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Topological superconductors, such as noncentrosymmetric superconductors with strong spin-orbit coupling,
exhibit protected zero-energy surface states, which possess an intricate helical spin structure. We show that
this nontrival spin character of the surface states can be tested experimentally from the absence of certain
backscattering processes in Fourier-transform scanning tunneling measurements. A detailed theoretical analysis
is given of the quasiparticle scattering interference on the surface of both nodal and fully gapped topological
superconductors with different crystal point-group symmetries. We determine the universal features in the
interference patterns resulting from magnetic and nonmagnetic scattering processes of the surface quasiparticles.
It is shown that Fourier-transform scanning tunneling spectroscopy allows us to uniquely distinguish among
different types of topological surface states, such as zero-energy flat bands, arc surface states, and helical
Majorana modes, which in turn provides valuable information on the spin and orbital pairing symmetry of the
bulk superconducting state.
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I. INTRODUCTION

An important class of materials for topological supercon-
ductivity are noncentrosymmetric superconductors (NCSs).1

Both fully gapped and nodal NCSs can exhibit nontrivial
topological characteristics manifested by surface states in the
form of helical Majorana modes, arc surface states, or zero-
energy surface flat bands.2–15 The stability of each of these
three types of surface states is ensured by the conservation of a
different bulk topological invariant. Interestingly, due to strong
spin-orbit interactions, topological surface states of NCSs are
strongly spin polarized and possess a highly unusual helical
spin texture, where the spin direction varies as a function of
surface momentum.16–20

Due to time-reversal invariance, surface quasiparticles with
opposite momenta have opposite spin polarizations. This in
turn leads to the absence of elastic backscattering from non-
magnetic impurities, since scattering processes involving spin
flips are forbidden unless time-reversal symmetry is broken.
The absence of backscattering can be tested experimentally
using Fourier-transform scanning tunneling spectroscopy (FT-
STS).21–25 This experimental technique uses the presence of
dilute impurities to probe the electronic properties of surface
quasiparticles at finite momenta q through the analysis of
interference patterns formed by impurity scattering processes.

In this paper, we present an analytical derivation and numer-
ical simulations of the quasiparticle interference (QPI) on the
surface of both nodal and fully gapped topological supercon-
ductors. For concreteness, we focus on single-band centrosym-
metric and noncentrosymmetric superconductors, although
our results can be generalized in a straightforward manner to
any time-reversal invariant topological superconductor, e.g., to
multiband superconductors with dominant spin-triplet pairing.
The surface states of fully gapped topological superconductors
are dispersing helical Majorana modes,2–5,16–20 whereas nodal
topological superconductors without a center of inversion
exhibit zero-energy surface flat bands,4,8–12 and depending
on the crystal point-group symmetry, may also support zero-
energy arc surface states,8,12,16 see Fig. 1. We study the QPI

patterns for these three types of topological surface states in the
presence of magnetic and nonmagnetic impurities, and identify
the universal features in the ordinary and spin-resolved FT-STS
response that distinguish among the three types of surface
states.

Interestingly, for helical Majorana modes and arc surface
states, we find that the ordinary QPI patterns resulting from
nonmagnetic impurities are weak and nonsingular, which is
in line with the expected absence of elastic backscattering.
Similarly, in the case of the flat-band surface states, the
absence of backscattering suppresses the non-spin-resolved
FT-STS signal produced by nonmagentic scattering processes
connecting states with opposite momentum signs. Magnetic
impurities, on the other hand, give rise to a strong and divergent
signal in the spin-resolved FT-STS for all three types of surface
states. In the case of the helical Majorana modes, the divergent
QPI patterns exhibit inverse square-root singularities at the
momenta |q‖,0| = 2E/�t, whereas for the arc surface states,
the divergences in the FT-STS response at |qx,0| = 2E/�t

show a 1/qx dependence.
The remainder of the paper is organized as follows. We

begin in Sec. II with a phenomenological description of
time-reversal invariant topological superconductors and their
surface states. This is followed in Sec. III by an analytical
derivation and numerical simulations of the QPI patterns. Our
summary and conclusions are presented in Sec. IV. Some
technical details are given in the Appendices.

II. NCS AND THEIR SURFACE STATES

Over the past few years, superconductivity has been
discovered in many noncentrosymmetric compounds,1 for
example, in Li2PdxPt3−xB,26,27 Mo3Al2C,28,29 and BiPd,30,31

and in the heavy-fermion systems CePt3Si,32 CeIrSi3,33 and
CeRhSi3.34 The lack of bulk inversion symmetry in these
materials generates strong Rashba-type spin-orbit couplings
(SOCs) and allows for a mixing of spin-singlet and spin-
triplet pairing states. Due to these properties, many of the
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FIG. 1. (Color online) Energy spectrum and spin texture ρα
s (E,k‖) of the helical Majorana mode [(a) and (d)] and the arc state [(b) and

(e)] on the (010) surface of a topological superconductor with point groups O and C4v , respectively [cf. Eq. (1)]. Here, we set λ = −2.0 and
�s = 0.5. The arrows on the surface states indicated the magnitude and direction of the spin polarization. (c) and (f) Spin texture ρα

s (E = 0,k‖)
of the zero-energy flat bands on the surface of a nodal NCS with point group C2, λ = 0.5, and �s = 4.0. In-plane and out-of-plane components
of the spin polarization are represented in (f) by arrows and by the color scale, respectively.

noncentrosymmetric superconductors are likely to exhibit
unconventional pairing symmetries with nontrivial topological
characteristics.

