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The magnetic responses of a spin-1/2 ladder doped with nonmagnetic impurities are studied combining
both analytical and numerical methods. The regime where frustration induces incommensurability is taken into
account. Several improvements are made on the results of the seminal work by Sigrist and Furusaki [M. Sigrist
and A. Furusaki, J. Phys. Soc. Jpn. 65, 2385 (1996)] and deviations from the Brillouin magnetization curve
due to interactions are also analyzed. We first discuss the magnetic profile around a single impurity and the
effective interactions between impurities within the bond-operator mean-field theory. The results are compared to
density-matrix renormalization group calculations. In particular, these quantities are shown to be sensitive to the
transition to the incommensurate regime. We then focus on the behavior of the zero-field susceptibility through
an effective Curie constant. At zero temperature, we give doping-dependent corrections to the results of Sigrist
and Furusaki on general bipartite lattices and compute exactly the distribution of ladder clusters due to chain
breaking effects. Solving the effective model with exact diagonalization and quantum Monte Carlo simulations
gives the temperature dependence of the Curie constant. Its high-temperature limit is understood within a random
dimer model, while the low-temperature tail is compatible with a real-space renormalization group scenario.
Interestingly, solving the full microscopic model does not show a plateau corresponding to the saturation of the
impurities in isotropic ladders. The second magnetic response that is analyzed is the magnetic curve. Below
fields of the order of the spin gap, the magnetization process is controlled by the physics of interacting impurity
spins. The random dimer model is shown to capture the bulk of the curve, accounting for the deviation from a
Brillouin behavior due to interactions. The effective model calculations agree rather well with density-matrix
renormalization group calculations at zero temperature and with quantum Monte Carlo simulations at finite
temperature. In all, the effect of incommensurability does not display a strong qualitative effect on both the
magnetic susceptibility and the magnetic curve. Consequences for experiments on the BiCu2PO6 compound and
other spin-gapped materials are briefly mentioned.
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I. INTRODUCTION

The presence of disorder and impurities in strongly
correlated systems offers a good opportunity to better un-
derstand the role played by quantum fluctuations in such
materials.1 Either intrinsically present or explicitly added by
doping, impurities in condensed matter systems can rarely
be ignored, in particular when they induce new physics as
compared to the disorder-free situation. Prominent examples
are the Kondo effect,2 Anderson localization,3 dirty bosons
physics in disordered superconductors,4 impurities in magnetic
semiconductors,5 spin glasses,6 etc.

In the context of antiferromagnetic (AF) Mott insula-
tors, parent compounds of high-temperature superconducting
cuprates for instance, spin ladder materials7 have been shown
to display very interesting features, in particular, when the
number of legs is an even number. For example, a finite
energy gap �s appears in the excitation spectrum of two-leg
AF spin-1/2 ladders,8–10 as seen for instance in SrCu2O3.11

Furthermore, defects in gapped ladders induce very interesting
effects,12–17 in particular, the apparition of effective gapless
modes below the bare spin gap �s . Having in mind that
the ground state of a two-leg ladder displays short-range
resonating valence-bond-like physics,18 a nonmagnetic dopant
is expected to break such a short-distance singlet, inducing a
quasifree spin- 1

2 , strongly localized in the vicinity of the impu-
rity. Interesting questions arise then when a finite concentration
of impurities is introduced in a spin ladder, as studied in a large

number of theoretical works.19–33 Similar physics is also at
play in other spin-gapped materials: spin-1 (Haldane) chains
such as Y2BaNiO5,34,35 or PbNi12V2O8,36 spin-Peierls chains
such as CuGeO3

37–45 for instance. Indeed, a universal behavior
can be observed for the impurity-induced three-dimensional
ordering mechanism in such weakly coupled chains or ladder
materials.46

Nevertheless, several aspects of impurity effects in ladder—
and more generally spin gapped—materials remain to be ex-
plored in order to better understand and interpret experimental
results. Regarding the effective pair-wise interaction between
released moments, it is believed to remain nonfrustrated even
when the underlying spin systems is frustrated,47,48 but it is
not clear to which extend such a result is robust when strong
frustration leads to incommensurability,49 as expected, for
instance, in the ladder material BiCu2PO6.16,50–56 A natural
question then arises regarding which effective model is able
to quantitatively describe the low-energy physics of randomly
doped ladders. Indeed, it was believed since the seminal work
of Sigrist and Furusaki20 that a simple model of random (in sign
and magnitude, reflecting the random locations of impurities
in a ladder) nearest-neighbors couplings between effective
spin-1/2 (describing impurity degrees of freedom) was able
to correctly capture the low temperature physics of depleted
ladders. This so-called random F-AF chain model57–64 displays
some universal behavior for various quantities such as uniform
and staggered susceptibilities or the specific heat in the
low-temperature regime, with an interesting large spin phase
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occurring at very low temperature. However, in the context
of depleted ladders, universality for such thermodynamic
quantities has been first questioned using quantum Monte
Carlo (QMC) simulations by Miyazaki and co-workers27

where no clear signature of universal low-temperature scal-
ings were found, in agreement with a more recent QMC
study.33

Despite the large number of works devoted to such systems
in the absence of external magnetic field, much less is known
regarding finite field effects. Indeed, as recently reviewed by
Giamarchi and co-workers,65 applying a finite external field
on gapped AF systems leads to the analog of a Bose-Einstein
condensation (BEC) of magnetic excitations66,67 (hard-core
bosons triplets) when the field is sufficiently strong to close
the spin gap �s . Note that a true BEC is only expected for
dimension d > 2, which occurs at low enough temperature
below some energy scale controlled by three-dimensional cou-
plings. Nevertheless, for low-d, a quasi-BEC is expected, as
observed in ultracold atom physics.68,69 In solid state physics,
triplet BEC has been observed in several quantum magnetic
compounds, such as coupled dimers TlCuCl3,70,71 frustrated
bilayers BaCuSi2O6,72 coupled Haldane chains in DTN,73 and
also spin ladder materials like (C5H12N)2CuBr4.74–76

However, when disorder is present in such spin gapped
systems, a new phenomenology is expected with the interesting
possibility to address Bose-Glass (BG) physics, as recently
found in Br-doped IPaCuCl377 or DTN78 (see also Ref. 79 for
a very recent review). While several issues remain unsolved
regarding BG physics, e.g., for the excitation spectrum,80–82

the case where disorder comes from ligand substitution seems
easier to understand from a microscopic point of view.
Indeed, such doping will essentially generate disorder in
the AF couplings without inducing local moments. On the
other hand, doping on the magnetic sites is expected to be
more complicated as gapless states will populate the clean
gap. Therefore the magnetic response will display nontrivial
Brillouin-like behaviors in most of the experimentally relevant
situations. Such cases have been studied theoretically by a few
authors,83–86 showing a rich physics and various scenarios that
demand further analysis.

In this work, we focus on the two-leg ladder model to
provide a systematic analysis of the physics of interacting im-
purities, building on both analytical and numerical arguments.
In particular, we are interesting in the following issues: (i) the
effective interaction between impurities for commensurate and
incommensurate backgrounds, (ii) the low-energy emergence
of large spins due to random signs in effective couplings in
a realistic context including finite size effects due to chain
breaking, (iii) the temperature scaling of the Curie constant of
the uniform susceptibility, as obtained from both effective and
realistic doped ladder models, and (iv) the deviations of the
magnetic curve from the Brillouin response as a probe of the
magnitude of interactions. The ladder model used throughout
this study is the one studied in Refs. 53 and 87:

H =
L∑

i=1

J1[Si,1 · Si+1,1 + Si,2 · Si+1,2]

+ J2[Si,1 · Si+2,1 + Si,2 · Si+2,2]

+ J⊥ Si,1 · Si,2, (1)

where Si,j is the spin-1/2 operator acting at site i of leg
j and the J ’s are the magnitude of the various couplings,
which are here taken to be antiferromagnetic (J > 0). In
the rest of the paper, the only parameter coming with the
presence of impurities is their concentration z. The doped
microscopic model is numerically solved with two state-of-
the-art methods: the density-matrix renormalization group
(DMRG) technique88 and the stochastic series expansion
(SSE) quantum Monte Carlo technique.89

The paper is organized as follows. In a first part, we
discuss in details the effective model describing two-body
interactions between impurities. The resulting effective model
is then compared to the solution of the microscopic model
in the second part. The latter is dedicated to the study of the
magnetization curve at field below the spin gap �s , i.e., in
the region dominated by the impurity spins response. This
region is itself divide in two regimes: (i) the small-field
regime H � T , featuring a temperature-dependent Curie
constant c(T ), and (ii) the intermediate-field regime T � H �
�s displaying again deviations from Brillouin through an
approximate power-law behavior. We do not investigate fields
H � �s as the physics involves triplet bosons in a disordered
medium, which is exciting but beyond the scope of the present
manuscript.

II. EFFECTIVE INTERACTION BETWEEN IMPURITIES

In this first section, the emphasis is put on the quantitative
analysis of the effective interaction between impurities from
arguments similar to RKKY theory. This provides an effective
Hamiltonian which couplings distribution is essential for
understanding the magnetic responses. Previous works along
this direction are found in Refs. 20 and 21.

A. Effective Hamiltonian

We start with the derivation of the low-energy effective
Hamiltonian accounting for effective interactions between
impurities. For a generic Heisenberg spin model with N spins,
the clean Hamiltonian takes the general form

Hclean = 1

2

∑
r,r′

Jr−r′Sr · Sr′ , (2)

where JR are the microscopic couplings, which depend only
on the relative distance R = r − r′. We now consider that a
few nonmagnetic impurities occupy sites I of the lattice. Then,
the Hamiltonian reads

H = 1

2

∑
r�=I

∑
r′ �=I

Jr−r′Sr · Sr′ , (3)

or H = Hclean + Himp, where

Himp = −
∑

r

∑
I

Jr−ISr · SI. (4)

Notice that effective spins operators are introduced at sites I
where the impurities live, while these sites are actually vacant.
Hamiltonian (4) takes the form Himp = −∑r Heff

r · Sr, in
which Heff

r = ∑
I Jr−ISI is an effective magnetic field operator.

Assuming the perturbation Himp can be treated using linear
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response theory, we may write the Fourier transform of Sr:

Sk � χkHeff
k , (5)

with χk is the static susceptibility at wave vector k, and

Heff
k = Jk

∑
I

SIe
ik·I. (6)

One can thus write the perturbation Himp as

Himp =
∑
I,J

J eff
I−JSI · SJ, (7)

where

J eff
R = −

∑
k

|Jk|2χke
−ik·R (8)

is the effective two-body interaction between impurities.
When the clean system possesses a spin gap associated to a

spin correlation length ξspin, the susceptibility χR, and therefore
the effective interaction J eff

R , decreases exponentially with the
distance ‖R‖. For a sufficiently small impurity concentration
z (z � 1/ξspin in one dimension), effective interactions remain
much smaller than the spin gap. At temperatures smaller than
this gap, the clean part of the doped system can be considered to
be in the ground state of Hclean, while the impurities dynamics
is governed by (7) in which one can take the zero-temperature
behavior for the susceptibility χk.

