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Classical modeling of ultrafast coherent magneto-optical experiments
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A classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments
performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared
to available experimental values and give meaningful insight into the physical mechanisms underlying the
observed coherent magneto-optical phenomena. Under realistic conditions, the model successfully explains the
observed trends. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between
the external electric field of the laser and the electron spins of the sample is underlined.
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I. INTRODUCTION

Since the discovery of the ultrafast demagnetization of
a nickel film by a femtosecond laser pulse,1 study and
ultimate control of ordered magnetic materials using ultrashort
light pulses have been the object of intense investigations
until becoming a full-fledged art2–4 given the diversity of
experimental techniques implemented and the fundamental
questions raised in the field of light-matter interactions.

Experimentally, the ultrafast demagnetization dynamics
of ferromagnetic materials is usually investigated using a
pump-probe time-resolved magneto-optical Kerr (TR-MOKE)
configuration which consists in measuring the modified ellip-
ticity η and rotation angle θ of the reflected (Kerr geometry)
or transmitted light beam (Faraday geometry). Indeed, in the
framework of the linear magneto-optics the quantities η and
θ are proportional to the static magnetization of the sample
and it is usually admitted that the spin-orbit interaction (SOI)
is the microscopical mechanism which is responsible for the
Faraday effect in ferromagnetic materials.

Moreover, in the nonlinear regime the modeling of
magneto-optical experiments constitutes a very difficult the-
oretical challenge. First of all, the physical origin of the
quick loss of magnetization is not fully resolved and remains
unclear so far despite many relevant proposals: (i) spin-flip
processes induced by scattering with phonons,5 magnons,6 or
by angular momentum transfer with light;7 (ii) role played
by the SOI8–10 or by the Coulomb interaction;11 (iii) coherent
coupling between spins and photons12,13 . . . .

Unfortunately, ab initio dynamical calculations leading
to a macroscopic change of magnetization are very difficult
to implement for such complex materials like ferromagnetic
metals. Another current and crucial issue concerns the exact
part of the magnetization change which is hidden in the
parameters η and θ corresponding to the total nonlinear
anisotropy induced by the pump laser.14 In the past, several
theoretical works based on sophisticated quantum mechanical
models have provided nonlinear Kerr susceptibilities15–17

but none of them have really investigated the experimental
magneto-optical parameters. Let us also stress the existence
of an interesting, but complicated, approach to the nonlinear
evolution of the Stokes parameters which can be found in
Ref. 18 and a very recent work on the ultrafast magnetic
dynamics of NiO where the nonlinear fluence dependence

has been addressed in a nonperturbative way using a first-
principles approach.19

Thus, whatever the model describing the magnetization
dynamics, it seems important (and of fundamental interest) to
provide an adequate modeling of the experimental observables
η and θ by using nonlinear anisotropic response functions. In
this work, we propose to tackle this fundamental problem
starting from the basic principles of magneto-optics and by
working in the general framework of the Maxwell’s equations.
By considering nonlinear polarization currents, we derive
nonlinear circular indices needed for the modeling of the
nonlinear Faraday rotation angles. These latter quantities have
been recently measured in a single-femtosecond-pulse Faraday
experiment which was performed on a nickel film.12 In the
same line as our work, it is worth mentioning recent theoretical
studies devoted to the coherent photoexcitation of (Ga,Mn)As
ferromagnetic semiconductors with linearly polarized light,
where the interplay between the optical nonlinearities, the
spin-orbit interaction, and the resulting optically induced
magnetic anisotropy were treated microscopically.20–22

In the next section some basic considerations on lin-
ear magneto-optics are recalled and the principle of a
single-femtosecond-pulse Faraday experiment is presented. In
Sec. III, a nonlinear extension of the circular indices obtained
from Maxwell’s equations is described. A mean to incorporate
the spin-orbit interaction using a macroscopic magneto-optical
current is also introduced. Section IV is devoted to the
theoretical modeling of the single-pulse Faraday experiment.
Comparisons between theoretical predictions of the Faraday
rotation angles and available experimental values of nickel thin
film are performed in Sec. V. Finally, in Sec. VI, the results
and the limitations of the theoretical modeling are discussed
and some conclusions are given.

