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The quantum spin- 1
2 orthogonal-dimer chain with the Heisenberg intradimer and Ising interdimer interactions

in a magnetic field is considered by a rigorous approach. The model conserves the z component of total spin
on vertical Heisenberg bonds, and this property is used to calculate exactly the partition function using the
transfer-matrix method. We have found the ground-state phase diagram of the given model in a magnetic field
as well as the macroscopic degeneracy along field-induced transitions accompanied with the magnetization
jumps. The model exhibits two intermediate fractional plateaux at one quarter and one half of the saturation
magnetization. We have examined the effect of the exchange anisotropy in the XXZ Heisenberg intradimer
interaction on the ground state. It is shown that the one-quarter and one-half plateaux may disappear from the
magnetization curve for the ferromagnetic Heisenberg intradimer interaction. We have also studied rigorously
the effect of frustrated interactions on the thermodynamic and magnetic properties of the model and show how
the macroscopic degeneracy of the ground state is reflected in the low-temperature behavior of the magnetization,
entropy, and specific heat. A possibility of observing enhanced magnetocaloric effect during the adiabatic
demagnetization is discussed in detail.
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I. INTRODUCTION

The quantum spin- 1
2 dimer-plaquette or orthogonal-dimer

chain1,2 represents one of the known examples of partially ex-
actly solvable models with the dimerized ground state.3 Orig-
inally it was suggested as a one-dimensional counterpart of
the depleted square lattice1 or the Shastry-Sutherland lattice.4

Despite its specific structure the Shastry-Sutherland model is
related to a number of magnetic compounds [SrCu2(BO3)2,
TmB4, TbB4, etc.] having either almost isotropic Heisenberg
or highly anisotropic Ising interactions (see Ref. 5 for a recent
review). Magnetization curves of these compounds exhibit the
set of fractional plateaux, which has not been firmly explained
yet.5 A consistent explanation of the series of plateaux in a
low-temperature magnetization curve of SrCu2(BO3)2 remains
the hot topic of the current research.6,7 The comprehensive
study of the model is in general quite difficult and the only
known exact result concerns the dimerized ground state for the
sufficiently strong intradimer (diagonal) interactions.8 Since
the orthogonal-dimer chain or two coupled orthogonal-dimer
chains9 can approximate to some extent the Shastry-Sutherland
lattice, their study may reveal some basic features which
are typical also for this frustrated two-dimensional model.
For instance, the quantum spin- 1

2 Heisenberg orthogonal-
dimer chain shows an infinite series of the magnetization
plateaux.10,11 At the same time the Heisenberg model of two
coupled orthogonal-dimer chains considered in Ref. 9 exhibits
a number of fractional plateaux, and some of them are identical
to the ones observed in the Shastry-Sutherland model.

Recently, a quite specific quantum spin- 1
2 orthogonal-dimer

chain with triangular XXZ Heisenberg clusters coupled via
the intermediate Ising spins has been considered by Ohanyan
and Honecker.12 This simplified Ising-Heisenberg orthogonal-
dimer chain is exactly soluble by means of the transfer-matrix

method and shows under certain conditions surprisingly good
correspondence to the pure quantum model with all Heisenberg
interactions. In the present work, we will study another version
of the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain, where
the quantum Heisenberg interactions are retained on all vertical
and horizontal bonds coupled together through the Ising
interactions. This model preserves the z component of the total
spin on vertical Heisenberg bonds (dimers), which allows us to
obtain exactly all ground states and thermodynamic properties.
During the preparation of this work, we became aware of
the similar work treating the same spin- 1

2 Ising-Heisenberg
orthogonal-dimer chain in an absence of the external field
using a somewhat different approach based on a direct
algebraic mapping transformation.13

Last but not least, let us provide some insight into an
experimental background of our work. Although the exactly
solved Ising-Heisenberg models with alternating Ising and
Heisenberg bonds could be regarded more as a mathematical
curiosity rather than the realistic models of some actual
magnetic materials, recent progress in the field of magneto-
chemistry has opened up new possibilities for a targeted design
of magnetic materials with a very specific combination of mag-
netic interactions. A few eminent Ising-Heisenberg models
have proved their usefulness by an explanation of the magnetic
behavior of some real insulating magnetic materials such as
[(CuL)2Dy][Mo(CN)8],14 [Fe(H2O)(L)][Nb(CN)8][Fe(L)],15

and Dy(NO3)(DMSO)2Cu(opba)(DMSO)2.16,17

A series of isostructural 3d-4f coordination polymers
[Ln(hfac)2(CH3OH)]2[Cu(dmg)(Hdmg)]2 (Ln = Gd, Dy, Tb,
Ho, Er, Pr, Nd, Sm, Eu) involves an unprecedented
heterobimetallic motif of the orthogonal-dimer chain.18–22