B. Static susceptibility within the BOMF approximation

The static susceptibility of the ground state of (1) can
be computed using the bond-order mean-field (BOMF)
approximation10,53 (see Appendix A). In the strong-coupling
limit J⊥ � J1, the spin gap is in the ky = π sector and
the magnon branch is well separated from the two-magnons
continuum. On can thus neglect the ky = 0 contribution
and keep only the single magnon one. The details of the
calculations are given in Appendix A and show that the
susceptibility displays the same singularities as the spin
structure factor. In the large-J⊥ regime, the result reads

χk,π � 1

4J⊥ + 8J1 cos k + 8J2 cos 2k
. (9)

C. Magnetization profile induced by a single impurity

Before turning to the interaction between two impurities,
it is first instructive to consider the magnetization pattern
induced by a single impurity, which is also of interest for
nuclear magnetic resonance (NMR) experiments. The impurity
is located at site I0 and the corresponding effective magnetic
field defined by (6) is simply given by Heff

r = Jr−I0 SI0 . The
expectation value of the spin operator Sr is then given by
linear response theory which, in Fourier transform, reads

〈Sk〉 � χk
〈
Heff

k

〉
. (10)

This perturbative response is a priori valid far from the
impurity. The magnetization profile in sector Sz

tot = 1/2 is then〈
Sz

I0+R

〉 � 1

2
√

2L

∑
k

e−ik·RχkJk, (11)

where the general expression of the coupling of the frustrated
ladder Hamiltonian (1) is

Jk = 1√
2L

(2J1 cos kx + 2J2 cos 2kx + J⊥ cos ky). (12)

After computing the integral limit of the sum (11) over the
Brillouin zone, one obtains two different situations, depending
on the behavior of the residues; in the commensurate regime
J2
J1

< J1
4J⊥

, the profile is given by

〈
Sz

x,y

〉 � 1

8
(−1)x+y

{
e−x/ξ+

spin

sinh(1/ξ+
spin)P ′[− cosh(1/ξ+

spin)]

+ e−x/ξ−
spin

sinh(1/ξ−
spin)P ′[− cosh(1/ξ−

spin)]

}
, (13)

where ξ±
spin are the spin correlation lengths defined in Eq. (A8)

and P ′(X) is the derivative of the polynomial P (X) defined in
Eq. (A4). In the incommensurate regime J2

J1
> J1

4J⊥
, one has〈

Sz
x,y

〉 � 1

4
(−1)ye−x/ξspin

×�
{

eiqx

sin
(
q + iξ−1

spin
)
P ′[ cos

(
q + iξ−1

spin
)]} , (14)

where q and ξspin are defined by Eqs. (A10) and (A11). Notice
that there is no unknown constant in these expressions.

The key point of this result is that the transition from
commensurate to incommensurate correlations induces a
discontinuity in the features of the magnetization profile,
which will show up in the effective interaction too. Indeed,
at each side of the transition, both residues diverge but their
sum tends to zero. Notice that exactly at the transition, the
denominator factorizes, having a single pole of order 2 for
which the residue is zero, corresponding to 〈Sz

x,y〉 = 0. On the
contrary, the amplitude of the magnetization 〈Sz

x,y〉 goes to
+∞ at each side of the transition, but this does not mean that
the magnetization profile diverges at short distance. Of course,
〈Sz

x,y〉 remains always bound by 1/2. However, the fact that the
amplitude of the asymptotic behavior diverges which makes
the perturbative analysis of the linear response fail.

On Fig. 1, we compare the magnetization profile in
the sector Sz

tot = 1/2 obtained by DMRG to the mean-field
predictions. In practice, expressions (13) and (14) provide
good estimates of the behaviors, but it is preferable to fit the
magnetization profiles using the following ansatz:〈

Sz
x,y

〉 = C(−1)x+y+1e−x/ξspin , (15)

in the commensurate regime, and〈
Sz

x,y

〉 = C(−1)y+1e−x/ξspin cos(qx + φ), (16)

in the incommensurate one. Remarkably, except near the onset
of incommensurability where the amplitude diverges, these
expressions remain correct at small distances, down to x =
1. In NMR experiments, an incommensurate q would give a
narrowing of the peak with respect to the commensurate case
with the same ξspin since the magnetization will display smaller
values even close to the impurity.

These profiles give a simple way to numerically access
the fit parameters and compare them to BOMF predictions.
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LAVARÉLO, ROUX, AND LAFLORENCIE PHYSICAL REVIEW B 88, 134420 (2013)

-5 0 5 10 15x

-0.2

-0.1

0

0.1

0.2

0.3

0.4
S z

x,
y

y = 0
y = 1

0 5 10 15 20
x

10-3

10-2

10-1

|S
 z
|

FIG. 1. (Color online) Magnetization profile in sector Sz
tot = 1/2

induced by a nonmagnetic impurity at site (0,0), for an isotropic
ladder (J⊥ = J1) with J2 = J1. The incommensurate regime displays
oscillations at wave vector q. The fit is done using (16).

Indeed, the values of ξspin and q extracted from the magne-
tization profiles agree qualitatively well with the mean-field
predictions, as shown on Fig. 2. In particular, we checked
that the amplitude C possesses a maximum close to the
transition from commensurate to incommensurate. Physically,
these calculations provide an explicit illustration of the fact
that the impurity generates a spinon that is confined close to
it through an effective attractive potential acting over a typical
length scale ξspin.

Last, we stress that there is a qualitative difference between
the magnetization profile and the spin correlation function
(see Appendix A for discussion of spin correlations in the
model). One does not expect a power-law correction in
the decay of the magnetization. This is clearly visible on
Fig. 3 where fitting the envelope using e−x/ξspin/xη gives an
exponent η � 0, while the exponent found for the fit of the
correlations is rather η � 1/2, as expected from the usual
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FIG. 2. (Color online) Correlation length ξspin and wave vector q

extracted from the magnetization profile induced by a single impurity.
DMRG results are compared to BOMF predictions in the large-J⊥
regime.
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FIG. 3. (Color online) Magnetization profile in sector Sz
tot = 1/2

induced by a nonmagnetic impurity at site (0,0), for an isotropic
ladder (J⊥ = J1) for J2 = 0 in the commensurate regime. The decay
of the magnetization profile and effective interaction between two
impurities are compared to the decay of spin correlations. These three
quantities display the same length scale ξspin in the exponential. Yet,
only correlations display a power-law correction (see Appendix A).

arguments recalled in Appendix A. These quantitative results
on the magnetization profiles and their sensitivity to the
commensurate-incommensurate transition share similarities
with those on the effective interaction between impurities,
which we now discuss.

D. Effective interaction between impurities

1. Long-distance behavior

Within the BOMF approximation, valid in the strong-
coupling limit, the effective interaction between impurities
of Eq. (8) takes the following form in the thermodynamical
limit:

J eff
x,y � J⊥

8
(−1)y+1 1

2π

∫ 2π

0

Q2(cos k)

P (cos k)
eikxdk, (17)

where Q is the polynom

Q(X) = 1 + 2
J2

J⊥
− 2

J1

J⊥
X − 4

J2

J⊥
X2. (18)

As for the magnetization profile, one can evaluate the integral
using the residue theorem to obtain two cases: in the commen-
surate regime, one has

J eff
x,y � 1

8
(−1)x+y+1

×
{

Q2[− cosh(1/ξ+
spin)]

sinh(1/ξ+
spin)P ′[− cosh(1/ξ+

spin)]
e−x/ξ+

spin

+ Q2[− cosh(1/ξ−
spin)]

sinh(1/ξ−
spin)P ′[− cosh(1/ξ−

spin)]
e−x/ξ−

spin

}
, (19)
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while in the incommensurate regime, one has

J eff
x,y � 1

4
(−1)y+1e−x/ξspin

×�
{

Q2
[

cos
(
q + iξ−1

spin

)]
sin
(
q + iξ−1

spin
)
P ′[ cos

(
q + iξ−1

spin
)]eiqx

}
. (20)

Similarly to the magnetization profile, the amplitude of J eff
x,y

diverges close to the transition between the two regimes but is
strictly zero at the transition point. This divergence does not
mean that the effective interaction gets stronger but rather that
the applicability of the long-distance result is limited to large
distances. The effective interaction remains always bonded
by the maximum of J1 and J2 (see short distances behavior
hereafter).

Further, no power-law corrections are expected in this
quantity, contrarily to what is commonly proposed.20,84 Yet,
this result is valid in the strong-coupling limit and we observe
that it remains correct down to the isotropic ladder regime.
In the weak-coupling limit, it is possible to have power-law
or logarithmic corrections but we have not studied this case
quantitatively.

Numerically, we compute the effective interaction using
DMRG by targeting the lowest energies in the singlet and
triplet sectors. We assume that the lowest triplet excitation is
due to the interaction between the two impurities (the spin gap
is large enough in this system) so that one can use the relation

J eff = EStot=1 − EStot=0. (21)

Only the total Sz
tot is fixed in DMRG calculations. Thus, since

the triplet sector has a contribution for Sz
tot = 0, one accesses

to the amplitude |J eff| from the energy difference of the first
two energies in this sector. In order to get the sign of J eff ,
one compares the obtained energies in sector Sz

tot = 0 with the
lowest in sector Sz

tot = 1. On Fig. 4, we fit the curves using the
function

J eff
x,y = J0(−1)y+1e−x/ξspin cos(qx + φ), (22)

where q = π and φ = 0 in the commensurate regime. As
expected, the wave vector q and length scale ξspin exactly
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FIG. 4. (Color online) Behavior of the effective interaction J eff
x,y

between to impurities as a function of their relative distance for
J⊥ = 3J1 and J2 = J1/2. DMRG results (symbols) are fitted using
the expression (22).
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FIG. 5. (Color online) Amplitude J0 of the effective interaction.
(a) Evolution without frustration (J2 = 0) for increasing coupling
J⊥/J1. Comparison with other energy scales is given: the mean
antiferromagnetic couplings J+ and the maximum value of the
effective interaction couplings Jmax. (b) Evolution in the strong-
coupling regime J⊥ = 3J1 for increasing frustration J2/J1, showing
the divergence at the transition to the incommensurate regime.

correspond to the ones of the magnetization profile and
correlations function. The behavior of the amplitude J0 is not
quantitatively predicted by the BOMF theory as, for instance,
the behavior of ξspin is not in perfect agreement, due to the
approximations made in the BOMF. Still, as one sees in Fig. 5,
the amplitude J0 displays a sharp increase in the vicinity of the
commensurate-incommensurate transition, reminiscent from
the divergence expected in Eqs. (19) and (20).