II. LINEAR MAGNETO-OPTICS AND
NONLINEAR FARADAY EXPERIMENT

A linearly polarized light of pulsation ω propagating
through a ferromagnetic layer of thickness d is modified in
a beam having an elliptical state of polarization characterized
by the ellipticity η and the rotation angle θ . The complex
phase � acquired during the propagation represents the phase
shift between the right (+) and the left (−) circular states of
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polarization and is related to η and θ as follows:4

� = ωd

2c
(n+ − n−) ≡ θ + iη, (1)

where c indicates the speed of light in vacuum and n± are
the optical indices for the circular states (±). In the polar
configuration, where the effective magnetic field (molecular
field, exchange...) acting inside the sample is oriented along the
propagation direction ez and the incident electric field belongs
to the perpendicular plane defined by ex and ey , the expressions
of n± derived from the Maxwell’s equations read

n2
± = εxx ± iεxy, (2)

where εxx and εxy are, respectively, diagonal and nondiagonal
elements of the dielectric tensor defined by D = ε0E + P =
ε0[εr ]E and which can be written as

D = ε0

⎡
⎣ εxx εxy 0

−εxy εxx 0
0 0 X

⎤
⎦ E. (3)

In the above expression X is anything. In Eq. (2), the
condition εxy � εxx is often used to transform n± and, by
using Eq. (1), the Faraday phase appears to be proportional to
the nondiagonal element of the dielectric tensor

� ≈ iωd

2c

εxy√
εxx

, (4)

which can be expressed as a function of the effective magnetic
field (or of the magnetization see in the following) thus
breaking the symmetry of the medium.

The first expression of the tensor elements was given in
1908 by Voigt who considered the motion of charges induced
by the Lorentz magnetic force.23,24 Within the framework of
this first classical model, an agreement with the experimental
results obtained on ferromagnetic materials can be found if a
value of the internal magnetic field of the order of 103 T is
employed. It corresponds to the value of the Weiss molecular
field.

Later in 1932, Hulme suggested that the spin-orbit in-
teraction is needed to explain the coupling between optical
properties of charges and the magnetization of the sample.25

He also pointed out that, because of the quenching of the
orbital momentum in ferromagnetic materials, the effective
field cannot affect the motion of charges. Then in 1955,
Argyres developed a quantum mechanical model based on
the SOI, leading to nondiagonal elements of the dielectric
tensor proportional to the static magnetization of the system.26

Finally, let us mention two additional works which have
successfully complemented the Argyres’ model.27,28 Although
these latter models are very powerful for describing magneto-
optical effects in ferromagnetic materials, we here propose
to work within the framework of the much simpler model of
Drude-Voigt.

A. The Drude-Voigt model

In this model, matter is modeled as an ensemble of N single-
electron atoms. The electron (of mass me) of each atomic site
is described as a damped-harmonic oscillator bound to the
nucleus by a Hooke force and feeling the Lorentz force. Thus,

the equation of motion of an atomic bound electron is (e > 0)

r̈ + 1

τ
ṙ + ω2

0r = − e

me

(E + ṙ ∧ Bmat) , (5)

where Bmat = Bmatez is the effective magnetic field inside the
material and E is the electric field written as E ≈ E(eiωt +
e−iωt ) (in the following, the same symbol is used to indicate a
quantity in the direct or in the Fourier space). The motion of
the electron labeled i in the directions ex and ey generates
an electric polarization field given by pi = −eri and the
macroscopic dielectric polarization (in a volume V ) is obtained
by summing over all atomic sites P ≡ 1

V

∑N
i −eri . Working

in the Fourier space with the mode ω and using the previous
definition of P, Eq. (5) may be written as

P = χε0E − iξP ∧ ez, (6)

where χ = ne2

meε0D(ω) = ω2
p

D(ω) with D(ω) = (ω2
0 − ω2 + iω

τ
) the

linear electric susceptibility and ξ = eωBmat
meD(ω) is the anisotropy

parameter. Furthermore, n ≡ N/V is the electron density and

ωp =
√

ne2

meε0
is the plasmon pulsation.