The dysprosium-based member of this isomorphous series
[Dy(hfac)2(CH3OH)]2[Cu(dmg)(Hdmg)]2 to be further ab-
breviated as [Dy2Cu2]n [see Fig. 1(a)] provides a valuable
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FIG. 1. (Color online) (a) A segment from the
crystal structure of the bimetallic polymeric chain
[Dy(hfac)2(CH3OH)]2[Cu(dmg)(Hdmg)]2 ([Dy2Cu2]n) adapted
according to the crystallographic data reported in Ref. 20. For better
clarity, the crystallographic positions of hydrogen atoms are omitted
and two metallic atoms (Dy and Cu) are shown by the balls with
two times larger van der Waals radii than the balls representing
the nonmetallic atoms. (b) A schematic representation of the
magnetic structure of [Dy2Cu2]n, which corresponds to the spin- 1

2
orthogonal-dimer chain with four different exchange pathways
between Dy-Dy, Cu-Cu, and Dy-Cu magnetic ions.

experimental realization of the spin- 1
2 Ising-Heisenberg

orthogonal-dimer chain due to a rather strong magnetic
anisotropy of Dy3+ ions.19,20 As a matter of fact, the vertical
spin- 1

2 Ising dimers assigned to double oxo-bridged dinuclear
entities of Dy3+ ions regularly alternate within the polymeric
compound [Dy2Cu2]n with the horizontal spin- 1

2 Heisenberg
dimers assigned to the macrocyclic dinuclear entities of Cu2+
ions. It turns out that the antiferromagnetic superexchange
coupling between Dy3+ and Cu2+ ions mediated by the
oximate bridge is by far the most dominant coupling, whereas
the superexchange mechanism for the double oxo-bridged
dinuclear entities of Dy3+ ions and the macrocyclic dinuclear
entities of Cu2+ ions transmit presumably much weaker
ferromagnetic coupling.20 It can be clearly seen from Fig. 1(a)
that the magnetic structure of [Dy2Cu2]n implies a more
complex (asymmetric) interaction between the spin- 1

2 Ising
and Heisenberg dimers, which involve in total four different
exchange pathways between Dy-Dy, Cu-Cu, and Dy-Cu
magnetic ions [see Fig. 1(b)]. For the sake of simplicity,
we will restrict our further analysis only to the symmetric
particular case with just two different exchange couplings
(see Fig. 2), whereas the comprehensive analysis of the more
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FIG. 2. (Color online) The spin- 1
2 Ising-Heisenberg orthogonal-

dimer chain. Thick (thin) lines denote the Heisenberg (Ising) bonds.

general (asymmetric) case involving four different exchange
couplings will be the subject matter of our future work.

The paper is organized as follows. In Sec. II we introduce
the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain with the
alternating Heisenberg and Ising interactions and solve it using
the transfer-matrix method. In Sec. III we will consider in detail
the ground-state phase diagram. Section IV presents the most
interesting results for the thermodynamic quantities and the
magnetocaloric effect. The most important findings are briefly
summarized in Sec. V.

II. MODEL AND SOLUTION

Let us define the quantum spin- 1
2 Ising-Heisenberg

orthogonal-dimer chain with the Heisenberg intradimer and
the Ising interdimer interactions in a magnetic field through
the Hamiltonian (see Fig. 2):

H =
N∑

i=1

Hi,

H2i+1 = J1
[(

sz
1,2i + sz

2,2i

)
sz

1,2i+1 + sz
2,2i+1

(
sz

1,2i+2 + sz
2,2i+2

)]
+ J (s1,2i+1 · s2,2i+1)� − h

(
sz

1,2i+1 + sz
2,2i+1

)
,

H2i = J (s1,2i · s2,2i)� − h
(
sz

1,2i + sz
2,2i

)
, (1)

where (s1,i · s2,i)� = sx
1,i s

x
2,i + s

y

1,i s
y

2,i + �sz
1,i s

z
2,i , sα

l,i denotes
spatial projections (α = x,y,z) of the spin- 1

2 operator, J is
the anisotropic Heisenberg intradimer interaction between
spins on vertical and horizontal bonds, � is the anisotropy
parameter, and J1 is the Ising interdimer interaction between
spins from different bonds. In what follows, we will be mainly
interested in investigating the particular case of antiferromag-
netic interactions J > 0, � > 0, J1 > 0, which brings the spin
frustration into play. Further, the periodic boundary condition
for spins sl,N+1 ≡ sl,1 will be implied for convenience.

Since the z component of the total spin on a vertical
Heisenberg bond is the integral of motion, and it is the only
common operator for neighboring local Hamiltonians Hi , all
Hi commute with each other. Hence, it follows that it is quite
convenient to use a decomposition of the total Hamiltonian (1)
into the sum of commuting parts H = ∑N/2

i=1 H̃2i+1, where

H̃2i+1 = H2i+1 + (H2i + H2i+2)/2. (2)

Consider now the total spin momentum operator on the
vertical Heisenberg bonds S2i = s1,2i + s1,2i . It is quite ap-
parent that S2i represents the conserved quantity with well
defined quantum numbers S = 0,1 and |S2i |2 = S(S + 1),
Sz

2i = −S,−S + 1, . . . ,S.23 The respective eigenstates of this
momentum spin operator can be denoted as |S2i ,S

z
2i〉.