2. Short-distance behavior

The short distances effective interactions computed with
DMRG, and displayed on Fig. 4, do not follow the prescription
(22). In fact, although linear response theory fails at these
distances, one can guess the sign and magnitude of J eff by
looking at each configuration (see Fig. 6). The first thing

FIG. 6. (Color online) Impurities configurations for which the
effective interaction does not have the sign expected from relation
(22): (a) r = (1,1) with J2 = 0, (b) r = (1,1) with J2 �= 0, and (c)
r = (2,1) with J2 �= 0.
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to notice is that a configuration with impurities on the same
rung breaks the ladder and the elementary excitation is then
a magnon in the largest piece which energy cost is slightly
larger than the spin gap. Such effect does not enter in the
effective model since no spin-1/2 is located at the vicinity of
an impurity in that case.

Without frustration (J2 = 0), the effective interaction os-
cillates at k = (π,π ), even at short distances, except when
r = (1,1) for which the effective coupling is almost zero
within DMRG accuracy. Indeed, we observe in Fig. 6(a) that
this configuration breaks the ladder. Two spinons are then
generated on disconnected fragments and behave indepen-
dently, making the triplet and singlet states degenerate and
the effective interaction equal to zero. The largest value of the
effective interaction, which we write Jmax in the following, is
obtained when two impurities are neighbor on the same chain.
The magnitude is then controlled by J1 and shown on Fig. 5(a).

In the presence of frustration, the configuration with r =
(1,1) no longer breaks the ladder. Figure 6(b) shows that
spinons freed by the impurities should antialign due to J2, as for
the configuration with r = (2,1) sketched in Fig. 6(c). In both
cases, the corresponding effective interaction is expected to
be antiferromagnetic (positive), in agreement with the DMRG
result of Fig. 4. If J2 is larger than J1, it typically sets the scale
of the maximum coupling Jmax in the effective interaction.

Last, one can recall that two-body interactions is just an
approximation and that terms involving more than two partners
should be included to improve the comparison with ab initio
calculations involving many impurities. The validity of two-
body interaction has been discussed in Ref. 25 to which we
refer to for further details on this question.

E. Distribution of couplings between impurities

We here discuss the nature of the couplings distribution
P (J ) resulting from doping the ladder and which is a central
quantity for the understanding of the magnetic responses. We
use the following notation from now on: N is the total number
of sites, L = N/2 the length of the ladder, Ni the number
of impurities, and z = Ni/N the impurities concentration or
doping. The latter corresponds to the probability for a site to be
occupied by an impurity. The lattice spacing is taken to be one
in both directions. The relative distance between two points on
the ladder is written as r = (nx,ny) with nx = 0,1,2, . . . and
ny = 0,1.

Consider impurities that are randomly distributed on the
ladder. The probability pnx,ny

of having a distance r between
two impurities is given by a geometric law:

pnx,ny
= z(1 − z)2nx+ny−1 for nx + ny > 0. (23)

To understand this formula, one can scan all intermediate
sites between the impurities following a zigzag path. Thus,
within the ladder geometry, which has the peculiarity to differ
from a chain because of the possibility to put two impurities
on the same rung (case with nx = 0 and ny = 1), we have
the following results for the mean longitudinal and transverse
distances:

x̄ = 1

z

(
1 − z

2 − z

)
, (24)

ȳ = 1

2 − z
. (25)

One recovers the intuitive behaviors ȳ � 1/2 and x̄ = 1/(2z)
in the dilute limit z � 1. Thus, in this limit, the typical average
distance d between impurities, as if they were on a chain, is
given by the effective doping z′ = 2z as d � 1/z′ and one has
to keep in mind the presence of this factor two in qualitative
reasoning.

To obtain the distribution of couplings, we use for analytical
calculations the simplified and generic relation

J (r) = J0(−1)y+1 cos(qx + φ)e−x/ξ (26)

with q a dimensionless wave vector, which accounts for a
possible incommensurability and ξ the spin correlation length
(in a shortened notation), φ a phase shift, and J0 an energy
scale. Their typical behavior with microscopic parameters was
discussed in the previous sections. Formally, one obtains the
distribution of couplings using the definition

p(J ) =
∫∫

dr p(r)δ(J − J (r)) (27)

and use for the discrete case

p(r) =
∑

(nx,ny )

pnx,ny
δ(x − nx)δ(y − ny). (28)

As we will see, the magnetic curve will be deeply connected
to the coupling repartition function that we denote by

R(J ) =
∫ J

−∞
P (J ′)dJ ′. (29)

We also introduce the repartition function of antiferromagnetic
couplings only:

R+(J ) = R(J ) − R(0)

1 − R(0)
for J > 0. (30)

Indeed, negative J s corresponding to ferromagnetic cou-
plings will yield polarized impurities as soon as the field
is turn on. A correct way of defining an energy scale
corresponding to a magnetic field in the problem is thus to
average only the positive J s. Then, we take the following
definition

J+ =
∫∞

0 JP (J )dJ∫∞
0 P (J )dJ

(31)

for the typical energy scale of the antiferromagnetic
couplings.

1. Commensurate case

In this case, the interaction is purely antiferromagnetic
corresponding to q = π . Changing variables is done
using

δ(J − J (r)) = ξ

|J |δ(x − n(J )),

with n(J ) = ξ ln(J0/|J |).
a. Continuous distribution. We first consider the most ele-

mentary situation where p(r) is approximated by a continuous
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function, which requires z � 1 and ξ � 1 with fixed zξ .
Then, what enters in the distance probability is the effective
chain doping z′, giving the exponential law p(x) � z′e−z′x .
The calculation yields a symmetric power-law distribution

p(J ) = zξ

J0

(
J0

|J |
)1−2zξ

(32)

for J ∈ [−J0,J0], featuring the exponent 1 − 2zξ . The corre-
sponding repartition function reads

R(J ) = 1

2

[
1 + Sign(J )

( |J |
J0

)2zξ
]

. (33)

The energy scale J+ takes the simple form

J+ = 2zξ

1 + 2zξ
J0. (34)

A similar expression has been used to interpret experiments
with 3D effects.46 Here, the effective volume of the interaction
boils down to 2ξ .

b. Exact distribution and lattice effects. The continuous
distribution ansatz is not justified for systems with very
short correlation length such as the isotropic ladder. We
here carry out the calculation in the discrete case to obtain
the exact formula that can be compared to numerical his-
tograms of the couplings used in numerical simulations. We
have

p(J ) =
∑

n

P (J )δ(n − n(J ))

and

P (J ) = zξ

(1 − z)J0

(
J0

|J |
)1+2ξ ln(1−z)

for J ∈ [−J0,J0]. One recovers the result of the continuous
approximation under its assumption. In particular, one can
see that lattice effects decouple the effect of the correlation
length and of the impurity concentration, i.e., the exponent
is not a function of zξ only, but a function of both z

and ξ , which makes the results not so universal. Last, we
notice that the distribution becomes flat for the particular
value

z∗ = 1 − e−1/(2ξ ), (35)

and we will see that this can have consequences on the shape
of the magnetic curve.

For the typical energy scale J+, the exact result is
computed by directly summing upon the (nx,ny) and one
obtains

J+ = 1 − (1 − z)4

2 − z

1 + (1 − z)e−1/ξ

1 − (1 − z)4e−2/ξ
J0. (36)

Here again, one can check that (34) is recovered provided ξ �
1 and z � 1 while keeping ξz finite. Otherwise, deviations
from (34) occur at all doping. In particular, the low-doping
regime z � 1 at fixed ξ is

J+
2J0z

� 1 + e−1/ξ

1 − e−2/ξ
= ξ

(
1 − 1

2ξ
+ · · ·

)
. (37)

FIG. 7. (Color online) Typical energy scale of the coupling
distribution as a function of doping z for a realistic value of the
correlation length ξ = 3. The continuous approximation result is
compared to the exact discrete result, showing lattice effects discussed
in the text.

These lattice effects are illustrated in Fig. 7 for a realistic
case with ξ = 3, which is characteristic of the isotropic ladder
limit.

2. Incommensurate case and numerical sampling

In this case, the J (r) function is not bijective, which changes
qualitatively the distribution of the J ’s. The presence of the
cosine significantly lowers the weight of the largest J ’s, while
the smallest J ’s will see their weight increase. Second, in
the presence of fractional q/π , commensurate effects happen
while an irrational q/π has qualitatively the behavior of a
true quasiperiodic signal. In particular, for rational q/π and
φ = 0, a fraction of couplings can be zero. Yet this situation is
unphysical for the model under consideration whose generic
case is a nonzero phase shift and irrational q/π .

In order to illustrate the typical behavior of the repartition
function in the commensurate and incommensurate regimes,
we have sampled numerically the distribution of couplings.
Results are gathered in Fig. 8. The essential features are the
following: (i) up to discrete effect, the exponent 2zξ in Eq. (33)
captures well the power-law in the commensurate case; (ii) for
irrational q/π , the repartition function is qualitatively very
close to the commensurate case, with a similar exponent,
and up to the weight redistribution towards lower J , which
translates into a smaller energy scale J+. (iii) For rational
q/π and φ = 0, plateaus appear at 1/4 and 1/5 in the
figure, corresponding the many zero couplings, together with
cusps in J+. Yet, the latter situation being unphysical, the
main conclusion is that incommensurability hardly affects the
coupling distribution. The fact that frustration, throughout
incommensurability, only lowers the energy scale J+ but
hardly affects the distribution is essential to understand that
frustration will have only minor effects on the local magnetic
responses studied in the next sections.

134420-7
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continuous
distribution

FIG. 8. (Color online) (a) Repartition function of positive cou-
plings R+(J ) for z = 0.05 and ξ = 3 with φ = 0. (b) Energy scale
J+ vs the incommensurate wave vector q.

III. EXACT ZERO-TEMPERATURE RESULTS ON A
BIPARTITE LATTICE: AVERAGED SPIN

AND CURIE CONSTANT

In this section, we improve on the work of Sigrist and
Furusaki20 for the calculation of the averaged total spin and
zero-temperature Curie constant of a doped system on a
bipartite lattice. The results that are obtained are more general
than for the special case of a ladder, and can be useful in
checking numerical simulations and understanding finite-size
corrections.