A. Model definition

We consider a generic phenomenological description of
single-band NCSs given in terms of the Bogoliubov-de
Gennes (BdG) Hamiltonian H = 1

2

∑
k �

†
kHk�k, with �k =

(ck↑,ck↓,c
†
−k↑,c

†
−k↓)T the Nambu spinor and

Hk =
(

εkσ0 + λ lk · σ �k

�
†
k −εkσ0 + λ lk · σ ∗

)
. (1a)

Here, c
†
kσ denotes the electron creation operator with spin σ

and momentum k, and σ = (σ1,σ2,σ3) is the vector of Pauli
matrices. The normal part of the Hamiltonian describes a three-
dimensional cubic lattice with nearest-neighbor hopping t

and chemical potential μ, εk = t (cos kx + cos ky + cos kz) −
μ, and antisymmetric Rashba-type SOC λ lk · σ with SOC
strength λ. The superconducting order parameter �k contains
both even-parity spin-singlet and odd-parity spin-triplet com-
ponents with

�k = (�sσ0 + �tdk · σ )(iσ2), (1b)

where �s and �t represent the spin-singlet and spin-triplet
pairing amplitudes, respectively. In the absence of interband
pairing, the superconducting transition temperature is max-
imized when the spin-triplet pairing vector dk is aligned
with the SOC vector lk.35 Hence we assume that dk = lk.
Unless stated otherwise, we set (t,μ,λ,�s,�t) = (4.0,8.0,

− 2.0,0.5,2.0) for our numerical calculations and study the

QPI patterns as a function of different types of SOC potentials.
Since the spin polarization of the surface states is generic to
NCSs and the absence of nonmagentic backscattering is a
consequence of time-reversal symmetry, different values for
the parameters (t,μ,λ,�s,�t) do not qualitatively alter our
results.

Crystal lattice symmetries constrain the specific form of
the SOC vector lk.36 Within a tight-binding expansion, we find
that the lowest-order symmetry allowed term for the cubic
crystallographic point group O, relevant for Li2PdxPt3−xB
and Mo3Al2C, is given by

lk = sin kx x̂ + sin ky ŷ + sin kz ẑ. (2a)

Similarly, for the tetragonal point group C4v , experimentally
represented by CePt3Si, CeIrSi3, and CeRhSi3, we obtain

lk = sin ky x̂ − sin kx ŷ. (2b)

Finally, we also consider the monoclinic point group C2,
relevant for BiPd, in which case the SOC vector lk takes the
form

lk = (sin kx + sin ky)(x̂ + ŷ) + sin kz ẑ. (2c)

B. Topological surface states

We first discuss the dispersion and spin polarization of
the subgap states that appear at the surface of a topological
superconductor described by the lattice BdG Hamiltonian (1).
As a result of the strong SOC and the nontrivial topology of the
bulk wave functions, these surface states possess an intricate
helical spin texture. This is shown in Fig. 1, which displays
the spin-, momentum-, and energy-resolved surface density of
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states,

ρα
s (E,k‖) = − h̄

4π
Im

n0∑
n=1

Tr
[
SαG(0)

nn (E,k‖)
]
. (3)

Here, G(0)
nn (E,k‖) = [E + iη − Hnn(k‖)]−1 is the zero-

temperature Green’s function of Hamiltonian (1) in a slab
geometry with surface perpendicular to the y axis, Hnn′ (k‖) =

1
2π

∫
dky eiky (n−n′)Hk, k‖ = (kx,kz) denotes the surface mo-

mentum, and Sα = (S0,Sμ) stands for the charge and spin
operators in Nambu space with

Sα = (σ3 ⊗ σ0,σ3 ⊗ σ1,σ0 ⊗ σ2,σ3 ⊗ σ3), (4)

where α ∈ {0,1,2,3}. Unless indicated otherwise, we evaluate
in the following expression (3) for a slab of thickness N =
102 using an intrinsic broadening of η = 0.005. The sum in
Eq. (3) is taken over the first n0 = 10 layers, which corresponds
approximately to the decay length of the surface states. It was
recently shown that depending on the pairing symmetry, fully
gapped or nodal topological superconductors of the form of
Eq. (1) can support three different types of zero-energy surface
states.12

a. Helical Majorana modes. Fully gapped time-reversal
invariant topological superconductors with dominant triplet
pairing exhibit linearly dispersing helical Majorana modes [see
Fig. 1(a)].5,16,37 Similar to the surface states of topological
insulators,38,39 the linearly dispersing Majorana modes of
topological superconductors exhibit a helical spin texture,
with the spin and momentum directions locked to each
other. Interestingly, the spin of the helical Majorana mode
is polarized entirely in the surface plane at all energies.

b. Arc surface states. Nodal NCSs with �t > �s and l-
vector given by Eq. (2b) support arc surface states,1,2,8,16–18

i.e., zero-energy states forming one-dimensional open arcs in
the surface Brillouin zone, connecting the projections of two
nodal rings of the bulk gap [see Fig. 1(b)]. We find that the
arc states show a strong spin polarization in the yz spin plane,
with a vanishing component along the x axis.

c. Zero-energy flat bands. Zero-energy flat bands generi-
cally occur at the surface of three-dimensional nodal NCSs
whose triplet pairing component is comparable or larger than
the singlet one.4,8,12 These flat-band surface states appear
within regions of the surface Brillouin zone that are bounded
by the projections of the bulk nodal lines [see Fig. 1(c)].
Strong SOC together with the nontrivial bulk topology lead
to an intricate three-dimensional spin texture of the flat-band
surface states, as indicated by the arrows and color scale in
Fig. 1(c).