Using the transfer-matrix method,24 the partition function
of the model can be written in the form:

Z = Tr{S2i ,S
z
2i }

N/2∏
i=1

T
(
S2i ,S

z
2i ; S2i+2,S

z
2i+2

)
, (3)

where the transfer matrix T (S2i ,S
z
2i ; S2i+2,S

z
2i+2) =

Tr{s1,2i+1,s2,2i+1} exp(−βH̃2i+1) contains the trace over two
spins from the (2i + 1)-st horizontal Heisenberg bond. Here,
β = 1/T denotes the inverse temperature (Boltzmann’s
constant is set to unity kB = 1). The straightforward
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calculation gives the transfer matrix in the form (where rows
and columns correspond to the following set of states |0,0〉,
|1,1〉, |1,0〉, |1,−1〉):

T =

⎛
⎜⎜⎜⎝

a4b
2
2 a−

3 b−
1 b2 a4b

2
2c a+

3 b+
1 b2

a−
3 b−

1 b2 a−
1 (b−

1 )2 a−
3 b−

1 b2c a2b
−
1 b+

1

a4b
2
2c a−

3 b−
1 b2c a4b

2
2c

2 a+
3 b+

1 b2c

a+
3 b+

1 b2 a−
1 b−

1 b+
1 a+

3 b+
1 b2c a+

1 (b+
1 )2

⎞
⎟⎟⎟⎠ , (4)

a±
1 = 2

{
e− β�J

4 cosh[β(J1 ± h)] + e
β�J

4 cosh

(
βJ

2

)}
,

a2 = 2

{
e− β�J

4 cosh(βh) + e
β�J

4 cosh

(
β

2

√
J 2 + 4J 2

1

)}
,

a±
3 = 2

{
e− β�J

4 cosh

[
β

(
J1

2
± h

)]

+ e
β�J

4 cosh

(
β

2

√
J 2 + J 2

1

)}
,

a4 = 2

{
e− β�J

4 cosh(βh) + e
β�J

4 cosh

(
βJ

2

)}
,

b±
1 = e− β

2 ( �J
4 ±h), b2 = e

βJ (2 + �)
8 , c = e− βJ

2 .

Since the first and third row of the transfer matrix (4) are
linearly dependent, the transfer matrix T is the degenerate
matrix, and at least one of the eigenvalues equals zero. In
the case of zero external field a±

1 = a1, a±
3 = a3, b±

1 = b1

and consequently, it is possible to find the eigenvalues of the
transfer matrix as two simple roots and two roots of quadratic
equation.13 In the case of nonzero external field h �= 0, one
eigenvalue of the transfer matrix still equals to zero and the
additional three eigenvalues are given by the roots of cubic
equation λ3 + Aλ2 + Bλ + C = 0, where

A = −a−
1 (b−

1 )2 − a+
1 (b+

1 )2 − a4b
2
2(1 + c2),

B = [(a−
1 (b−

1 )2 + a+
1 (b+

1 )2)a4 − (a−
3 )2(b+

1 )2 − (a+
3 )2(b−

1 )2]

× b2
2(1 + c2) + (

a−
1 a+

1 − a2
2

)
(b−

1 )2(b+
1 )2,

C = [−(
a−

1 a+
1 − a2

2

)
a4 + a−

1 (a+
3 )2 + a+

1 (a−
3 )2 − 2a2a

−
3 a+

3

]
× (b−

1 )2(b+
1 )2b2

2(1 + c2).

The roots can be calculated using trigonometric solution of
cubic equation (see, e.g., Ref. 25):

λn = −2
√

p cos

(
φ

3
+ 2πn

3

)
, (n = 0,1,2)

p =
(

A

3

)2

− B

3
, q = −

(
A

3

)3

+ AB

6
− C

2
, (5)

cos φ = q√
p3

.

The free energy per site in the thermodynamic limit is obtained
within the transfer-matrix method24 as

f = lim
N→∞

− 1

2Nβ
log Z = − 1

4β
log λmax, (6)

where λmax denotes the maximal eigenvalue of the transfer
matrix (4).

III. THE GROUND STATE

Let us start by examining the ground-state properties of the
spin- 1

2 Ising-Heisenberg orthogonal-dimer chain. To get the
ground state, we have to find first the lowest-energy eigenstate
of the local Hamiltonian (2). For a one-dimensional system it
is then always possible to extend this state to the whole chain,
which can be afterwards proven to be the global ground state
using the variational principle (see, e.g., Ref. 26). Using this
procedure, we have found the following six ground states:

(i) the unique singlet dimer (SD) phase

|SD〉 =
N∏

i=1

|Si〉, (7)

|Si〉 = 1√
2

(|↑1,i↓2,i〉 − |↓1,i↑2,i〉), (8)

with the energy E0 = −NJ (2 + �)/4;
(ii) the two-fold degenerate modulated antiferromagnetic

(MAF) phase

|MAF〉 =
N/4∏
i=1

{ |↑1,2i↑2,2i〉|φ(+)
2i+1〉|↓1,2i+2↓2,2i+2〉|φ(−)

2i+3〉,
|↓1,2i↓2,2i〉|φ(−)