A. Total spin distribution

We assume a finite size sample containing N sites and
doped with Ni = zN impurities, where z is the impurity
concentration which is fixed. The impurities are assumed not to
break the lattice into disconnected sublattices (see discussion
Sec. III C). On a bipartite lattice, with two sublattices A

and B, which have the same number of sites N/2, applying
Marshall’s theorem yields that the total spin S of a given
impurity configuration reads

S = 1
2 |Ni,A − Ni,B | = 1

2 |2Ni,A − Ni |, (38)

where Ni,A (respectively Ni,B) is the number of impurities
on sublattice A (respectively B). The probability of having
a configuration with Ni,A impurities on sublattice A is
qualitatively similar to the result on a ferro-antiferromagnetic
(F-AF) chain,61 and given by

P (Ni,A) =
(
N/2
Ni,A

)(
N/2

Ni−Ni,A

)(
N

Ni

) . (39)

Then, the probability of having a total spin S on a sample is

Pz,Ni
(S) =

( N/2
Ni
2 +S

)( N/2
Ni
2 −S

)
(

N

Ni

) (2 − δS,0), (40)

where S ∈ [0,Ni/2]. This result is exact and can be used
to compute numerically the mean total spin and the Curie
constant. For large Ni and fixed z, according to the central
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FIG. 9. (Color online) (a) Finite-size scaling of the average total
spin S, for four different doping z, obtained from exact calculations
(points) and compared to Eq. (42). (b) The finite-size correction of
the zero-temperature Curie constant, compared to Eq. (44). The 1/12
line shows the usually admitted result. The incommensurate case
corresponds to an isotropic ladder with J2 = 0.8J1.

limit theorem, Pz,Ni
(S) converges towards a Gaussian. A

saddle-point calculation gives the asymptotic behavior

Pz,Ni
(S) � 2√

2πσ 2
S

e−S2/2σ 2
S (41)

of variance σ 2
S = Ni

4 (1 − z).

B. Total spin and Curie constant

One then obtains the average spin and the average square-
spin in the N → ∞ limit as

S �
√

1 − z

2π

√
Ni and S2 � 1 − z

4
Ni. (42)

The total zero-temperature Curie constant matches exactly:

Cz,Ni
= 〈

Ŝ2
z

〉 = S(S + 1)

3
. (43)

From (42), we obtain the following asymptotic behavior:

Cz,Ni
= Ni

12
(1 − z)

[
1 +

√
8

π (1 − z)
N

−1/2
i

]
. (44)

These asymptotic results are compared to numerical cal-
culations using the exact distribution on Fig. 9. In the
thermodynamical limit Ni � 1, we thus find that the Curie
constant per impurity is (1 − z)/12 at T = 0, while the Curie
constant per spin is z/12. Notice that one can also compute
exactly the average of the squared spin:

S2 =
[
N2

i

4

(
N

Ni

)
− N (Ni − 1)

(
N − 1

Ni − 1

)
+N (N − 1)

(
N − 2

Ni − 2

)]/(
N

Ni

)
,

which is useful to crosscheck the statistical convergence of
averaging over samples, but we did not manage to compute
exactly S.

These results remain correct in the commensurate regime
because the effective model is still unfrustrated, but in the
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incommensurate regime, expressions (42) are not valid any-
more. The total spin and Curie constant at zero temperature can
be computed from exact diagonalization (ED) on the effective
model using the exact couplings extracted from DMRG data.
The results for a frustrated isotropic ladder in the incommen-
surate regime are shown on Fig. 9. The frustration induced by
the incommensurability yields a appreciable reduction of both
the total spin and the Curie constant. Note that this reduction
is essentially due to the short distance behavior of the effective
interaction, hence the necessity to use the exact effective
couplings computed in DMRG rather than the asymptotic
law (22).

The doping dependence of the prefactors and finite-size
corrections were missed in previous work. They originate
from the dilution of the lattice. They actually play a crucial
role in the quantitative understanding of the numerics that
usually work with a restricted number of impurities. Last,
the precise value at finite-size is essential in extracting the
low-temperature exponent, as we will see in the next section.

C. Chain breaking effects on the ladder

1. Percolation scenario in the general case

Results in Eqs. (42) and (44) are exact assuming that there
is a fully connected cluster containing Ni impurities over N =
Ni/z sites. Of course, the network can be disconnected in
many subclusters by the presence of impurities. Then, each
cluster, which is a finite size system, will eventually contribute
to S̄ and C in the thermodynamical limit, which was pointed
out by Sigrist and Furusaki who computed an evaluation of the
correction in the ladder case.20 Thus we expect that, in general,
S̄/Ni �= 0 in the thermodynamical and that C is not exactly
given by (44). Lastly, it has been proposed in Ref. 20 that these
breaks provide a natural cut in the length scale (and an energy
scale), which should affect the behavior of the correlations.
This was confirmed numerically in Ref. 33 in which results on
depleted two-leg ladders are consistent with an upper bound
of the order of z−2 reached for very low temperatures.

The probability and size distribution of these clusters are
governed by percolation theory. The percolation transition
distinguishes two main regimes: (i) there exist an infinite
cluster of sites below a certain critical doping zc, (ii) for
z > zc, only finite-size clusters exist and their size distribution
is typically exponential, associated with a mean cluster size
that will be denoted by 
̄ in the following. At the critical
doping z = zc, there is still an infinite cluster and scaling is
expected for the mean cluster size. The value of zc is very
sensitive to dimensionality and connectivity of the lattice.
These percolation regimes induce important finite size effects
and are essential for experiments and numerical simulations.
On a chain, it is clear that zc = 0, i.e., any finite doping will
break the lattice and the mean cluster size is easily related
to the doping 
̄ ∼ 1/z. On a ladder, the situation is similar
in the sense that any finite doping breaks the lattice into
subclusters. This chain breaking effects have been shown to
have quantitative results on the magnetic response of doped
chains.90 Yet, computing 
̄ in the case of ladder is not trivial
and the remaining clusters are themselves doped with various
concentration of impurities which makes the predictions more
involved. We give below an exact discussion of the cluster

sizes in the ladder and apply the results to the chain breaking
effects on ladders.

2. Cluster distribution for the unfrustrated ladder network

We consider a ladder with nearest-neighbor only. Connec-
tivity of the network is broken if (i) two impurities fall on the
same rung, or (ii) two impurities fall on diagonal positions on
a plaquette [see Fig. 6(a)]. If (x,0) is the impurity position,
there are three positions at which a second impurity can break
the ladder: (x − 1,1), (x,1), and (x + 1,1). Occupying a site
with an impurity has a probability z. In the diluted limit
z � 1, the density of cuts is then 3z2 and the corresponding
mean cluster size is given by 
̄ � 1/3z2 (the factor 3 was
missing in Ref. 20). Notice that in the presence of frustration,
chain-breaking requires at least four neighboring impurities,
which would make a different scaling 
̄ ∼ 1/z4. For large
enough distances, breaks are uncorrelated so a fair description
of the distribution law is that of a Poissonian process

ρ(
) � ζe−ζ
, (45)

with ζ = 1/
̄ � 3z2 in the diluted and continuum limit.
An exact calculation of the cluster sizes distribution is

carried out in Appendix C and supports this phenomenological
approach. The exact distribution reaches very quickly an
asymptotic behavior given by a geometric law

ρ(
) � ζ (1 − ζ )
−1 (46)

of parameter

ζ = 1
2 [1 + z − (1 − z)

√
1 + 4z(1 − z)] �

z�1
3z2. (47)

Consequently, one recovers (45) in the continuum limit and

̄ = 1/ζ . In particular, this provides finite-z corrections to the
1/z2 scaling, which turn out to be quantitative even for a few
percent doping as we see now.

3. Consequences for the averaged spin and Curie constant

Averaging the total spin and Curie constant over clusters
is not trivial since the doping of each cluster can now be
distributed between zero and approximately 1/2. To handle
a correct estimate, one would have to average using the
joint distribution of cluster sizes and doping. We give below
a rough estimate that consists in assuming a fix doping z

for all cluster and averaging only over cluster sizes 
 using
Ni = 2
z. Neglecting the doping fluctuations should yield a
good approximation in the diluted limit where cluster sizes
diverge. Averaging Eq. (42) is performed using

Stot �
+∞∑

=1

ρ(
)

√
z

π
(1 − z)
 and S2

tot �
+∞∑

=1

ρ(
)
z

2
(1 − z)
.

Using the approximate law (46) for the size distribution and a
continuous approximation for the average spin, we get

Stot � 1

2

√
z

ζ
(1 − z) and S2

tot � z

2ζ
(1 − z)(1 − ζ ). (48)

To obtain the density of spin and Curie constant, one has to
multiply them by the clusters density ζ . The mean spin density

s = Stot/
̄ and Curie constant density c = Stot(Stot + 1)/3
̄
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FIG. 10. (Color online) Effect of chain breaking on ladders.
(a) Mean total spin density s and (b) Curie constant density c averaged.

now read

s � 1
2

√
z(1 − z)ζ (49)

and

c � z

6
(1 − z)(1 − ζ ) + 1

6

√
z(1 − z)ζ , (50)

which gives in the diluted limit, z � 1,

s �
√

3

2
z3/2 and c � z

6
(1 + √

3z + · · · ), (51)

in agreement with the results of Sigrist and Furusaki20 up to a
prefactor.

In the opposite limit of high-density for impurities z → 1,
the system is equivalent to a few independent spin-1/2s, which
essentially behave as in a paramagnetic phase. Therefore we
have that s � 1 − z and c � (1 − z)/2. In particular, we infer
that there is an optimal doping zo, which maximizes the Curie
constant and a slightly different one that maximizes the total
spin. The value of zo is nontrivial since it occurs at the crossing
of the two asymptotes.

These predictions are a lower bound for s and c since
very small clusters with a few sites have a total spin and
susceptibility larger than the random-walk result. In order to
show the quantitative role of chain breaking and the validity
of the results, we plot on Fig. 10 the limiting behaviors at low-
and high-doping z together with the formulas (49) and (50).
Although these formulas are not exact, they capture well the
existence of a maximum at an optimal doping.

IV. MODELS AND METHODS

A. Magnetization and Curie constant densities

We now turn to the effect of interactions on the magnetic
curve of two-leg ladders doped with impurities. The magnetic
excitation is denoted by H . We choose to define the total
magnetization density as m = 〈Ŝz〉/L = 2〈Ŝz〉/N so that
the high-field saturation density is msat = 1 − z. With this
normalization, the contribution of noninteracting impurities
carrying a spin-1/2 to the magnetization is the Brillouin

formula at temperature T (we set kB = 1 in the following):

m(H,T ) = z tanh(H/2T ), (52)

where z thus corresponds to the impurity saturation
magnetization, assuming that each impurity frees a spin-1/2.
The latter assumption is actually affected by chain breaking
and will be discussed in more details in Sec. VI.

In the low-field limit at finite-temperature, the Curie
constant density c is defined as

c = T
∂m

∂H

∣∣∣∣
H=0

. (53)

In the case of independent impurities, we would have the
total Curie constant Cz,Ni

= Ni/4 corresponding to c =
Cz,Ni

/(N/2) = z/2, as expected from (52). If one uses the
exact result (44) for correlated impurities, then the Curie
constant density reads c = z(1 − z)/6 without chain breaking
or (50) with it.