III. QPI OF TOPOLOGICAL SURFACE STATES

Weak and dilute scattering potentials on the surface of topo-
logical superconductors modulate the local density of states
of the surface quasiparticles, thereby leading to quasiparticle
scattering interference. Measurements of these interference
patterns through FT-STS allow the study of the surface-state
dispersion and polarization at finite momentum q. In the
following, the T -matrix formalism in Born approximation is
employed to calculate the QPI spectra of subgap states on
the (010) surface of topological superconductors. We consider

both nonmagnetic and magnetic impurities described by

Hβ
imp =

∑
k q

�
†
kV

β
q �k+q, with V β

q = vqS
β, (5)

where V
β=0

q corresponds to nonmagnetic disorder, whereas
V

β=1,2,3
q represents isotropic magnetic exchange scattering

caused by impurity spins. For simplicity, we assume that the
magnetic impurities are all fully polarized along the β spin
axis by a small external magnetic field of strength H 	 Hc2.
With this, the ordinary (α = 0) and spin-resolved (α = 1,2,3)
FT-STS response δρ

αβ
s , which is to a good approximation pro-

portional to the Fourier-transformed differential conductance
tensor dIα/dV , is given by22,23

δραβ
s (E,q‖) = − 1

2πi
{
αβ(E,q‖) − [
αβ(E,−q‖)]∗}, (6)

with q‖ = (qx,qz) the momentum transfer along the surface
and


αβ(E,q‖) =
∫

d2k‖
(2π )2

n0∑
n=1

Trσ
[
SαδGβ

nn(E,k‖,q‖)
]

11. (7)

In Eq. (7) the subscript “11” represents indices in Nambu
particle-hole space, Trσ is the trace in spin space, and δG

β
nn

denotes the change in the BdG Green’s function G(0)
nn due to

scattering processes. For weak impurity potentials V
β

q , disor-
der scattering can be treated within the Born approximation,
which yields

δGβ
nn(E,k‖,q‖) =

∑
n′n′′

G
(0)
nn′ (E,k′

‖)V β

n′n′′G
(0)
n′′n(E,k‖), (8)

with k′
‖ = k‖ + q‖. The Fourier-transformed disorder poten-

tial

V
β

nn′ = 1

2π

∫
dqye

iqy (n−n′)V β
q = v0S

β

n0∑
n′′=1

δn,n′′δn′,n′′ (9)

describes onsite impurities with strength v0 = 0.2, which
are assumed to be equally distributed among the n0 = 10
outermost layers of the superconductor.

In closing this section, we remark that all the components
of the response tensor δρ

αβ
s (E,q‖), see Eq. (6), can, in prin-

ciple, be measured using spin-polarized scanning tunneling
spectroscopy. That is, the α-spin conductance channel can be
selected via the polarization direction of the spin-polarized
tunneling tip, whereas the component β of the spin scattering
channel is determined by the direction of the external magnetic
field.

A. QPI on the surface of centrosymmetric superconductors

Before discussing numerical simulations of QPI patterns
on the surface of noncentrosymmetric superconductors, it
is instructive to first consider centrosysmmetric topological
systems, whose quasiparticle surface states can be described
by simple Dirac-type Hamiltonians. That is, we first study the
FT-STS response of helical Majorana modes and arc states
on the (010) surface of centrosymmetric superconductors.
Effective Dirac-type Hamiltonians encoding the low-energy
physics of these surface states are derived in Appendix A. Due
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to the simplicity of these surface Hamiltonians, it is possible
to derive analytical expressions for the QPI patterns.

1. Helical Majorana modes

The universal properties of helical Majorana surface states
in superconductors with inversion symmetry are described by
the massless Dirac Hamiltonian [cf. Eqs. (A9) and (A10)]

HMS(k‖) = �t(kzσ1 − kxσ3) + v0σ2, (10)

where v0σ2 is an onsite disorder potential describing impurity
spins polarized along the y axis. Remarkably, as shown in
Appendix A, nonmagnetic impurity scattering on the surface of
centrosymmetric topological superconductors is forbidden by
symmetry, while magnetic impurities only couple via their out-
of-plane spin component to the surface states. As mentioned
in Sec. II B, the helical Majorana mode is spin polarized,
with the spin direction locked to the momentum direction.
For the surface state (10), we find that spin and momentum
directions are inclined at a right angle to each other. This is
in contrast to helical Majorana states of noncentrosymmetric
superconductors, where spin and momentum are in general
locked to each other at an angle different from ±π/2, see
Fig. 1(a) and discussion in Sec. III B.

The QPI patterns of the Majorana state (10) is obtained
from Eq. (6) upon replacing 
αβ(E,q‖) by



α β=2
MS (E,q‖)

= v0

2

∫
d2k‖
(2π )2

Tr
[
σαG

(0)
MS(i�,k′

‖)σ2 G
(0)
MS(i�,k‖)

]
i�→E+iη

,

(11)

where k′
‖ = k‖ + q‖, � denotes the Matsubara frequency, and

G
(0)
MS(i�,k‖) = [i� − �t(kzσ1 − kxσ3)]−1 is the bare Green’s

function of the helical Majorana mode. In deriving Eq. (11)
we have made use of Eq. (A11) from Appendix A 1. Note
that since the surface state (10) only couples to y-polarized

impurity spins, the FT-STS signal δρ
αβ
s vanishes for β �= 2.