The projection of Eq. (6) onto the ex and ey axes gives a
system of two coupled equations for Px and Py which can be
easily solved. The expression of the polarization vector reads

P = ε0

⎡
⎢⎣

χ

1−ξ 2 − iξχ

1−ξ 2 0
iξχ

1−ξ 2
χ

1−ξ 2 0

0 0 χ

⎤
⎥⎦ E. (7)

Then, the dielectric permittivity tensor may be expressed as
D = ε0E + ε0[χ ]E leading to the following expression of the
tensor elements (3):

εxx = 1 + χ

1 − ξ 2
,

εxy = −iξ
χ

1 − ξ 2
. (8)

Thus, since the nondiagonal element of the dielectric tensor εxy

is proportional (via the anisotropy parameter ξ ) to the effective
magnetic field inside the material Bmat, one concludes that
the magneto-optical signal given by Eq. (4) is a measure of
the magnetization of the sample (which is a part of the total
internal magnetic field, Bmat).

B. Nonlinear Faraday experiment

Unfortunately, in the nonlinear regime, the previous results
cannot be used to model a magneto-optical signal since there is
no dependence in the external electric field. In order to study
this nonlinear dependence we propose to focus on a recent
experimental work performed by Bigot et al.12 This team
realized the following experiment: a 48 fs laser pulse is focused
on a ferromagnetic d = 7.5 nm nickel thin film, and rotation
and ellipticity are measured using a transmission configuration
(Faraday configuration). The studies were performed over four
orders of magnitude of the absorbed energy covering the range
from 10−3 to 1 mJ/cm2. It was observed that both rotation
and ellipticity exhibit a nonlinear dependence in the absorbed
energy (or in a similar manner in the external electric field).
The setup of the experiment and the results mentioned above
are summarized in Fig. 1.
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FIG. 1. (Color online) Principle of the single-pulse-like Faraday
experiment performed in Ref. 12; normalized ellipticity and rotation
as functions of the absorbed energy (see text).

We can estimate the amplitude E of the laser electric field
by noting that the total energy of the laser pulse is E0 =
cε0
tE2

2 , where 
t is the pulse duration.29 Furthermore, the
absorbed energy Eabs ≡ EA is determined by the relation E0 =
ER + ET + EA, where E0, ER , and ET are, respectively, the
incident, reflected, and transmitted light energies. According
to the authors of,12 the absorption coefficient A ≡ EA/E0 is
constant over the entire energy range from 10−3 to 1 mJ/cm2.
For example, E0 = 1.08 mJ/cm2, ER = 0.35 mJ/cm2, and
ET = 0.31 mJ/cm2 leads to EA = 0.42 mJ/cm2 andA = 0.39.
Finally, the relation between the absorbed energy Eabs and the
amplitude E of the laser field is given by

E0 = Eabs

A = cε0
tE2

2
.

Thus, the energy varying from 10−3 to 1 mJ/cm2, it corre-
sponds to an electric field amplitude between 107 and 109 V/m.

Because the SOI is the main mechanism responsible for
the Faraday effect, the authors of Ref. 12 suggested that the
observed nonlinear dependence of θ and η with the incident
electric field of the laser pulse can be associated to a SOI with
the latter and the electron spins of the sample. It leads to a
coherent magnetization change originating from a relativistic
and direct interaction between spins and photons.

Without rejecting this microscopic interpretation, we here
propose to look at the results of the above experiment from
a more macroscopic point of view. The Faraday phase is
interpreted as the phase shift between the circular states of
light [see Eq. (1)]. The starting point is that the expression
of the optical indices n2

± of Eq. (2) leading to � ≈ iωd
2c

εxy√
εxx

is incomplete since there is no dependence in the laser
electric field amplitude E. At high light intensities, the relative
changes of θ = Re(�) and η = Im(�) in Fig. 1 represent
the total nonlinear anisotropy induced by the electric field.
Therefore, the Faraday phase should be expressed in terms
illustrating clearly both nonlinearities and the dependence with
the amplitude of the electric field of the laser pulse.