B. Random dimer model

We first consider a simple model, dubbed “random dimer
model” in which impurities are assumed to build dimers with
their neighbor. Dimers are independent but have couplings
randomly distributed according to P (J ). The magnetization
of a single dimer of coupling J is given by

mdimer(H,T ; J ) = 2 sinh(H/T )

1 + eJ/T + 2 cosh(H/T )
. (54)

The total number of dimers is Ni/2 so that the total magneti-
zation density averaged over the coupling distribution reads

m(H,T ) = 2z

∫
dJP (J )

sinh(H/T )

1 + eJ/T + 2 cosh(H/T )
. (55)

The Brillouin formula (52) is recovered when P (J ) = δ(J )
or more physically, in the high-temperature limit when
T � Jmax.

Taking the zero-field limit at finite temperature in (55)
yields a temperature-dependent Curie constant c(T ):

c(T ) = 2z

∫
dJP (J )

1

3 + eβJ
, (56)

which reaches the free spins result c(T ) = z/2 in the high-
temperature regime.

C. Solving the effective model

The effective Hamiltonian of interacting impurity spins is
given by

Ĥimp =
∑
I,J

Jeff(I − J)ŜI · ŜJ (57)

and is solved numerically using either ED for Ni = 10 or QMC
up to Ni = 100 and provided there is no incommensurability,
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i.e., for q = π . ED provides all energies {En(Sz)} in a sector of
total spin Sz so finite-temperature predictions are accessible.
The couplings Jeff(I − J) are obtained by sampling impurities
configurations on a ladder and using either the approximate
formula (22) with chosen q, J0, and ξ , or the exact couplings
computed from DMRG.

D. Ab initio calculations

Two “ab initio” methods are also used to compute observ-
ables directly on the original microscopic Hamiltonian (1):
the DMRG technique, which gives accurate results for the
zero-temperature magnetization curve, and QMC calculations
well suited for finite-temperature dependence.

V. ZERO-FIELD SUSCEPTIBILITY AND THE
TEMPERATURE-DEPENDENT CURIE CONSTANT

In this section, we focus on the limit of vanishing magnetic
excitation H → 0 at finite T . The order of limits matters
and the situation T → 0 for fixed H will be studied in the
next section. In this limit, a modified Curie law is generically
expected, written as

m(H,T ) = c(T )

T
H, (58)

where c(T ) is a temperature-dependent Curie constant, cor-
responding to a static susceptibility χ (T ) = c(T )/T . The
goal of this section is to investigate quantitatively the whole
c(T ) curve and analyze the effect of interactions, doping,
and frustration on its behavior. The various regimes of
c(T ) in depleted ladders were first sketched by Sigrist and
Furusaki20 who gave the following picture: starting at high
temperatures, the spins are essentially independent because
of thermal fluctuations so that c(T ) � (1 − z)/2. Assuming
that the spin gap �s is larger enough than the maximum
coupling Jmax (implicitly corresponding to the strong-coupling
regime), lowering the temperature below the spin gap freezes
all magnon excitations. Only spin-1/2s remain freed by
impurities, which should behave independently for a range
of temperatures Jmax � T � �s . This yields a plateau around
c � z/2 if one neglects chain breaking and c � z(1 − z)/2 if
they are taken into account to first order corrections. Lowering
again temperature enables one to reach the zero-temperature
plateau discussed above and which is approximately given
by c � z/6 (the z/12 plateau within Ref. 20 conventions). In
the regime governed by impurity-spins interactions, real-space
renormalization group (RSRG) arguments60 generally gives
low-temperature corrections of the form

c(T ) � c(0) + K(T/Jmax)α, (59)

with K a nonuniversal constant and α an exponent that
generally depends on doping z and that captures the interesting
physics about impurities interactions. We now check and
analyze this scenario using our various models and methods.

A. Hints from the random dimer model

The random dimer model formula (56) for the Curie
constant already displays a nontrivial temperature dependence
due to the coupling distribution. In the case of the power-law

distribution (32) for which the exponent α = 2zξ is the one of
the couplings distribution and Jmax = J0 [see below Eq. (60)],
the high-temperature expansion leads to

c(T ) = z

2

[
1 − 1

16

α

α + 2

(
J0

T

)2

+ 5

768

α

α + 4

(
J0

T

)4

− 77

184 320

α

α + 6

(
J0

T

)6

+ · · ·
]

,

while, at low T , a Sommerfeld-like expansion, in which the
constant three appearing the denominator of (56) has to be
carefully taken into account, yields a power-law:

c(T )

2z
= 1

6
+ Kα

(
T

J0

)α

(60)

with the constant

Kα = 4

9

∫ 1

0
du(− ln u)α

1 − u2(
1 + 10

3 u + u2
)2 . (61)

Kα is of the order of 0.1–0.2 and matches some simple
numbers for specific values of α: K0 = 1/12 � 0.083 333 . . .,
K1 = ln 3

6 � 0.183 102 . . .. The curves for various α are
represented in Fig. 11 and show that the prediction (60)
works for a wide range of temperatures. In the limit of
small α, one has the expansion Kα = 1/12 + K ′α with K ′ =
4
9

∫ 1
0 du ln(− ln u) 1−u2

(1+ 10
3 u+u2)2 � 0.049 366 2 . . ..

It is clear that, even though there is a power-law, there is
nothing universal in this result. The scaling originates only
from the fact that the distribution is a power law. Last, the
zero-temperature result c = z/3, which already differs from
free spins, is always expected in the case of a symmetric J →
−J distribution.

B. Results on the effective model and a possible scenario for the
low-temperature exponent

In ab initio ED and QMC calculations, the temperature-
dependent Curie constant is computed exactly using the
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FIG. 11. (Color online) Curie constant within the random dimer
model. In the ladder model, α = 2zξ . (Inset) Behavior of the constant
Kα from (61).
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average over thermal states and disorder configurations:

c(T ) = 2

N

∑
Sz

∑
n S2

z e
−En(Sz)/T∑

Sz

∑
n e−En(Sz)/T

, (62)

since 〈Sz〉 = 0 when H = 0 for both the microscopic and
effective models due to SU(2) symmetry. Notice that, on the
effective model, chain breaking effects discussed in Sec. III C
are not included.

1. ED results

We present on Fig. 12 the results obtained from exact
diagonalization with Ni = 10 impurities and averaged over
10 000 samples. The first remarkable result is that the zero-
temperature plateau is very well approximated on finite sizes
by using (44) or its exact numerical evaluation. In fact, the
effective model is not a bipartite lattice model to which the
theorem applies, but the fact that it originates from a bipartite
model to which the theorem applies (without frustration) seems
to make it hold even in the effective model. The reason for
that is certainly that the sign of the couplings satisfy the
bipartite nature of the original lattice. The low-temperature
departure from the T = 0 plateau is very sensitive to finite-size
effects and disorder averaging. This makes it hard to capture
the hypothetical thermodynamical behavior with this data.
Yet, for the intermediate temperatures regime up to the
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FIG. 12. (Color online) Exact diagonalization results on the
thermal behavior of the Curie constant c(T ) within the effective model
description for Ni = 10 impurities.

high-temperature saturation plateau, we obtain a very good
fit of the c(T ) − c(T = 0) data using a power-law, as one can
see from Fig. 12(b). Collecting the fitted exponents Fig. 12(c)
shows a very good agreement with the 2zξ prediction of the
random dimer model.

2. The RSRG scenario from the F-AF random chain

However, the behavior in the thermodynamical limit within
the effective model is difficult to address. To sketch a possible
scenario, we refer to the works done on the F-AF random
chain.58–61 Indeed, for reasonably short correlation lengths ξ ,
the effective model should fall into the F-AF universality class
in the RSRG sense. This universality class has been dubbed
as the large-spin phase, which is of the Griffith’s type, and
for which it has been found that the total spin follows the
random-walk scenario discussed above, and that a power-law
correction to the zero-temperature Curie constant is expected.
As regards the possible universal exponents of this phase, it
was found numerically59 that it is strongly dependent on the
singular nature of the initial coupling distribution. By denoting
P (J ) ∼ |J |−y the initial distribution of the couplings, the
following scenario is proposed: (i) when y > yc with yc � 0.7,
the RSRG flows towards a nonuniversal fixed point with
nonuniversal value of α. This exponent should depend on z and
ξ but is not necessarily equal to 2zξ ; (ii) when y < yc (initial
distribution “not too singular”), the RSRG flows towards a
universal fixed point with α � 0.22. QMC calculations60,61

have demonstrated the following typical behavior for the Curie
constant on the F-AF random chain; at high temperatures
below the saturation plateau, c(T ) strongly depends on the
initial distribution coupling. Yet, at low enough temperatures,
the various c(T ) curves collapse very close to the RSRG
prediction with c(T ) − c(0) = K(T/Jmax)0.21, where c(0) =
1/12 and K � 0.117.

Coming back to the situation of doped ladders, we may
propose the following scenario. Provided the RSRG picture is
applicable to the ladder, something certainly true for zξ � 1
but hard to justify when zξ ∼ 1, we first expect from Refs. 60
and 61 that the high-temperature regime is always dependent
on the distribution. Interestingly, in the doped ladder situation
and within the random dimer picture, we found that this
regime displays a power-law behavior with an exponent 2zξ ,
which is simply related to the coupling distribution exponent.
Then, one expects that the RSRG picture develops at low-
temperatures with two possible cases. The yc � 0.7 criteria
translates on ladder to a critical doping zc � 1 − e−0.15/ξ

such that (i) if z < zc, the low-temperature exponent is
nonuniversal, dependent on z and ξ and could differ from the
high-temperature exponent expected to be 2zξ ; (ii) if z > zc,
one can fall into the RSRG universality class and the low-
temperature exponent should become independent of z and ξ

and reaches 0.22. One must notice that the second situation can
actually be realistic for doped ladders in the weakly coupled
regime, since, for instance, ξ � 7 for J⊥ = J‖/2, giving
zc � 2%.

3. QMC results

In order to test this scenario, which relies on several
questionable assumptions, although it looks plausible within
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FIG. 13. (Color online) QMC results on the effective model
with Ni = 100 impurities and two correlation length ξ = 3 (a) and
10 (b). Disorder averaging has been done over a few thousands
of random configurations. The Curie constant per impurity (from
which the asymptotic value Cz,Ni

/Ni has been subtracted) is shown
vs temperature for various concentrations (symbols), together with
power-law fits (dashed lines) of the form T α , where α(z) is a varying
exponent indicated on the plot. The lines in the high-temperature
region are with exponent 2ξz. The α = 0.21 line is the universal
regime found in the F-AF chain by Frischmuth et al.,60,61 including
the same prefactor K � 0.117.

the usual pictures discussed in random one-dimensional
magnets, we have carried out QMC simulations on the effective
model up to Ni = 100 impurities. The results for the Curie
constant are plotted in Figs. 13(a) and 13(b) for two values
of the correlation length ξ = 3 and 10, which respectively
correspond to zc � 0.048 and �0.015. We observe on these
data a crossover from a fast decaying high-temperature regime,
roughly controlled by the exponent 2zξ and a smaller doping-
dependent exponent at lower temperatures. For large values
of zξ , the deviation is even clearer and the exponent does not
seem to exceed the RSRG universal result of 0.21. We also
show the F-AF universal result on the same plot showing
that data at large ξz qualitatively saturates on this limit.
These results give good confidence that the above scenario is
plausible.