Inserting the definition of the Green’s function G
(0)
MS into

Eq. (11) we obtain the integral


α2
MS =

∫
d2k‖
(2π )2

(−v0)Lα
MS[

� 2 + �2
t k

2
‖
][

� 2 + �2
t (k‖ + q‖)2

] ,

(12)

where the numerator is given by Lα
MS = (0,�t�qx,�

2
t k‖ ·

k′
‖ + � 2,�t�qz). The explicit solution to this integral can be

found using the Feynman parametrization,40


α2
MS(i�,q‖)

=

⎧⎪⎪⎨⎪⎪⎩
v0

2π�2
t

qx

|q‖|ζF(ζ ) if α = 1,

− v0

2π�2
t

[
1
2 ln

(
1 + �2

� 2

) + F(ζ )
]

if α = 2,

v0

2π�2
t

qz

|q‖|ζF(ζ ) if α = 3,

(13)

and 

αβ

MS = 0 otherwise. Equation (13) is expressed in terms
of the function

F(ζ ) = 1√
−ζ 2 − 1

arctan
1√

−ζ 2 − 1
, (14)

with the dimensionless variable ζ = 2�/(�t|q‖|) and � is a
momentum cutoff that sets the range of validity for the Dirac-
type Hamiltonian (10).

Interestingly, we find that the ordinary FT-STS signal
δρ

0β
s in the presence of weak magnetic impurities vanishes

identically. This is a consequence of time-reversal symmetry,
as shown in Appendix B. The spin-resolved FT-STS response
δρα2

s , with α ∈ {1,2,3}, on the other hand, is nonzero and
exhibits an inverse square-root singularity at the momenta
|q‖,0| = 2E/�t (cf. Fig. 2). This singularity arises due to
backscattering processes between states at momenta +q‖,0/2
and −q‖,0/2. Furthermore, δρ12

s and δρ32
s have an interesting

angular dependence on the momentum transfer q‖ with a

FIG. 2. (Color online) Ordinary and spin-resolved FT-STS interference patterns δραβ
s (E,q‖) arising from magnetic and nonmagnetic

scattering processes on the surface of a fully gapped topological superconductor with cubic point group O. The top row shows density plots of
δραβ

s (E = 0.6,q‖) as a function of momentum transfer q‖ = (qx,qz). The bottom row gives the corresponding cuts along the qx = 0 line. Here,
we set λ = −2.0 and �s = 0.5. The color scale for the density plots in (a)–(d) and the vertical scale in (g)–(l) have been multiplied by a factor
as indicated for clarity.
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FIG. 3. (Color online) Ordinary and spin-resolved FT-STS response δραβ
s (E,q‖) for a nodal NCS with tetragonal point group C4v , λ = −2.0,

and �s = 0.5. Top and bottom rows show density plots and cuts along the qz = 0.7 line, respectively. The color scale for the density plots in
(a)–(f) and the vertical scale in (g)–(l) have been multiplied by a factor as indicated for clarity.

twofold symmetry and nodes along the qz and qx axes,
respectively. In contrast, δρ22

s is circularly symmetric in q‖.

2. Arc surface states

At probe energies E 	 �t, the universal physics of the
arc surface states of centrosymmetric superconductors can be
captured by the effective low-energy Hamiltonian

HAS(k‖) = −�tkxσ3 − v0σ1, (15)

where the surface momentum k‖ = (kx,kz) is restricted to the
range |kz| < k0

z and k0
z is half the length of the arc state in

the surface Brillouin zone. In Eq. (15), the onsite potential
v0σ1 describes impurity spins polarized along the x axis.
Interestingly, all other scattering channels are absent due to
symmetry constraints. A detailed derivation of Hamiltonian
(15) is presented in Appendix A 2. We observe that the surface
state (15) is fully polarized along the z spin axis, in contrast
to arc states in noncentrosymmetric superconductors, which
in general show finite spin polarizations both along the y and
z directions, see Fig. 1(b).

Let us now compute the FT-STS response function for the
arc state (15). Combining Eq. (15) with Eq. (A20) we find that
the QPI signal is given by Eq. (6) with 
αβ(E,q‖) replaced by



α β=1
AS (E,q‖)

= −v0

2
(−1)α

∫
dk‖

(2π )2

× Tr
[
σαG

(0)
AS(i�,k′

‖)σ1 G
(0)
AS(i�,k‖)

]
i�→E+iη

, (16)

where G
(0)
AS(i�,k‖) = �(k0

z − |kz|)[i� + �tkxσ3]−1 is the
Green’s function of the unperturbed system, � denotes the
unit step function, and k′

‖ = k‖ + q‖. Because the arc state (15)
only interacts with x-polarized magnetic impurities, the QPI
pattern δρ

αβ
s is identically zero for β �= 1. We now evaluate

the above integral by first inserting the bare Green’s functions

and then performing the kz integration. This gives


α1
AS =

∫
dkx

(2π )2

v0
(|qz| − 2k0

z

)
�

(
2k0

z − |qz|
)
Lα

AS[
� 2 + �2

t k
2
x

][
� 2 + �2

t (kx + qx)2
] , (17)

where we have introduced the shorthand notation Lα
AS =

(0,�2
t kx(kx + qx) + � 2,�t�qx,0). This integral can be com-

puted explicitly to


α1
AS(i�,q‖) =

⎧⎨⎩
v0� (|qz|−2k0

z )�(2k0
z −|qz|)

π�t (4� 2+�2
t q

2
x )

if α = 1,

v0qx (|qz|−2k0
z )�(2k0

z −|qz|)
2π(4� 2+�2

t q
2
x )

if α = 2,
(18)

and zero otherwise.
As before, we find that due to time-reversal invariance the

non-spin-resolved QPI patterns resulting from weak magnetic
impurities are vanishing. The spin-polarized FT-STS signals,
however, are finite and show an interesting dependence on
momentum transfer q‖ (cf. Fig. 3). For α ∈ {1,2}, δρα1

s exhibits
a 1/qx divergence at |qx,0| = 2E/�t. This singularity is due
to backscattering processes among states with x momentum
component +qx,0/2 and −qx,0/2. In addition, we find that δρ11

s
is an even function of qx , whereas δρ21

s is odd in qx .