2i+1〉|↑1,2i+2↑2,2i+2〉|φ(+)
2i+3〉,

(9)

|φ(+)
i 〉 = − sin

(
α

2

)
|↑1,i↓2,i〉 + cos

(
α

2

)
|↓1,i↑2,i〉,

|φ(−)
i 〉 = cos

(
α

2

)
|↑1,i↓2,i〉 + sin

(
α

2

)
|↓1,i↑2,i〉, (10)

cos α = 2J1√
J 2 + 4J 2

1

,

with the energy E0 = −N

√
J 2 + 4J 2

1 /4 and the quantum
reduction of the staggered magnetization of the spins residing
on the horizontal Heisenberg bonds: 〈sz

1,2i+1〉 = 〈sz
2,2i+3〉 =

−〈sz
2,2i+1〉 = −〈sz

1,2i+3〉 =−cos α;
(iii) the two-fold degenerate antiferromagnetic (AF) phase

|AF〉 =
N/2∏
i=1

{ |↑1,2i↑2,2i〉|↓1,2i+1↓2,2i+1〉,
|↓1,2i↓2,2i〉|↑1,2i+1↑2,2i+1〉, (11)

with the energy E0 = N (�J/2 − J1)/2;
(iv) the two-fold degenerate modulated ferrimagnetic (MFI)

phase

|MFI〉 =
N/4∏
i=1

{ |↑1,2i↑2,2i〉|ϕ(+)
2i+1〉|S2i+2〉|ϕ(−)

2i+3〉,
|S2i〉|ϕ(−)

2i+1〉|↑1,2i+2↑2,2i+2〉|ϕ(+)
2i+3〉,

(12)

|ϕ(+)
i 〉 = − sin

(
α′

2

)
|↑1,i↓2,i〉 + cos

(
α′

2

)
|↓1,i↑2,i〉,

|ϕ(−)
i 〉 = cos

(
α′

2

)
|↑1,i↓2,i〉 + sin

(
α′

2

)
|↓1,i↑2,i〉, (13)

cos α′ = J1√
J 2

1 + J 2
,

with the energy E0 = −N (
√

J 2 + J 2
1 + J (1 + �)/2 + h)/4

and the quantum reduction of the staggered magnetization
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FIG. 3. (Color online) Ground-state phase diagram of the
spin- 1

2 Ising-Heisenberg orthogonal-dimer chain (1) in a zero mag-
netic field for J = 1. The broken line indicates a phase boundary with
the macroscopic degeneracy 2N/2.

of the spins residing on the horizontal Heisenberg bonds:
〈sz

1,2i+1〉 = 〈sz
2,2i+3〉 = −〈sz

2,2i+1〉 = −〈sz
1,2i+3〉 =−cos α′;

(v) the two-fold degenerate staggered bond (SB) phase

|SB〉 =
N/2∏
i=1

{
|↑1,2i↑2,2i〉|S2i+1〉,
|S2i〉|↑1,2i+1↑2,2i+1〉,

(14)

with the energy E0 = −N (J/2 + h)/2;
(vi) the ferromagnetic (FM) phase

|FM〉 =
N/2∏
i=1

|↑1,2i↑2,2i〉|↑1,2i+1↑2,2i+1〉, (15)

with the energy E0 = N (J1/2 + �J/4 − h).
The zero-field ground-state phase diagram shown in Fig. 3

contains just three different ground states SD, MAF, and AF.
Obviously, the SD phase becomes the ground state in the
particular case of the antiferromagnetic Heisenberg coupling
and sufficiently weak Ising interdimer interaction. When the
Ising interdimer interaction J1 strengthens, the MAF phase
is favored with a peculiar quantum antiferromagnetic order
of the spins from the horizontal Heisenberg bonds accom-
panied with the alternating character of the fully polarized
triplets on the vertical Heisenberg bonds (9). Finally, the
fully polarized triplet states on the vertical and horizontal
Heisenberg dimers become favorable for the special case of
ferromagnetic intradimer zz coupling (� < 0), whereas the
nearest-neighboring vertical and horizontal Heisenberg bonds
are polarized in the opposite direction. The boundary between
the relevant phases can be readily calculated by comparing
the ground-state energies E0 of individual phases: (i) SD-AF:
� = 2J1/J − 1, (ii) SD-MAF: � = −2 +

√
1 + 4(J1/J )2,

(iii) MAF-AF: � = 2J1/J −
√

1 + 4(J1/J )2. It is noteworthy
that all curves meet at one triple point with the coordinates
J1/J = 2/3, � = −1/3. As it will be shown below, the
ground-state boundary between MAF and AF has macroscopic
degeneracy W = 2N/2.