To further test the scenario, we have extracted the low-
temperature exponent and plot it against z and ξz on Fig. 14.
We observe that the low-doping regime is consistent with

the 2ξz limit, while intermediate dopings display significant
deviations and a tendency to saturate around the RSRG
universal regime for z � zc. Yet, the validity of the random
F-AF RSRG picture can be questioned for two main reasons:
when zξ becomes large, the dilute short range interaction limit
fails and it is not guaranteed that the RSRG is still under control
with longer range interaction. Second, as we will see on the
magnetic curve, the discretized nature of the distribution can
play a quantitative role. The criteria for the initial distribution
exponent y is valid within a continuous description but the
discretized nature of the coupling can make the distribution
more singular. Interpretation in that sense was proposed on the
same model through the study on correlation lengths.33 Still,
we observe that the RSRG argument does capture a lowering
of the α(z) curve with respect to the 2ξz naive expectation.
Having an accurate quantitative description of this curve yet
remains a challenging question.

4. Effect of frustration and incommensurability

Frustration makes the lattice nonbipartite so that the exact
results (44) do not apply. Still, within the effective model, if
frustration is not too strong, the system remains commensurate
and the above results remain valid and shows that the behavior
is the same. When frustration is large enough to induce incom-
mensurability in the system, the effective model is affected
and next-nearest neighbor couplings can become frustrating.
In this situation, QMC calculations are not possible due to
the sign problem and we carry out ED calculations limited to
a Ni = 10 impurities. We do not show the data because the
picture remains essentially and quantitatively the same as for
the commensurate regime. This absence of strong qualitative
differences is certainly due to the fact that the spin correlation
length is small and prevents frustrating effects to develop
on large scales. Furthermore, RSRG arguments tell that the
commensurate and incommensurate cases should fall into the
same F-AF random chain picture so that incommensurability
does not actually plays a fundamental role in this model, at
least on its one-dimensional version.

C. The full c(T ) curve from the microscopic model

We now discuss the overall behavior of c(T ) computed
on the original microscopic model doped with impurities in
order to test the scenario by Sigrist and Furusaki discussed
above. We take the situation of an isotropic ladder which has
ξ � 3 but in which the energy scales J0, Jmax and J1 are very
close to each other (see Fig. 5). The first significant effect
as seen on Fig. 15(a) is thus the absence of an intermediate
plateau of independent impurity spins. Thermal magnons
are activated before impurity spins become uncorrelated by
thermal excitations so that the contributions of both can never
be separated. This absence of plateau in the isotropic ladder
will have its counterpart in the magnetic curve while scanning
the energy scales with the magnetic field rather than with
the thermal energy (see Sec. VI). In the large J⊥ limit, the
separation of energy scales suggests that the plateau could be
visible but we have not checked it numerically.

At temperatures slightly below the temperature correspond-
ing to the spin gap T = �s , a power-law behavior is clearly
visible showing the regime in which the effective model
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FIG. 14. (Color online) QMC estimates for the Curie constant exponent α(z) from the effective model with Ni = 100 impurities with (a)
ξ = 3 and (b) ξ = 10. The horizontal α = 0.21 lines indicate the RSRG universal regime of the F-AF chain. In (a), results for the depleted
isotropic ladder are shown for comparison. The two cases ξ = 3,10 are also shown in (c) vs zξ where results seem to collapse on a single
curve. In all cases, the exponent α(z) is smaller than the prediction 2zξ , which seems to hold only in the limit zξ → 0.

accounts for the physics. The exponent is found to depend
on doping, with very small exponents at low dopings which
could give the impression of the presence of a plateau, although
this is not correct. A systematic extraction of the exponent
[see Fig. 15(b)] gives the results plotted on Fig. 14 against
the effective model results. Slightly larger exponents are
found but the agreement can be viewed as correct considering
the low values of the exponents and the difficulty to tackle
this low-temperature regime numerically. Consequently, the
effective model seems to capture the physics at low-energy
of the interacting impurity spins. Although the convergence
towards the universal RSRG regime is plausible at small J⊥
and low doping from our results on the effective model, the
numerical challenge it represents on the microscopic model

is beyond the scope of this paper (the spin gap becomes
significantly smaller).

VI. MAGNETIC CURVE AND DEVIATIONS FROM
BRILLOUIN’S BEHAVIOR

Another way to probe the effective interactions between
impurities is to scan the energies using a magnetic field
rather than temperature. As we are studying the part of the
magnetic curve that typically lies below the spin gap �s , the
results correspond to accessible magnetic fields, and are then
particularly relevant to experimental measurements. We aim
at proposing some possible relevant fits of this regime. Above
the spin gap, the elementary excitations involve magnons that
can localize in the disordered environment. There, the physics
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FIG. 15. (Color online) Finite temperature QMC results for the Curie constant per site of randomly depleted two-leg S = 1/2 isotropic
ladders (J⊥ = Js = 1) of total size N = 2 × 500 sites with Ni = 10,20,30,40 nonmagnetic impurities, corresponding to z = 1%,2%,3%,4%,
as indicated on the plots. QMC data have been averaged over several thousands of independent disordered samples. (a) The Curie constants are
shown for the entire temperature regime. Full lines show the high-temperature free spin regime c(T ) = (1 − z)/4; dotted lines the intermediate
plateau regime at z/4 (roughly visible for z = 1% but absent for higher dopings); and dashed lines the expected very low-T limit Cz,Ni

/Ni

computed in Sec. III A. The open magenta symbols show the Curie constant per site of the clean case, which start to deviate, rapidly
falling to zero, below the spin gap � [arrow on the z = 4% ]. (b) Same data as in the left part from which the asymptotic Curie constant
per site Cz,Ni

/Ni has been subtracted. One sees that the low-T part slowly goes to zero as power laws, with exponents α(z) indicated on
the plot.
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becomes quite different and we do not address these questions
related to Bose-glass physics.

A. The zero-temperature magnetization jump
and saturation plateau

We now turn to the generic behavior of the magnetic
curve m(H,T ). In the previous section, the nontrivial be-
havior when H → 0 at finite T was discussed. Physically, it
corresponded to susceptibility measurements performed with
H � T . Strictly speaking, we must have m(H,T ) = 0 when
H = 0 due to the SU(2) symmetry. If one now considers
a finite system with T = 0 and a small but finite magnetic
field, the degeneracy within a sector of total spin S will
be lifted to favor the state Sz = S. Then, there exists a
disorder averaged magnetization jump δm = m(H = 0+,T =
0) − m(H = 0,T = 0) that matches δm = 2〈Sz〉/N = 2S/N .
This is typical of a partially ferromagnetic state. If one does
not take into account chain breaking effects, as we do for the
effective model, the scaling of S yields a magnetization jump
that vanishes in the thermodynamical limit as

δm �
√

2z(1 − z)

π

1√
N

. (63)

Interestingly, we notice that, due to the random walk argument,
the prefactor is actually related to the zero-temperature
Curie constant c by δm ∼ √

c/N , which makes a connection
between the two noncommutating limits of the magnetic
responses under study. If we take chain breaking effects into
account, then there exists a jump even in the thermodynamical
limit which reads δm = s ∼

√
3

2 z3/2 ∼ c3/2 in the diluted limit
z � 1.

Lastly, one expects that, within a picture of impurities bring-
ing each exactly one spin, the saturation plateau corresponding
to the polarization of all these spins equals m = z. Yet, chain
breaking effects should lower this value since configurations
where two impurities are on the same rung do not bring any
free spin. Taking this effect into account gives an expected
saturation at m = z(1 − z). This effect matters for DMRG or
QMC data as well as experiments.

B. Zero-temperature magnetic curves

1. Hints from the random dimer model

Using the random dimer model, the low-temperature
magnetization curve (for H � T ) takes a Fermi-Dirac form
to a good approximation,

m(H,T ) � z

∫
dJP (J )

1

e(J−H )/T + 1
, (64)

where H plays the role of the chemical potential. This is
physically transparent as the system is equivalent in this limit
to a collection of two-level systems with only the singlet and
triplet Sz = 1 states contributing to the low-energy physics
which naturally maps onto fermionic statistics.

In particular, the T = 0 limit of this model gives that the
magnetic curve is simply related to the repartition function
R(J ) of the couplings through m(H,T = 0) = zR(H ). In the
case of the continuous distribution (32), this yields a power-law
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FIG. 16. (Color online) Schematic behavior of the magnetic curve
from the random dimer picture at T = 0 (a) and finite temperature
(b). δm represents the magnetization jump.

behavior:

m(H,T = 0) = z

2

[
1 +

(
H

J0

)α]
, (65)

with α = 2zξ and for H � J0, which already deviates sig-
nificantly from the Brillouin picture. It is important to notice
that situation where z > z∗ from (35) is physical in the case
of systems with a large correlation length ξ � 10. Then, the
curvature of the magnetic curve is expected to change from
concave to convex.

Still, we see that the random dimer model fails to reproduce
the correct H → 0 limit and gives for the jump δm = R(0)
[δm = 1/2 for Eq. (65)]. One can incorporate the exact
result (63) in the RDM by stretching the repartition function
of antiferromagnetic couplings R+(J ). We thus define the
phenomenological “stretched random dimer” ansatz as

m(H,T = 0) = δm + (z − δm)R+(H ). (66)

Physically, the issue of the random dimer model is that it
works with total spins S = 0 and S = 1 and cannot capture the
large-spin formation. These features and ansatz of the random
dimer model are represented on Fig. 16(a). Lastly, this rough
understanding of the shape of the curve leads to the following
simple power-law fit, which could be useful for experiments
or numerical calculations:

m(H,T = 0) = δm + (z − δm)

(
H

J0

)α

, (67)

in which one can leave free the three parameters δm, J0, and α.
Interestingly, RSRG arguments59 have also proposed a power-
law behavior for the magnetic curve when H � T based on
energy scales phenomenology.

2. Comparison between effective and microscopic models

We compute numerically the magnetization curves at zero
temperature using DMRG on the microscopic model and
average over many configurations. The results for the isotropic
ladder J⊥ = J1 are displayed on Figs. 17(a) and 17(b) for both
a system without frustration and with frustration in the incom-
mensurate regime. Qualitatively, the two curve are essentially
governed by the coupling distribution and frustration does

134420-15
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FIG. 17. (Color online) Comparison between DMRG on the
microscopic model (isotropic ladder) and ED on the effective model:
(a) in the commensurate regime and (b) in the incommensurate regime
with frustration. The phenomenological “stretched” dimer model of
(66) is also given using either the exact discrete or a continuous
version of the couplings distribution. The power-law fit is done using
(67) and provides a simple account of the deviation from the Brillouin
response, which is emphasized by the grey area.

not have a drastic qualitative effect. Interestingly, the simple
approximations described in the preceding section account
rather well of the behavior of the curve. First, the ED on
the effective model captures the power-law-like behavior and
even underlines the discrete nature of the coupling distribution.
This discrete nature is transparent from the ansatz (66) using
the exact effective couplings. The DMRG does show faded
steps corresponding to the larger couplings, and ED too.
The envelope of the random dimer model is captured by the
continuous version of the coupling distribution. Yet, we see
that one really needs the discretized version to be quantitative.
Last, we show that a fit of the form (67) captures the mean
power-law behavior of the curve in a satisfactory way. This is
all the more relevant as we will see that temperature tends to
fade the steps due to the discrete couplings.