B. Numerical simulations of QPI patterns on the surface of
noncentrosymmetric superconductors

In this section, we study the FT-STS response of helical
Majorana modes, arc states, and zero-energy flat bands on the
surface of noncentrosymmetric superconductors. That is, we
consider the QPI patterns on the surface of an unconventional
superconductor described by Hamiltonian (1) with finite SOC
strength λ and nonzero spin-triplet and spin-singlet pairing
components. Unfortunately, for noncentrosymmetric systems,
it is no longer possible to derive the FT-STS signal analytically.
Therefore we resort to numerical simulations and compute
the QPI patterns through exact diagonalization of the BdG
Hamiltonian (1) in a slab geometry with surfaces perpendicular
to the (010) direction.
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1. Helical Majorana modes

In Fig. 2 is shown the FT-STS response δρ
αβ
s of a helical

Majorana mode on the surface of an O point-group NCS to
nonmagnetic (β = 0) and magnetic impurities (β ∈ {1,2,3}).
As opposed to centrosymmetric superconductors, we find
that Majorana modes of NCSs couple to both nonmagnetic
and magnetic scatterers with arbitrary spin polarization (cf.
Sec. III A1). Hence, as shown in Appendix B, δρ00

s and δρ
αβ
s

with α,β ∈ {1,2,3} are in general nonzero, whereas δρ
0β
s and

δρα0
s with α,β ∈ {1,2,3} are, due to time-reversal invariance,

vanishing within the Born approximation. Furthermore, we
find that four pairs of elements of the FT-STS response
tensor are related to each other by crystallographic point-group
symmetries (Appendix B). Thus we plot in Fig. 2 only the six
independent nonzero elements of δρ

αβ
s , which are either purely

real or purely imaginary.
Interestingly, nonmagnetic impurities give rise to only

weak, nonsingular FT-STS response, see Figs. 2(a) and 2(g).
This is due to the absence of elastic backscattering processes
between states at momenta +q‖,0/2 and −q‖,0/2, where
|q‖,0| = 2E/�t. These nonmagnetic backscattering processes
are prohibited by time-reversal symmetry, due to the opposite
spin polarizations of states at opposite momenta. As a result,
δρ00

s only exhibits a kink at |q‖,0|, but no singularity. In the
presence of magnetic impurities, however, spin-flip scattering
processes are allowed. This leads to an inverse square-root
singularity in δρ

αβ
s at |q‖,0| = 2E/�t, see Figs. 2(h)–2(l).

In passing, we point out some interesting features in the
angular dependence of δρ

αβ
s on transfer momentum q‖. As

in the centrosymmetric case, the dependence of δρ
αβ
s on q‖

in Figs. 2(b)–2(e) exhibits a π rotational symmetry about
the origin, i.e., δραβ

s (q‖) = [δραβ
s (−q‖)]∗. Twofold symmetries

with high-symmetry lines along the vertical or horizontal axes,
however, are absent. We observe that the different angular

dependence between the centrosymmetric and noncentrosym-
metric cases is due to differences in the spin polarization [see
Fig. 1(d)]. While in the centrosymmetric case, spin and mo-
mentum of the Majorana mode (13) are locked to each other at
a right angle, in NCSs the angle between spin and momentum
directions of the Majorana surface states differs from ±π/2
and, moreover, varies strongly as a function of distance from
the surface layer. This dependence of the spin polarization
on layer index n results in the absence of any twofold mirror
symmetries in the QPI patterns of Figs. 2(b)–2(e).

2. Arc surface states

The FT-STS response of an arc state on the surface of a C4v

point-group NCS is shown in Fig. 3. In order to discuss energy
and momentum dependence of these QPI patterns, we first
point out that the arc surface state can essentially be viewed
as a quasi-one-dimensional analog of the two-dimensional
Majorana mode of the previous subsection. In other words,
a description of the arc state can be obtained from the O

point-group NCS by interchanging x and y components of the
spin operator and by setting kz = 0, see Eqs. (2a) and (2b).
This explains the similarities in the QPI patterns of Fig. 3 with
the response at qz = 0 shown in Fig. 2.

As in Figs. 2(a) and 2(g), we find that the FT-STS signal
produced by nonmagnetic impurities is weak and nonsingular,
since spin-flip backscattering is prohibited by time-reversal
symmetry. Hence δρ00

s in Figs. 3(a) and 3(g) only shows
a nondivergent kink- or peaklike feature at |qx,0| = 2E/�t.
Magnetic impurities, on the other hand, give rise to a strong
and divergent response in the spin-resolved FT-STS [see
Figs. 3(b)–3(f) and 3(h)–3(l)]. Similar to Eq. (18), there is a
divergence in δρ

αβ
s at |qx,0| = 2E/�t. We note that due to the

different dimensionality of the momentum phase space, this is
not an inverse square-root singularity as in Figs. 2(h)–2(l), but
shows a 1/qx dependence.