The effect of nonzero magnetic field on the overall ground-
state phase diagram is shown in Fig. 4 for several values
of the exchange anisotropy �. Consider first the particular
case of antiferromagnetic Heisenberg intradimer interaction
with � = 1. Under this condition, the zero-field ground state
can be either SD or MAF phase depending on a mutual
competition between the Heisenberg intradimer and Ising
interdimer interactions J and J1. However, the magnetic field
of moderate strength destroys both SD and MAF states due to
energetic stabilization of the MFI phase, which is characterized
by the alternating character of the nonmagnetic singlets and
fully polarized triplets on the vertical Heisenberg bonds.
Consequently, this latter ground state manifests itself in a
magnetization process as the intermediate one-quarter plateau,
because there is no contribution to the total magnetization
from the spins on the horizontal Heisenberg bonds displaying
a quantum antiferromagnetic order. A further increase in the
external magnetic field leads to a presence of the SB phase, in
which the nonmagnetic singlets and the fully polarized triplets
regularly alternate on the horizontal and vertical Heisenberg
bonds. As a result, the SB phase will cause a presence of the
additional plateau at one half of the saturation magnetization.
Finally, an extremely strong magnetic field naturally flips
all spins to the external-field direction, which results in the
fully polarized FM phase. To summarize our findings for the
magnetization process, the zero-temperature magnetization
curve displays two different intermediate plateaux at one
quarter and one half of the saturation magnetization, which
provide a macroscopic manifestation of two striking MFI and
SB phases of purely quantum character. It should be noted
that this picture does not qualitatively change for a more
general case of the antiferromagnetic Heisenberg intradimer
interactions with � > 0.

On the other hand, several topologies of the ground-
state phase diagram are possible for the special case � < 0
corresponding to the ferromagnetic Heisenberg intradimer
interaction. If − 1

3 < � < 0, the new AF phase can be detected
in a low-field region of the ground-state phase diagram for
sufficiently high values of the Ising interdimer interaction
J1. As a consequence, for sufficiently strong interdimer
interactions the model exhibits a direct field-induced transition
from the AF phase towards the one-half plateau SB phase
omitting the one-quarter plateau MFI phase. If the Ising
interdimer interaction J1 is of moderate strength or sufficiently
weak, the effect of external magnetic field is quite similar to
the case discussed previously. The increasing magnetic field
changes at the first transition field the ground state SD, MAF,
or AF to the one-quarter plateau MFI phase, then at the second
transition field the MFI phase to the one-half plateau SB
phase, and finally the SB phase at the saturation field to the
fully polarized FM phase. Accordingly, the one-quarter and
one-half fractional plateaux are still present in the relevant
zero-temperature magnetization curves. Next, the vertical
stripe corresponding to the MAF phase completely disappears
from the ground-state phase diagram for −1 < � < − 1

3 .
Finally, the ground-state phase diagram becomes quite simple
for � � −1 when the ferromagnetic Heisenberg intradimer
interaction of the easy-axis type supports the polarized triplet
states only. The ground state in an absence of the magnetic
field is created by the AF phase and this order breaks
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FIG. 4. (Color online) Ground-state phase diagram of the spin- 1
2 Ising-Heisenberg orthogonal-dimer chain for J = 1, � =

1, −0.25, −0.5, −1. Broken lines denote the ground state with the macroscopic degeneracy of monomer covering on a chain; dotted lines
denote the macroscopic degeneracy of dimer covering on a chain (see the text below).

at the saturation field to the FM phase. It is quite clear
from the above argument that both intermediate fractional
plateaux at one quarter and one half of the saturation mag-
netization vanish from the zero-temperature magnetization
curve.

For completeness, let us provide the expressions for
boundaries between individual phases, which have been
obtained by comparing the ground-state energies: (i) SD-MFI:

h = −
√

J 2 + J 2
1 + J (3+�)

2 , for � > −1, macroscopic degen-

eracy W = ( 1+√
5

2 )N/2 in the limit N → ∞; (ii) MAF-MFI:

h =
√

J 2 + 4J 2
1 −

√
J 2 + J 2

1 − J (1+�)
2 , for � > − 1

3 , W =
2N/4; (iii) MFI-SB: h =

√
J 2 + J 2

1 − J (1−�)
2 , W = 2N/2;

(iv) SB-FM: h = J (1+�)
2 + J1, W = ( 1+√

5
2 )N ; (v) AF-MFI:

h = −
√

J 2 + J 2
1 + 2J1 − J (1+3�)

2 , for −1 < � < 0, W =
( 1+√

5
2 )N/2; (vi) AF-SB: h = − J (1+�)

2 + J1, for −1 < � < 0,

W = 2N/2; (vii) AF-FM: h = J1, for � < −1,W = ( 1+√
5

2 )N .

It is worthwhile to remark that the ground state at some
phase boundaries is highly degenerate. To get the degeneracy,
we can apply the notion of counting the dimer coverings on
a chain as used in Ref. 27. Consider for instance the phase
boundary between the SB and FM phases. The FM phase
can be represented as a one-dimensional lattice of the gas
where all sites are empty [· · · ◦ ◦ ◦ ◦ · · ·], while the SB phase
corresponds to the configuration where each second site is
occupied [· · · • ◦ • ◦ · · ·]. Here, the magnetized state of the
Heisenberg dimer is set to be an empty state, while the nonmag-
netic singlet state of the Heisenberg dimer is represented by a
filled state. As a result, the ground state at the relevant phase
boundary between these two phases can be constructed from
all configurations of particles with the following restriction:
Particles cannot occupy neighboring sites, i.e., there is an
infinitely strong nearest-neighbor repulsion between particles.
Such a system can be reformulated as a dimer problem, and
the calculated degeneracy in the thermodynamic limit is given
by [(1 + √