One can notice the slight difference between the ED and
DMRG results. We attribute these to two main possible
effects. First, as the systems are chosen to have the same
total number of impurities, the limitation of the two-body
interaction effective model can play a role. Many-impurity
interactions could become relevant even though these are
subdominant effects. Second, we have seen that chain breaking
effects must make the saturation plateau occur at z(1 − z), but

it also has the effect of averaging magnetic curves over various
dopings. Indeed, in the presence of chain breaking effects, each
piece has a different doping which approaches z on average
but can be lower or higher. This should have significant effects
compare to the fixed z curve of the ED on the effective model.

The last important remark is that no saturation plateau
is reached in the isotropic ladder. As for the Curie constant
plateau, this is due to the fact that the typical energy scales
are of the same order of magnitude J0 ∼ Jmax ∼ �s (see
Fig. 5). Then, magnons become activated by the magnetic
field before all impurities are truly polarized. The energy
scales separation in the strong-coupling limit suggests that
such a plateau could be possible at large J⊥ but we have
not investigated this situation in details. In particular, the
microscopic model displays small couplings in this limit which
are harder to capture with DMRG.

C. Finite temperature

1. Random dimer model

The approximation of Eq. (64), naturally yields low-
temperature corrections from a Sommerfeld expansion,
valid provided T � H , which reads m(H,T ) = m(H,0) +
π2

6 P ′(H )T 2 + · · · , where P ′(H ) is the derivative of the cou-
pling distribution. For instance, in the case of the continuous
distribution (32) and taking the approximation z∗ � 1/(2ξ ),
the temperature corrections depend on doping and magnetic
field through

m(H,T ) = m(H,0) + π2

3

z(z − z∗)

z∗2

(
H

J0

) z
z∗
(

T

H

)2

.

Here again, the response to a small temperature is expected
to strongly depend on the side of the limiting case z =
z∗, displaying a change in sign on the corrections. In the
particular situation where z = z∗, for which P (J ) is flat, the
magnetization curve of the random dimer model can actually
be computed exactly:

m(H,T ) =z
sinh(H/T )

1 + 2 cosh(H/T )

× T

J0
ln

{
1 + eJ0/T [1 + 2 cosh(H/T )]

1 + e−J0/T [1 + 2 cosh(H/T )]

}
.

Following the previous remark on the inability of the random
dimer model to account for the large-spin formation, we can
devise an extension of the stretched dimer model at finite
temperatures using the following ansatz:

m(H,T ) � δm tanh

(
H

2T

)
+ z − δm

1 − R(0)

∫
J>0

mdimer(H,T ; J )p(J )dJ, (68)

where the first part accounts for the contribution of fer-
romagnetic couplings, while the second accounts for the
magnetization process of antiferromagnetic dimers. The first
term should in principle correspond to a Brillouin function of
spin S̄ but this version already gives satisfactory results.
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phenomenological “stretched” random dimer model at finite temperature from Eq. (68). Four increasing temperatures are given.

2. Comparison with ED and QMC

The effect of temperature is first discussed on Fig. 18 by
showing the comparison between the Brillouin response to the
ED and random dimer model predictions for four increasing
temperatures. All curves should collapse at high temperatures
T � Jmax. We see that the zero-temperature steps are rapidly
faded as temperature is turn on. Still, the deviation from the
Brillouin curve due to the interaction remains well visible for
finite temperature and actually makes the random dimer model
almost exact.

In order to validate the above comparison, we have
compared the ED on the effective model to QMC, which is
the appropriate method for finite temperature calculations on
the microscopic model. In Fig. 19, one observes a rather good
agreement for several realistic dopings. The larger the doping,
the larger the deviation from the Brillouin curve is and the
larger the distance from saturation is when the magnons set
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FIG. 19. (Color online) QMC results for the longitudinal mag-
netization vs external field H/J1 of depleted ladders of size N =
2 × 500 sites, averaged over ∼500 disordered samples, at finite
temperature T/J1 = 0.02. Different impurity concentrations z =
1%,2%,3%,4%,5% are shown, together with the clean case at the
same temperature for comparison. Horizontal dashed lines show the
expected saturation value for the impurities msat = z, and the full
lines are ED results obtained with PBC on 1000 random clusters of
10 impurities from which one clearly sees that the saturation value is
only reached when H/J1 → 1.

in. The slight difference between ED and QMC could here
again be attributed to many-impurity interactions not taken
into account in the effective model and also to the effective
doping averaging induced by chain breaking effects, as for
the zero-temperature curve. Then, the following message is
almost quantitatively correct from the comparison between
all different approaches: the low-part of the magnetic curve
probes the couplings distribution between the impurities.
This is evident in the random dimer model and the picture
survives to the microscopic model rather well. This simple
analysis is certainly due to the fact that we are discussing
a simple observable (density of magnetization), which is
little affected by low-energy behavior or correlations in the
system. Therefore it could be accessible and interesting to test
such phenomenology in experiments working with quasi-one-
dimensional systems.

D. Consequences for experiments

Our theoretical study could in principle apply to several
realistic spin gapped materials. However, as seen above, a clear
separation between different energy scales—the spin gap �s

below which free local moments are expected, and the largest
effective coupling Jmax below which they start to correlate
upon random F-AF exchanges—would be difficult to achieve
in systems close to the isotropic ladder limit. The separation
remains plausible in the strong-coupling limit, although we
have not investigate this point quantitatively in this paper. In
the isotropic case, a saturation regime of impurity spins will
be hardly detectable. Nevertheless, the regime of large spin
could be detected in Curie tails at low temperature, provided
the three dimensional ordering of induced moments (expected
below temperatures set by three dimensional couplings) occurs
at low enough temperature. In such a respect, a new analysis
of susceptibility data of Zn (S = 0) or Ni (S = 1) doped
BiCu2PO6 form Ref. 16 may give interesting results, although
the three dimensional ordering of induced moments occurs
below a few degrees of Kelvin.46 Perhaps more promising
is the doped Haldane chain system Y2BaNiO5

34,35,91 where
a very small interchain coupling ∼10−1 K is expected from
neutron scattering92 despite a very large spin gap �s � 100 K.

More generally, our study clearly shows that Curie tails,
present in all AF materials even for undoped ones, because of
intrinsic defects or Imry-Ma domain formation with random
couplings,93 have to be analyzed perhaps more carefully than
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what is usually done. In particular, the assumption of free
impurities leading to the extraction of their concentration z

through the simple form χimp = z/(4T ) is not expected to be
valid in many experimental situations.

Regarding the magnetization curve, our work can po-
tentially apply to many materials where Brillouin-like re-
sponses are observed upon increasing the external field. For
spin-gapped systems, the effective couplings between local
moments can strongly renormalize downwards the Brillouin-
like magnetization and pushes the saturation towards larger
magnetic fields, possibly larger than the spin gap �s . This
means that, at the critical field where magnon excitations
start to appear, not all impurity-induced moments have been
saturated. Such a phenomenology is expected for BiCu2PO6

in a field.51,94 Nevertheless, for this ladder material,51 and
also for other systems such as the Herbertsmithite Kagomé
compound,95 the presence of non-negligible Dzyaloshinskii-
Moriya (DM) anisotropies make the situation much more
difficult to analyze since DM terms induce a finite magnetic
response also below the spin gap. The modification of
the Brillouin-like response due to the competition between
impurity physics and DM interactions in an external field
at finite temperature is a very interesting subject, rele-
vant for many realistic systems, that we leave for future
studies.

VII. CONCLUSION

The physics of randomly depleted ladder, studied initially in
the seminal work of Sigrist and Furusaki,20 offers a remarkable
playground for studying the effect of impurity disorder in
gapped systems without and with frustration. In this contri-
bution to the field, we improved on several intuitive results of
Ref. 20 to provide quantitative predictions and comparison
to numerics and adressed the shape of the magnetization
curve. Based on a detailed analysis of the effective couplings
between impurities and of the corresponding coupling dis-
tribution, we focused the main two magnetic responses: the
zero-field susceptibility, through the temperature-dependent
Curie constant, and the magnetization curve. The first one is
shown to have a nontrivial power-law behavior at very-low
temperature in qualitative agreement with a RSRG scenario.
The high-temperature deviation from free impurity spins is
well captured by a simple random dimer model. This model
also accounts qualitatively well for the magnetization curve
for which we give several phenomenological fits at zero and
finite temperature, which are in good agreement with accurate
numerical calculations. One of the key outcome of this study
is that incommensurability (induced by frustration) plays little
role in the local quantities we looked at. Indeed, the main
consequence of incommensurability is a mere reduction of
the zero-temperature spontaneous magnetization and of the
low-temperature limit of the Curie constant. The situation
might be different in higher dimensional system but the
one-dimensional version seems to be in the same universality
class, as expected from RSRG arguments. These predictions
on the magnetic responses could motivate experiments in that
direction since the required temperatures and magnetic fields
are accessible for several compounds.
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APPENDIX A: CORRELATIONS AND SUSCEPTIBILITY IN
THE BOND-ORDER MEAN-FIELD APPROXIMATION

In this appendix, we detail the calculation of the spin
correlation functions within the bond-order mean-field theory
developed for the frustrated ladder in Ref. 53. We will use the
same notations as in this reference. The dynamical and static
structure factors of the model has also been addressed recently
in Ref. 54.

1. Notations and useful relations from BOMF

Within BOMF theory in which the singlet operators on
rungs are assumed to condense 〈si〉 = s̄, the mean-field
Hamiltonian is solved through a Bogoliubov transformation
on the triplet operators in k-space tk,σ

bkσ = uktkσ + vkt
†
−kσ , (A1)

where uk and vk satisfy u2
k − v2

k = 1. This leads to the diagonal
version of the Hamiltonian

Hm = E0 +
∑

k

ωkb
†
kσ bkσ , (A2)

where ωk is the dispersion relation that depends on s̄ and the
chemical potential μ used to enforce the hard-core nature of the
triplets on rungs. These two parameters are usually computed
self-consistently with numerical methods.