FIG. 4. (Color online) Amplitude of the ordinary and spin-resolved FT-STS signal δραβ
s (E,q‖) for a nodal NCS with flat-band surface

states. Here, the SOC vector lk is given by Eq. (2c), λ = −0.5, and �s = 4.0. The top row shows density plots of δραβ
s (E = 0,q‖) as a

function of q‖ for an intrinsic broadening η = 0.005. Green dotted and black dashed lines indicate the boundary of the regions corresponding
to inter- and intraband scattering, respectively. (g)–(l) Cuts of δραβ

s (E = 0,q‖) along the line qz = 0 for η = 0.005 (red) and η = 0.0025
(blue). The color scale for the density plots in (b)–(f) and the vertical scale in (h)–(l) have been multiplied by a factor as indicated for
clarity.
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3. Zero-energy flat bands

Finally, we discuss the FT-STS response of zero-energy
flat bands on the surface of a C2 point-group NCS, which is
shown in Fig. 4. As before, we find that due to time-reversal
symmetry the only nonzero elements of the response tensor δρs

are δρ00
s and δρ

αβ
s with α,β ∈ {1,2,3}. Since lattice point-group

symmetries relate four pairs of entries of δρs to each other
(see Appendix B), we plot in Fig. 4 only the six independent
nonzero elements of δρ

αβ
s .

The C2 point-group NCS as defined by Eqs. (1) and (2c)
exhibits two different zero-energy flat bands on the (010)
surface, one with negative surface momentum kx < 0 and
one with positive momentum kx > 0, see Figs. 1(c) and 1(f).
Hence, in the presence of impurities, it is useful to distinguish
between interband scattering with transfer momentum |qx | �
1.0 and intraband scattering with |qx | � 1.0, as indicated in
Figs. 4(g)–4(l) by the green dotted and black dashed ellipses,
respectively.

Due to the opposite spin polarizations of the two zero-
energy flat bands, time-reversal-preserving interband scat-
tering is considerably suppressed.20 Hence the part of the
ordinary FT-STS signal δρ00

s that corresponds to interband
scattering [green dotted ellipses in Fig. 4(a)] is very weak,
whereas the one corresponding to intraband scattering [black
dashed ellipses in Fig. 4(a)] is strong and divergent. Magnetic
impurities, on the other hand, give rise to both strong
inter- and intraband backscattering. Consequently, the FT-STS
response shown in Figs. 4(b)–4(f) and 4(h)–4(l) exhibits strong
divergences both for large and small transfer momenta, i.e.,
within the regions in Figs. 4(b)–4(f) bounded by green dotted
and black dashed lines, respectively.

IV. SUMMARY AND DISCUSSION

In summary, we have determined the universal features
in the QPI patterns produced by magnetic and nonmagnetic
impurities on the surface of time-reversal invariant topological
superconductors. An explicit analytical expression was found
for the energy and momentum dependence of the QPI patterns
on the surface of centrosymmetric topological superconduc-
tors. For noncentrosymmetric systems, on the other hand, we
have numerically determined the ordinary and spin-resolved
FT-STS response.

We have studied both fully gapped and nodal topologi-
cal superconductors and considered three different types of
surface states: helical Majorana modes, arc surface states, and
zero-energy flat bands. Due to SOC, these surface states exhibit
an intricate helical spin texture, where the spin polarization
strongly depends on the surface momentum. Time-reversal
invariance ensures that surface states with opposite momenta
have opposite spin polarizations, which leads to the absence
of backscattering from nonmagnetic impurities. As a conse-
quence, the ordinary FT-STS signal of Majorana modes and
arc surface states due to nonmagnetic scattering is weak and
nondivergent. In the case of the flat-band surface states, the
absence of backscattering results in a suppression of the QPI
signal produced by scattering processes with large momentum
transfer. In the presence of magnetic impurities, however,
spin-flip scattering is possible, and hence backscattering leads

to a large and divergent FT-STS response for all three types of
surface states.

Our results highlight the unique power of the FT-STS
technique to detect topological surface states in unconventional
superconductors. We have demonstrated that the FT-STS
response allows to clearly distinguish among the three different
types of surface states that generically occur in time-reversal
invariant topological superconductors. Moreover, the analysis
of QPI patterns can be used to infer information about the
pairing symmetry and the topological characteristics of the
superconducting state.
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APPENDIX A: LOW-ENERGY MODELS FOR THE
SURFACE STATES OF CENTROSYMMETRIC

SUPERCONDUCTORS

In this Appendix, we derive low-energy effective Hamil-
tonians describing the surface states of centrosymmetric
topological superconductors with time-reversal symmetry. To
that end, we consider Hamiltonian (1) with vanishing SOC
strength λ, zero singlet pairing component �s, and surface
perpendicular to the y axis. The surface plane is chosen to
be at y = 0, where the bulk superconductor and the vacuum
occupy the half-spaces y > 0 and y < 0, respectively. The
derivation of the surface states of topological centrosymmetric
superconductors proceeds along similar lines as for the case
of topological insulators.38,39

1. Helical Majorana modes

First, we examine helical Majorana modes that appear at
the surface of fully gapped topological superconductors. For
concreteness, we consider a centrosymmetric system with
cubic crystallographic point group O, i.e., Hamiltonian (1)
with λ = 0, �s = 0, and d-vector dk given by Eq. (2a).
Focusing on low energies, we perform a small-momentum
expansion near the � point. This yields

H̃ (k) =
(

ε̃kσ0 i�t (k · σ ) σ2

−i�tσ2 (k · σ ) −ε̃kσ0

)
, (A1)

where ε̃k = 3t − μ − t
2 (k2 + k2

y) and k2 = k2
x + k2

z . With the
trial wave function ψ(y) = ψκe

κy , which is localized at the
surface y = 0, we obtain the eigenvalue equation

H̃ (k,−i∂y)ψ(y) = Eψ(y), (A2)

where we have replaced ky by −i∂y . Solving the secular
equation, det[H̃ (kx,−iκ,kz) − E1] = 0, gives four solutions
for κ(E) denoted as βκα(E), with α ∈ {1,2}, β ∈ {+,−}, and

