up to
temperatures of few Kelvins (∼1 K) for the nonequilibrium
system; much higher than the predicted values for the

equilibrium system with no driving field and dissipation
present [see Fig. 2(d)]. Entropy of the overall system is also
calculated for a range of temperatures [Fig. 5(b)]. For T =
1 K, the entropy also approaches zero with increasing hopping
meaning that a pure superfluid phase is attained possessing the
lowest possible energy that a quantum-mechanical system can
have.

IV. SUMMARY

We have considered the properties of arrays of strongly
coupled cavity phonon-impurity two-level systems in silicon,
and we showed that small arrays will demonstrate new
behavior and are realizable and measurable with present
techniques. The observation of QPTs in large arrays will
likely require extremely low effective temperatures (at least
within the approximation considered here35), i.e., for P:Si,
T = 2–3 mK (g = 1 GHz), and for B:Si, T = 40–60 μK
(g = 21 MHz). (Our temperature results are equally applicable
to polariton arrays, making circuit-QED many-body systems
equally difficult to realize.) However, for a driven nonequilib-
rium system, our calculations of the second-order coherence
functions still exhibit MI-SF quantum phase transitions up to
a few degrees Kelvin. This indicates that driving may be a
promising tool for the demonstration of QPT in solid state
for finite temperatures. The true nature of temperature in
the phonon-qubit array system and the potential for active
cooling are also subjects worthy of further consideration. Our
proposed many-body systems with phonons can be developed
further for the pursuit of quantum simulators36,37 or mediators
between different quantum components and potentially for
new quantum devices.
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