In this paper, in order to have tractable analytical formulas,
we use the following approximations, which turn out to be
good in the strong-coupling limit, s̄ � 1 and

ωk � J⊥

√
1 + J1

J⊥
cos k + J2

J⊥
cos 2k. (A3)

The zeros of ωk extended to the complex plane will control
the singularities of most physical quantities. To this end, we
introduce the polynomial

P (X) = 2
J2

J⊥
X2 + J1

J⊥
X + 1 − J2

J⊥
, (A4)

such that

ωk � J⊥
√

P (cos k). (A5)

134420-18



MAGNETIC RESPONSES OF RANDOMLY DEPLETED SPIN . . . PHYSICAL REVIEW B 88, 134420 (2013)

2. Spin structure factor and real-space correlations

In Ref. 53, we obtained that the spin structure factor defined
by

Sk =
L∑

x=1

eikxSx, (A6)

where Sx = 〈(Sx,1 − Sx,2) · (S1,1 − S1,2)〉 are real-space spin
correlations, is given in the BOMF approximation by

Sk = 3s̄2

√
P (cos k)

. (A7)

We now give more details on the two commensurable and
incommensurable regimes, limited to the strong-coupling
regime. We recall that the transition occurs at J2,c � J1/4.
(i) For J2 < J2,c, P has two real roots, lower than −1.
Consequently, Sk has branch cuts and four branching points on
the axis �[k] = π , with imaginary parts denoted by ±1/ξ±

spin

that define two correlation lengths ξ±
spin (ξ+

spin > ξ−
spin), such that

ξ±
spin � arcosh−1

⎛⎝J1 ∓
√

J 2
1 − 4J2J⊥

4J2

⎞⎠ , (A8)

in the strong-coupling limit. (ii) For J2 = J2,c, P factorizes
exactly and the square root disappears in the denominator of
Sk . There is no longer branch cuts and the branching points
merge to give two poles on the axis �[k] = π , with imaginary
part ±1/ξspin, where

ξspin = arcosh−1

(
J1

4J2

)
, (A9)

(iii) For J2 > J2,c, the roots of P have a nonzero imaginary
part. Consequently, the branching points leaves the axis
�[k] = π . There coordinates can be written as ±q ± iξ−1

spin,
where q is the incommensurate wave-vector associated to the
real-space correlations and ξspin is the spin correlation length.
In the large J⊥ limit, we obtain

q � arccos

(
− J1

2
√

J2J⊥

)
, (A10)

ξspin � arcosh−1

(
1

2

√
J⊥
J2

)
. (A11)

Real-space behavior of the correlation function is recovered
after a Fourier transform of the static structure factor:

Sx = 3s̄2

2π

∫ 2π

0

eikx

√
P (cos k)

dk. (A12)

One cannot easily compute this integral using the theorem
of residues, because of the branch cuts, but one can argue
that the behavior in x is essentially controlled by eiz1x et
eiz2x with z1 and z2 the singularities of Sk in the upper half
plane. Furthermore, due to the presence of the square root
in the denominator, one may guess the following asymptotic
behavior ∫ +∞

0

eikx√
k2 + ξ−2

dk ∼
x�ξ

e−x/ξ

√
x

. (A13)

Indeed, as for the J1-J2 chain,96 the 1/
√

x correction yields
better fits of the numerical results. We thus have the following
scenario for the correlation functions. (i) For J2 < J2,c, in the
commensurate regime:

Sx ∼ (−1)x√
x

(Ae−x/ξ+
spin − Be−x/ξ−

spin ), (A14)

where ξ±
spin are given by (A8) and A and B are two constants

that depend on ξ±
spin. (ii) For the transition point J2 = J2,c, we

remark that the factorization of the denominator makes the
decay purely exponential. Then, one expects

Sx ∼ C(−1)xe−x/ξspin , (A15)

with ξspin given by (A9) and C a constant depending onξspin.
(iii) For J2 > J2,c, in the incommensurate regime:

Sx ∼ C ′ e
−x/ξspin

√
x

cos(qx + φ), (A16)

where q and ξspin are given by (A10) and (A11), and C ′ and φ

are constant depending on q and ξspin.

3. Susceptibility

In order to compute the magnetic susceptibility at k =
(k,π ), one applies a magnetic field corresponding to the wave
vector k

Hr = H cos(k · r) ez. (A17)

In the BOMF approximation, the Hamiltonian then reads

H = E0 +
∑
k′,σ

ωk′b
†
k′σ bk′σ

− L

2
Hs̄(uk − vk)(bk0 + b−k0 + b

†
k0 + b

†
−k0). (A18)

The energy correction is obtained from second order perturba-
tion theory in H as

E � E0 − Ls̄2 (uk − vk)2

2ωk

H 2, (A19)

By definition, the susceptibility χk enters in the expression
through linear response theory

E � E0 − L(χk + χ-k)H 2 (A20)

from which we deduce the following expression for the static
susceptibility:

χk,π = s̄2

J⊥ − 4μ

1

P (cos k)
, (A21)

where P is the polynom defined in (A4).

a. Magnetization profile

Using the result for the susceptibility, on gets for the
magnetization profile the prediction〈

Sz
x,y

〉 � 1

8
(−1)y

1

2π

∫ 2π

0

eikx

P (cos k)
dk, (A22)

where the position (x,y) are relative to the impurity site. The
integral can be computed with help of the residues theorem
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applied over a rectangle of base between 0 and 2π and infinite
in the vertical direction.

APPENDIX B: COUPLINGS DISTRIBUTION IN THE
INCOMMENSURATE CASE

Performing the change of variables requires the calculation
of the derivative

dJ

dr
= −J (r)

ξ
[1 + qξ tan(qr + φ)] (B1)

= −J (r)

ξ

⎡⎣1 + qξ

√(
J0

J (r)

)2

e−2r/ξ − 1

⎤⎦ . (B2)

The zeros of the derivative of denoted by rm and satisfy the
equation

tan(qrm + φ) = − 1

qξ
= − tan θ (B3)

with θ = arctan
(

1
qξ

)
∈ [0,π/2]. Consequently, we have the

zeros

rm = (mπ − θ − φ)/q > 0 with m = 1,2,3, . . . (B4)

One can take by convention r0 = 0 to define the intervals in
which the sign of the derivative is constant Im = [rm,rm+1]. It
is clear that the intervals have the same size rm+1 − rm = π/q.
Formally, one can write

δ(J − J (r)) =
∑

r∗
k |J (r∗

k )=J

∣∣∣∣dJ

dr

∣∣∣∣−1

r=r∗
k

δ(r − r∗
k ).

The solutions r∗
k (J ) of the equation J (r) = J are not analyti-

cally computable in general. For a given J , there is at most one
solution in each interval Im and there is a least one solution
for |J | � J0. Let us denote by S(J ) the number of solutions at
a given J so that the index ranges 1 � k � S(J ). Using (B2),
we have

δ(J − J (r)) =
S(J )∑
k=1

ξ

|J | + qξ

√
J 2

0 e−2r∗
k (J )/ξ − J 2

δ(r − r∗
k (J )).

We restrict the discussion to the continuous distribution
case since the analytical formula for the discrete version do
not help with respect to a direct numerical sampling. In this
case, the weighting by the continuous approximation for p(r)
gives

P (J ) = zξ

S(J )∑
k=1

e−2zr∗
k (J )

|J | + qξ

√
J 2

0 e−2r∗
k (J )/ξ − J 2

.

The reduction of probability of large J is understood by
studying the situation where J � J0 so that there is only a
single solution r∗

1 (J ). Then, one can write

r∗
1 (J ) = ξ ln

(
J0

|J |
)

− δr (B5)

with δr > 0 since the effect of q is to decrease the position of
the solution with respect to the q = π result. This gives

P (J ) = Pq=π (J )
e2zδr(J )

1 + qξ
√

e2δr(J )/ξ − 1
.

Although it is not obvious in the formula, one may convince
one-self graphically that P (J ) < Pq=π (J ) corresponding to a
decrease of the weight at large J . Consequently, the weight
of small J s increase since the signal can approach zero at any
distance.

APPENDIX C: DISTRIBUTION OF LADDER SIZES

In this appendix, we study the distribution of sizes of
disconnected ladders ρ(
) for a given impurity doping z. If we
consider an impurity at position (x,0), there are three positions
for a second impurity that break the ladder: (x − 1,1), (x,1)
and (x + 1,1). In the diluted limit z � 1, the density of cuts
is then 3z2 and the average length of disconnected ladders

̄ � 1/3z2. As the cuts are not correlated (at least at large
enough distances), it is reasonable to assume that the number
of cuts follows a geometric law of parameter ζ � 3z2:

ρ(
) � ζ (1 − ζ )
. (C1)

In fact, the distribution can be calculated exactly. For this,
the ladder is described by a Markov chain (Xn)n�0, where
Xn represents the configuration of the plaquette made of the
two consecutive rungs n and n + 1 (see Fig. 20). The Markov
property is verified: the configuration on plaquette n + 1 only
depends of the configuration on plaquette n as they have a rung
in common. The 24 configurations on a plaquette are classified
as follows: (1) the plaquette dos not break the ladder and there
is no impurity on the second rung, (2) the plaquette dos not
break the ladder and there is one impurity on the second rung,
and (3) the plaquette breaks the ladder.

The transition matrix Q, whose elements are the proba-
bilities to go to configuration j from configuration i, writes

Q =
⎛⎝ Q̃

z2

z

0 0 1

⎞⎠ , (C2)

where

Q̃ =
(

(1 − z)2 2z(1 − z)

(1 − z)2 z(1 − z)

)
. (C3)

The transition probabilities from configuration 3 are not
needed and we can take this configuration as a trap state.
We want to calculate the distribution of distances to reach

FIG. 20. (Color online) Schematics of the Markov chain process
for chain breaks in the ladder.
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configuration 3

ρ(
) = P(X
+1 = 3,X
 �= 3, . . . ,X0 �= 3), (C4)

starting from an initial distribution for X0

P0 = (p1 − p0). (C5)

Equation (C4) can be expanded as

ρ(
) = ζ



−1∏
n=0

(1 − ζn), (C6)

where

ζn = P(Xn+1 = 3|Xn �= 3)

= z2P(Xn = 1) + zP(Xn = 2)

P(Xn = 1) + P(Xn = 2)
. (C7)

One can easily show by mathematical induction that

P(Xn = i) = (P0Q
n)i . (C8)

As a result, we have

ζn =
(p1 − p)Q̃n

(
z2

z

)
(p1 − p)Q̃n

( 1
1

) . (C9)

The distribution (C6) is not exactly a geometric law but ζn

converges really quickly to a constant

ζ = 1
2 [1 + z − (1 − z)

√
1 + 4z(1 − z)], (C10)

independent of p, that is, independent of the initial distribution
P0. In the limit z � 1, one recovers ζ � 3z2.

The mean cluster size thus has the following low-z
expansion


̄ = 1

3z2

(
1 + 2z − 4

3
z2 + 4z3 + · · ·

)
. (C11)

On the other limit z → 1, 
̄ → 1, as expected.
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