κα(E) = 1

t

[
2�2

t − 2L + k2t2 + (−1)α2R
] 1

2 , (A3)

where we have introduced the shorthand notation L = (3t −
μ)t and R =

√
�4

t − 2�2
t L + E2t2. For each of the four roots

κα(E), the kernel of the secular equation is spanned by two
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independent basis vectors, given by

ψαβ1 =

⎛⎜⎜⎜⎝
�ttkz

�tt(βκα + kx)

0

Et − L + t2

2

(
k2 − κ2

α

)
⎞⎟⎟⎟⎠, (A4a)

ψαβ2 =

⎛⎜⎜⎜⎝
�tt(βκα − kx)

�ttkz

Et − L + t2

2

(
k2 − κ2

α

)
0

⎞⎟⎟⎟⎠. (A4b)

With this, we obtain the following ansatz for the surface state
wave function

�(k‖,y) =
∑

α,γ∈{1,2}

∑
β=±

Cαβγ ψαβγ eβκαy, (A5)

where k‖ = (kx,kz) and the coefficients Cαβγ are determined
by the boundary conditions �(k‖,y = 0) = 0 and �(k‖,y →
+∞) = 0. The secular equation for the coefficients Cαβγ leads
to the condition

2L = (k2 + κ1κ2)t2, (A6)

which together with Eq. (A3) yields the dispersion for the
surface states

E±(k‖) = ±�tk. (A7)

The surface-state wave functions at the � point are found to
be

�±
MS(k‖ = 0,y) = ϕ±

MS[e−κ1(0)y − e−κ2(0)y], (A8a)

ϕ+
MS = 1√

2

⎛⎜⎜⎜⎝
1

0

1

0

⎞⎟⎟⎟⎠, ϕ−
MS = 1√

2

⎛⎜⎜⎜⎝
0

1

0

1

⎞⎟⎟⎟⎠, (A8b)

where κα(0) is defined in Eq. (A3). From condition (A6) it
follows that zero-energy surface states can exist if κ1(0) and
κ2(0) are either both real or complex conjugate partners. In
the former case, i.e., when �2

t > 2L > 0, the wave functions
decay monotonically into the bulk with the decay lengths
κ−1

α (0). For �2
t < 2L, on the other hand, κα(0) are complex,

which leads to an oscillatory decay of the wave functions
with inverse decay length Re[κα(0)] = �t/t and oscillation
frequencies Im[κα(0)].

An effective low-energy Hamiltonian for the surface states
�±

MS(k‖) can be derived by projecting H̃ (k), see Eq. (A1),
onto the subspace �MS = {ϕ+

MS,ϕ
−
MS} formed by the two

surface-state wave functions (A 1). This yields an effective
2 × 2 Hamiltonian:

〈�MS|H̃ (k)|�MS〉 = �t(kzσ1 − kxσ3), (A9)

which has the same dispersion as Eq. (A7). In order to
compute the ordinary and spin-resolved FT-STS for the helical
Majorana states described by Eq. (A9), we need to project the
impurity potential V

β
q , Eq. (5), onto the surface-state subspace

�MS. Using Eq. (4), we find

〈�MS|V β
q |�MS〉 =

{
vqσ2 if β = 2,

0 otherwise.
(A10)

Remarkably, it follows that nonmagnetic scattering is absent,
whereas for magnetic impurities only the out-of-plane spin
component couples to the surface states. Finally, to evaluate
the FT-STS response, Eq. (3), we also need to determine the
electronlike parts of the charge and spin operators (4) within
the surface-state subspace. We have

〈�MS|PeS
α|�MS〉 = 1

2σα, (A11)

where Pe = 1
2 (1 + σ3 ⊗ σ0).

2. Arc surface states

Second, we study arc surface states that exist, for example,
at the surface of centrosymmetric superconductors with point
nodes in the BdG excitation spectrum. For concreteness, we
consider a system with a d vector dk given by Eq. (2b).
Furthermore, neglecting the effects of noncentrosymmetricity,
we set the SOC strength λ and the spin-singlet component �s

of the superconducting gap to zero. Within a small-momentum
expansion near kx = ky = 0, the superconductor is described
by

H̃ (k) =
(

ε̃kσ0 −�t(kyσ3 + ikxσ0)

−�t(kyσ3 − ikxσ0) −ε̃kσ0

)
,

(A12)

where ε̃k = 2t + t cos kz − μ − t
2 (k2

x + k2
y). As before, the

ansatz for the surface-bound-state wave function is taken to
be �(y) = �κe

κy , with the inverse decay length κ . From the
secular equation, we obtain four solutions for κ(E) given by
±κα(E):

κα(E) = 1

t

[
2�2

t − 2L + k2
xt

2 + (−1)α2R
] 1

2 , (A13)

with α ∈ {1,2}, R =
√

�4
t − 2�2

t L + E2t2, and L = (2t +
t cos kz − μ)t . Repeating similar steps as above, we obtain
for the surface-state trial wave function

�(k‖,y) =
∑

α,γ∈{1,2}

∑
β=±

Cαβγ ψαβγ eβκαy, (A14)

with k‖ = (kx,kz) and the two independent vectors

ψαβ1 =

⎛⎜⎜⎜⎝
0

−i�tt (βκα + kx)

0

Et − L + t2

2

(
k2
x − κ2

α

)
⎞⎟⎟⎟⎠, (A15a)

ψαβ2 =

⎛⎜⎜⎜⎝
+i�tt (βκα − kx)