In the next section, we propose to build a nonlinear
expression of the optical indices involving the third-order
electric susceptibility and the amplitude of the electric field.

III. NONLINEAR EXTENSION

This section is divided into three parts. (i) As the optical
indices are related to the dielectric tensor elements, the first
step is to derive the nonlinear third-order dielectric response.
(ii) Then, from the associated dielectric current and the
Maxwell equations, the nonlinear expressions for the optical
indices are derived. (iii) The obtained results are completed
by adding a macroscopic magneto-optical current originating
from the microscopic SOI.

A. Anharmonic Drude-Voigt model

The nonlinear optical response is related to the microscopic
interactions between the different particles in the material.
A bound electron feels the influence of the other atomic
sites and its potential energy becomes anharmonic Ep =
meω

2
0

2 r2 − meb

4 r4 leading to a nonlinear Hooke force F =
−meω

2
0r + mebr3.30 The equation of motion (5) is modified

into

r̈ + 1

τ
ṙ + ω2

0r = br3 − e

me

(E + ṙ ∧ Bmat) . (9)

The above equation can be solved using a perturbative
development r(t) = r(1)(t) + r(3)(t), where r(1)(t) and r(3)(t)
are, respectively, first- and third-order displacement vector
solutions of the following equations:

r̈(1) + 1

τ
ṙ(1) + ω2

0r(1) = − e

me

(E + ṙ(1) ∧ Bmat), (10)

r̈(3) + 1

τ
ṙ(3) + ω2

0r(3) = b(r(1))3 − eṙ(3)

me

∧ Bmat. (11)

The above first equation is similar to Eq. (5) given in the
previous section and has been already solved. Equation (11) is
solved by injecting the solution of Eq. (5) in the term b(r(1))3.
As the electric field is expressed as E(t) ≈ E(eiωt + e−iωt ),
the total first-order response is r(1) = r(1)

ω eiωt + r(1)
−ωe−iωt with

r(1)
ω = −eE

meD(ω) . By taking the cube of r(1)(t) one obtains four
terms vibrating at 3ω, ω, −ω, and −3ω. Due to the fact that
here we only want to work with the ω mode, the term b(r(1))3

is replaced by 3b(r(1)
ω )2(r(1)

−ω)eiωt and Eq. (11) becomes

r̈(3) + 1

τ
ṙ(3) + ω2

0r(3) = −3m−3
e be3E3

D2(ω)D(−ω)
− eṙ(3)

me

∧ Bmat.

(12)

The nonlinear term induces a microscopic third-order po-
larization vector p(3)

i = −er(3)
i . The macroscopic dielectric

polarization density is obtained by summing the microscopic
polarization of each site P(3) = 1

V

∑N
i −er(3)

i . Working in the
Fourier space and using the previous expression, Eq. (12) is
transformed into

P(3) = ε0χ
(3)E3 − iξP(3) ∧ ez, (13)

where χ (3) = 3nbe3

m3
eD

2(ω)D(−ω)ε0
. As already mentioned, Eq. (13)

contains a mixing between the two components of the
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polarization vector P (3)
x and P (3)

y . The solved system gives

P (3)
x = χ (3)ε0

1 − ξ 2
(E3)x − iξε0

1 − ξ 2
χ (3)(E3)y,

P (3)
y = χ (3)ε0

1 − ξ 2
(E3)y + iξε0

1 − ξ 2
χ (3)(E3)x,

where (E3)x = (E2
x + E2

y + E2
z )Ex . Neglecting the

contribution in the ez direction and by writing εxxxx = χ (3)

1−ξ 2

and εxxxy = −iξεxxxx , the third-order polarization density
for the ω mode may be expressed as a tensor involving the
electric field, P(3) = ε0[χ (3)(E2)]E, or more explicitly

P(3) = ε0

⎡
⎢⎣ εxxxx(E2

x + E2
y) εxxxy

(
E2

x + E2
y

)
0

−εxxxy

(
E2

x + E2
y

)
εxxxx

(
E2

x + E2
y

)
0

0 0 X

⎤
⎥⎦ E.