5)/2]N .27 It is noteworthy that the same value of
the degeneracy is obtained at the boundary between the FM
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and AF phases if the Sz
i = −1 (↓) bond state is treated as

an occupied site in the latter case. Similar representation can
be constructed also at the SD-MFI and AF-MFI boundaries.
The only difference is that only vertical Heisenberg bonds are
involved in the lattice-gas picture. Therefore, the degeneracy
is [(1 + √

5)/2]N/2.
All other boundaries have the degeneracy of monomers

on a chain of size N/2 or N/4 or of the free Ising spins.
For instance, let us consider all possible configurations at
the boundary between the MAF and MFI states. The MAF
phase is consistent with the antiferromagnetic order of the
vertical Heisenberg bonds and can be schematically presented
as [· · · ↑↓↑↓ · · ·]. On the contrary, the MFI phase shows on
the vertical Heisenberg dimers a regular alternation of the fully
polarized triplet and nonmagnetic singlet bonds [· · · ↑0↑0 · · ·].
Here, ↑(↓) denotes the Sz

2i = ±1 state and 0 refers to the singlet
state. Both phases are twofold degenerate. In this particular
case, the bond state on odd vertical Heisenberg bonds coincides
for both phases, while two different states (either polarized or
singlet) are available for any even vertical Heisenberg bond.
Two degrees of freedom of any even vertical Heisenberg bond
can be then identified as the fictitious Ising spin 1

2 and therefore,
the ground state at the boundary between the MAF and MFI
phases has the macroscopic degeneracy 2N/4. The special case
of the AF-SB boundary has the same picture as the MAF-MFI
boundary. The only difference is that the discussion concerns
not only vertical, but all the bonds. Thus, the macroscopic
degeneracy at the AF-SB phase boundary is proportional to
2N/2.

The MAF and AF phases also have classical orderings
(antiferromagnetic and ferromagnetic) for the vertical bonds,
i.e., [· · · ↑↓↑↓ · · ·] and [· · · ↑↑↑↑ · · ·], [· · · ↓↓↓↓ · · ·] corre-
spondingly. At the ground-state boundary the energy of any
random ordering of vertical bond configurations will be the
same, which means that the ground-state degeneracy equals
to 2N/2 for this particular case. The similar case is the phase
boundary between the MFI and SB phases. The only difference
with respect to the previous case is that ↓ on the vertical bonds
must be changed to the singlet state 0. The rest of the analysis
is analogous and gives the degeneracy 2N/2.

Comparing the ground-state phase diagram of the spin- 1
2

Ising-Heisenberg orthogonal-dimer chain with the analogous
result for the spin- 1

2 Heisenberg orthogonal-dimer chain
obtained by means of the extensive DMRG calculations (see
Fig. 9 of Ref. 2), we observe that both phase diagrams
contain the regions with the zero, one-quarter, and one-
half magnetization plateaux. The difference between phase
diagrams becomes fundamentally distinct for the sufficiently
strong interdimer coupling J1, when the dimer-plaquette phase
evolves in the Heisenberg model instead of the MAF phase
maintained by the Ising-Heisenberg model. This discrepancy is
caused by an infinitely strong anisotropy of the Ising interdimer
interaction. In addition, the spin- 1

2 Heisenberg orthogonal-
dimer chain exhibits the infinite series of magnetization steps
between one-quarter and one-half magnetization plateaux,10

as well as the continuous change of the magnetization from
the one-half plateau to the saturation magnetization. On the
other hand, the spin- 1

2 Ising-Heisenberg orthogonal-dimer
chain displays a high degeneracy at the saturation field that is
accompanied with the respective magnetization jump instead.

IV. THERMODYNAMICS AND MAGNETOCALORIC
EFFECT

The macroscopic degeneracy found in the ground state
may manifest itself in the low-temperature behavior of basic
thermodynamic quantities such as entropy, specific heat, or
magnetization. At first one should notice that the entropy
can take finite values at zero temperature whenever the
ground state is macroscopically degenerate due to a phase
coexistence. The entropy per site can be easily obtained using
the thermodynamic relation s = −(∂f/∂T ), while the residual
entropy on phase boundaries is related to the macroscopic
degeneracy of the ground-state manifold according to the
Boltzmann’s equation s0 = 1

2N
lnW .28 Thus, the residual en-

tropy at the ground-state boundaries between different phases
can be straightforwardly calculated from the results presented
in Sec. III. Bearing all this in mind, the residual entropy
takes the value 1

2 ln ((1 + √
5)/2) ≈ 0.2406 at the SB-FM and

AF-FM ground-state boundaries, 1
4 ln ((1 + √

5)/2) ≈ 0.1203
at the SD-MFI and AF-MFI boundaries, 1

4 ln 2 ≈ 0.1733 at
the MFI-SB and AF-SB boundaries, 1

8 ln 2 ≈ 0.0866 at the
MAF-MFI boundary. As one can see from Fig. 5, the field
dependence of the entropy indeed shows remarkable peaks
at transition fields whose heights is in accordance with
the reported values of the residual entropy (the particular
case shown in Fig. 5 exhibits three successive field-induced
transitions SD-MFI, MFI-SB, and SB-FM). It can be also
clearly seen from Fig. 5 that even small temperature smooths
the field dependence of entropy and thus destroys its distinct
profile. Besides, it is well known that quantum frustrated
spin models may exhibit an enhanced magnetocaloric effect
near the field-induced quantum critical point.12,29–31 We have
therefore studied also the adiabatic demagnetization of the
model under investigation, which can be easily understood
from the density plot of entropy depicted in Fig. 6. Note
that the curves of constant entropy determine the change of
the temperature with the magnetic field during the adiabatic
process. Since the spin- 1