0

Et − L + t2

2

(
k2
x − κ2

α

)
0

⎞⎟⎟⎟⎠. (A15b)

A surface state occurs if the coefficients Cαβγ can be chosen
such that the wave function �(k‖,y) satisfies the boundary
conditions �(k‖,y = 0) = 0 and �(k‖,y → +∞) = 0. After
some algebra, this leads to the existence condition for the
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surface states:

2L = (
k2
x + κ1κ2

)
t2. (A16)

Combining Eqs. (A13) and (A16) gives the dispersion
E±(k‖) = ±�tkx . For the surface-state wave functions at
kx = 0, we find

�±
AS(kx = 0,kz,y) = ϕ±

AS[e−κ1(0)y − e−κ2(0)y], (A17a)

ϕ+
AS = 1√

2

⎛⎜⎜⎜⎝
−i

0

+1

0

⎞⎟⎟⎟⎠, ϕ−
AS = 1√

2

⎛⎜⎜⎜⎝
0

+i

0

+1

⎞⎟⎟⎟⎠,

(A17b)

where κα(0) is given by Eq. (A13). For �2
t > 2L > 0,

i.e., for arccos[(�2
t /(2t) − 2t + μ)/t] < |kz| < arccos[(μ −

2t)/t], the zero-energy wave functions (A17) decay exponen-
tially and monotonically into the bulk, whereas for 2L > �2

t
the exponential wave function decay is modulated by periodic
oscillations with frequencies Im[κα(0)].

Projecting H̃ (k), see Eq. (A12), onto the subspace �AS =
{ϕ−

AS,ϕ
+
AS} yields a low-energy effective Hamiltonian for the

arc surface states:

〈�AS|H̃ (k)|�AS〉 = −�tkxσ3. (A18)

The disorder potential V
β

q , see Eq. (5), within the surface-state
subspace �AS reads

〈�AS|V β
q |�AS〉 =

{−vqσ1 if β = 1,

0 otherwise,
(A19)

whereas the projected electronlike parts of the charge and spin
operators (4) are given by

〈�AS|PeS
α|�AS〉 = 1

2 (−1)ασα, (A20)

where Pe = 1
2 (1 + σ3 ⊗ σ0).

APPENDIX B: SYMMETRIES OF QPI PATTERNS

1. Time-reversal symmetry

Time-reversal symmetry acts on the single-particle Green’s
function G(0)(k‖) = [E + iη − H (k‖)]−1 as

UT

[
G(0)(−k‖)

]T
U

†
T = G(0)(k‖), (B1)

where UT = σ0 ⊗ iσ2. Inserting relation (B1) into the defini-
tion of δρs, see Eq. (6), yields

δρs(U
†
T [Sα]TUT ,U

†
T [V β]TUT ; q‖) = δρs(S

α,V β ; q‖), (B2)

where we have explicitly written out the dependence of δρs

on the spin operations Sα and the impurity potential V β .
Since magnetic impurity potentials are odd under time-reversal
symmetry, whereas S0 is even, it follows that within the Born

approximation, δρ
0β
s = 0, for β ∈ {1,2,3}. Similarly, we have

δρα0
s = 0, for α ∈ {1,2,3}.

2. Point-group symmetries

As in the main text, we consider FT-STS patterns on a
surface that is perpendicular to the y axis. Denoting those
symmetry operations of the crystallographic point group that
leave the (010) plane invariant by R, we find that δρs transforms
under R as12,36

δρs(U
†
R̃
SαU

R̃
,U

†
R̃
V βU

R̃
; R−1q‖) = δρs(S

α,V β ; q‖), (B3)

with R̃ = det(R)R, UR̃ = diag(u
R̃
,u∗

R̃
), and uR̃ =

exp[−i(�/2)n̂ · σ ], where � is the angle of rotation of
R and n̂ denotes the unit vector along the rotation axis.

a. Cubic point group O

For the cubic point-group O with lk given by Eq. (2a),
Hamiltonian (1) is invariant under π/2 rotations about the y

axis. Making use of Eq. (B3) with R = Rŷ, where

Rŷ =

⎛⎜⎝ 0 0 +1

0 +1 0

−1 0 0

⎞⎟⎠, (B4)

yields

δρ11
s (q‖) = +δρ33

s

(
R−1

ŷ q‖
)
, δρ12

s (q‖) = −δρ32
s

(
R−1

ŷ q‖
)
,

δρ21
s (q‖) = −δρ23

s

(
R−1

ŷ q‖
)
, δρ13

s (q‖) = −δρ31
s

(
R−1

ŷ q‖
)
.

(B5)

Furthermore, we find that the QPI patterns δρ00
s (q‖) and

δρ22
s (q‖) are invariant under π/2 rotations, i.e., ραα

s (q‖) =
ραα

s (R−1
ŷ q‖), for α ∈ {0,2}.

b. Monoclinic point group C2

In the case of the monoclinic point-group C2 with lk
given by Eq. (2c), we find that the (010) and (100) faces are
equivalent, i.e., the zero-energy states appearing on these two
surfaces are identical. Hence we consider π rotations about
the 1√

2
(x̂ + ŷ) axis with

Rx̂+ŷ =

⎛⎜⎝ 0 +1 0

+1 0 0

0 0 −1

⎞⎟⎠ (B6)

to obtain the following symmetry relations for δρs:

δρ11
s (q‖) = +δρ22

s (̃q‖), δρ12
s (q‖) = +δρ21

s (̃q‖),
(B7)

δρ13
s (q‖) = −δρ23

s (̃q‖), δρ31
s (q‖) = −δρ32

s (̃q‖),

where q̃‖ = (qx, − qz).
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