2 Ising-Heisenberg orthogonal-dimer
chain may have up to three critical fields accompanied with the
macroscopic degeneracy of the ground state, the temperature
rapidly decreases near a critical field whenever the entropy

 0

 0.1

 0.2

 0.3

 0  1  2

s

h

T=0.1
T=0.05
T=0.01

FIG. 5. The entropy per site is plotted against the magnetic field
for the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain with J = 1,
� = 1, J1 = 0.7 at different temperatures T = 0.01,0.05,0.1 (from
bottom to top).
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FIG. 6. (Color online) A density plot of the entropy as a function
of the magnetic field and temperature for the Ising-Heisenberg
orthogonal-dimer chain with J = 1, � = 1, J1 = 0.7. The curves
with constant entropy correspond to s = 0.1,0.125, . . . ,0.3 (solid
lines) and to s = 0.120,0.1732,0.2406 (broken lines).

is selected close enough to the corresponding value of the
residual entropy. This behavior may evidently promote a high
adiabatic magnetocaloric rate (∂T /∂h)S .

The obtained exact solution allows us to examine the effect
of spin frustration and external field on the specific heat,
which can be obtained from the thermodynamic relation c =
T (∂s/∂T ). Some typical thermal variations of the specific heat
are presented in Fig. 7 for different values of the interactions
and external magnetic field. The temperature dependencies
of zero-field specific heat are displayed in Fig. 7(a). The
investigated spin system is far from the degenerate ground
state for the special case � = 1, J = 1, J1 = 0.7 and hence,
the specific heat exhibits just one broad peak of Schottky
type. On the other hand, the zero-field specific heat gains
an additional low-temperature peak by changing the Ising
interdimer coupling J1 = 1.4 sufficiently close to the SD-MAF
boundary. The set of parameters driving the investigated
spin chain close to the macroscopically degenerate MAF-AF
boundary shows even more complex temperature dependence
with rapidly increasing specific heat at low temperature and
several round maxima.

Figures 7(b) and 7(c) illustrate thermal variations of the
specific heat when the external field is selected close to critical
fields. In Fig. 7(b), the applied magnetic field h = 0.8 is
sufficient to stabilize the one-quarter plateau with a quite small
gap between the ground state and first excited state. When
the external field achieves the critical value, the ground state
becomes macroscopically degenerate. The specific heat then
shows a sharp peak at very low temperature and quite broad
nearly flat region between two peaks. This unusual dependence
indicates the existence of a large number of states with energies
quite close to the ground state energy. The specific heat near the
MFI-SB border [case of h = 1.3 in Fig. 7(b)] shows even more
striking temperature dependence with three peaks, whereas all
three peaks are of the same order. The specific heat for the other
particular case of the ferromagnetic Heisenberg intradimer
coupling shown in Fig. 7(c) has similar features. It should
be nevertheless mentioned that the zero-field specific heat
shows a very sharp low-temperature peak for the interaction
parameters driving the investigated spin chain close to the
MAF-AF ground-state boundary. The external field generally

 0
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 0  0.25  0.5  0.75

c

T
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Δ=1,J1=0.7
Δ=1,J1=1.4
Δ=-0.25,J1=0.8
Δ=-0.25,J1=1.2

 0

 0.2

 0.4

 0  0.25  0.5  0.75
c

T

(b)
Δ=1
J1=0.7

h=0.0
h=0.8
h=1.3

 0

 0.1

 0.2

 0  0.25  0.5  0.75

c

T

(c)
Δ=-0.25
J1=1

h=0.0
h=0.5
h=1.25

FIG. 7. (Color online) Thermal dependencies of the specific heat
for: (a) h = 0, thick curves correspond to � = 1, J1 = 0.7 (solid
line), J1 = 1.4 (broken line), thin curves correspond to � = −0.25,
J1 = 0.8 (solid line), J1 = 1.2 (broken line); (b) � = 1, J1 = 0.7,
h = 0,0.8,1.3; (c) � = −0.25, J1 = 1, h = 0,0.5,1.25.

broadens this peak and shifts it towards slightly higher
temperatures.

Let us also briefly comment on a magnetization process
of the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain at low
temperatures. It is quite evident from the ground-state phase
diagram shown in Fig. 4 that the low-temperature magnetiza-
tion curve may contain fractional plateaux at one quarter and
one half of the saturation magnetization. As one could expect,
the intermediate plateaux and magnetization jumps gradually
become smoother as temperature increases. However, it is
quite surprising how fast a steplike magnetization curve is
demolished by even very low temperature. For illustration, we
present in Fig. 8(a) the relevant low-temperature magnetization
curves for the isotropic Heisenberg intradimer interaction. The
width of both intermediate plateaux is nearly the same for the
particular case J1 = 0.7 and it actually turns out that even a
rather small temperature T = 0.04 makes the steplike structure
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FIG. 8. (Color online) The magnetization normalized with re-
spect to its saturation value as a function of the magnetic field for:
(a) J = 1, � = 1, T = 0.01,0.02,0.04 smother curve corresponds to
higher temperature. Solid lines correspond to J1 = 0.7, broken lines
correspond to J1 = 1.5; (b) J = 1, � = −0.25, T = 0.01,0.02,0.04.
Solid lines correspond to J1 = 1, broken lines correspond to J1 = 2.

almost indistinguishable within the relevant magnetization
curve. Contrary to this, the other particular case J1 = 1.5
seems to be more robust against thermal fluctuations when
the intermediate plateaux and magnetization jumps cannot be
discerned in the relevant magnetization curve just at slightly
higher temperature. Similar trends can be observed in the low-
temperature magnetization curves of the investigated model
with the ferromagnetic Heisenberg intradimer interaction
depicted in Fig. 8(b). Under this condition, the magnetization
curve may contain either one or two intermediate plateaux
depending on an interplay between the interaction parameters.
In general, it could be concluded that the rather rapid thermal
smoothing can be attributed to the huge degeneracy of the
ground state at critical fields.

V. CONCLUSIONS

In the present work we considered the orthogonal-dimer
chain with the Heisenberg intradimer and Ising interdimer
interactions by means of a rigorous approach based on
the transfer-matrix method. We have obtained the exact
expressions for the partition function and analyzed the ground
state and thermodynamic properties of the model quite
rigorously. The ground-state phase diagram of the model in
a magnetic field has been obtained and it was shown that two

fractional plateaux at one quarter and one half of the saturation
magnetization are present. We have also studied the effect of
the exchange anisotropy in the Heisenberg coupling. It has
been shown that the ferromagnetic zz intradimer interaction
may lead to the appearance of new phases in zero field and
may substantially change the ground-state phase diagram in
a nonzero magnetic field. In general, this kind of interaction
leads to the vanishing of one-quarter and one-half plateaux.
The ground state at the border between different phases may
exhibit a high macroscopic degeneracy, which leads to the
nonzero residual entropy. We have calculated the degeneracy
and the residual entropy at all boundaries using the notion of
the monomer or dimer covering of a chain.27 The degenerate
or nearly degenerate ground state has turned out to basically
affect the low-temperature thermodynamics of the model. We
have calculated the entropy as a function of temperature and
magnetic field, which evidences an enhanced magnetocaloric
effect close to critical fields. The effect of spin frustration and
magnetic field on temperature dependence of specific heat has
been examined in detail. It has been found that the interplay of
all factors may lead to the complex low-temperature behavior
of the specific heat with several more or less separated maxima.
The exact results for the magnetization curves have proved
that even small temperature may destroy the steplike field
dependence of the magnetization.

We have also found that the Ising-Heisenberg model on the
orthogonal-dimer chain exhibits some common features with
the analogous pure Heisenberg model, for instance a presence
of the one-quarter and one-half magnetization plateaux. The
main discrepancy between both models is as follows: When
the Heisenberg model shows steplike magnetization between
one-quarter and one-half plateaux and a continuous change
of the magnetization above the one-half plateau, the Ising-
Heisenberg model cannot capture those features as it possesses
macroscopic degeneracy at critical fields only and shows just
two intermediate plateaux. It could be expected, however,
that the treatment of the quantum XY part of interdimer
interaction within the perturbation theory for degenerate states
could restore some features of the magnetization curve of the
pure Heisenberg model when starting from the exactly solved
Ising-Heisenberg model.

Finally, it should be mentioned that there exists an
extensive series of heterobimetallic coordination polymers
[Ln(hfac)2(CH3OH)]2[Cu(dmg)(Hdmg)]2 (Refs. 18–22) with
the magnetic structure similar to the considered model. In
addition, the dysprosium-based member [Dy2Cu2]n of this
series provides an interesting experimental realization of the
spin- 1

2 Ising-Heisenberg orthogonal-dimer chain owing to a
strong magnetic anisotropy of Dy3+ ions. Although a more
complete description of the polymeric coordination compound
[Dy2Cu2]n would require an analysis based on the more
general (asymmetric) spin- 1

2 Ising-Heisenberg orthogonal-
dimer chain with four different exchange couplings, the
AF ground state reported for the symmetric spin- 1

2 Ising-
Heisenberg orthogonal-dimer chain with just two different
exchange couplings already correctly reproduces the ferri-
magnetic spin arrangement observed experimentally due to
the antiferromagnetic interdimer and ferromagnetic intradimer
interactions.19,20,32 Moreover, the procedure elaborated in the
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present work can be rather straightforwardly adopted also for a
theoretical treatment of the more general (asymmetric) spin- 1

2
Ising-Heisenberg orthogonal-dimer chain, which would ensure
a more correct description of the heterobimetallic complex
[Dy2Cu2]n. In this direction we will continue our further
efforts.
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