(14)

Let us note that the nonlinear parameter b can be determined
by assuming that linear and nonlinear Hooke forces are
equal at the interatomic distance a. Therefore, equaling

meω
2
0a ≈ meba3 gives b ≈ ω2

0
a2 .31

B. Nonlinear indices

We start from the Maxwell-Faraday and Maxwell-Ampère
equations where the source terms are the displacement density
current and the first- and third-order polarization density
current j = μ0

∂
∂t

(P(1) + P(3) + ε0E). Using the results of the
previous sections total current density can be written as
j = μ0

∂
∂t

(ε0[ε′]E), where [ε′] is the sum of the tensors given
in Eqs. (3) and (14). These two Maxwell equations may be
expressed in the Fourier space (for the ω mode) as

∇ ∧ E = − ∂

∂t
B ⇒ ik ∧ E = iωB,

∇ ∧ B = μ0
∂

∂t
(ε0[ε′]E) ⇒ ik ∧ B = −iωμ0ε0[ε′]E.

(15)

We suppose that the electric field may be modeled by a
plane wave having the following wave vector k = (0,0,k).
Equations (15) lead to a system of coupled equations for the
components of the magnetic and electric fields. Eliminating
the magnetic field components and noting that n = ck

ω
one

gets

n2Ex = (ε′
xxEx + ε′

xyEy),
(16)

n2Ey = (−ε′
xyEx + ε′

xxEy),

where the elements of the dielectric tensor read ε′
xx =

εxx + εxxxx(E2
x + E2

y) ≡ A + B(E2
x + E2

y) and ε′
xy = εxy +

εxyyy(E2
x + E2

y) ≡ a + b(E2
x + E2

y). The latest equations can
be written as

(n2 − A)Ex = aEy + B
(
E3

x + E2
yEx

) + b
(
E2

xEy + E3
y

)
,

(n2 − A)Ey = −aEx + B
(
E3

y + E2
xEy

) − b
(
E3

x + E2
yEx

)
.

Dividing the first equation by Ex and the second by Ey

(we assume that Ex 	= 0 and Ey 	= 0) allows us to obtain
the fraction Ey

Ex
by two different ways. Equaling these two

expressions leads to a second-order polynomial equation for
the variable X = (n2 − A) which reads

X2 + βX + γ = 0,

with the coefficients

β = −2B
(
E2

x + E2
y

) − b

(
E3

y

Ex

− E3
x

Ey

)
,

γ = a2 + B2
(
E2

x + E2
y

)2−Bb

(
E5

x

Ey

+ EyE
3
x − E3

yEx − E5
y

Ex

)
−b2

(
E4

x + E4
y + 2E2

xE
2
y

)
.

The formal resolution of the above equation gives two
solutions for X = (n2 − A) and consequently for the optical
indices n2,

n2
± = A + B

(
E2

x + E2
y

) + b

2

(
E3

y

Ex

− E3
x

Ey

)

± i

√√√√a2 − b2

4

(
4E4

x + 4E4
y + E6

y

E2
x

+ 6E2
xE

2
y + E6

x

E2
y

)
.

(17)

In order to simplify the last equation, we use a symmetric
assumption. Indeed, physics has to be the same whatever
the electric field vector in the plane perpendicular to the
propagation direction. Thus, one can choose a frame of ref-
erence where Ex ≈ Ey ≈ E. This assumption leads to (E2

x +
E2

y) ≈ 2E2, (4E4
x + 4E4

y + E6
y

E2
x

+ 6E2
xE

2
y + E6

x

E2
y
) ≈ 16E4, and

(
E3

y

Ex
− E3

x

Ey
) ≈ 0. Finally, replacing A, a, B, and b by their full

expressions, the nonlinear indices may be written as

n2
± ≈ εxx + 2εxxxxE

2 ± i
(
ε2
xy − 4ε2

xxxyE
4
)1/2

. (18)

We propose to use this last equation for describing circular
optical indices of a nonlinear anisotropic medium. It is worth
noting that Eq. (2) is recovered if one puts E = 0 in Eq. (18).

C. Spin-orbit interaction: From first-principles
to Maxwell’s equations

Equation (18) may be completed in order to incorporate
a magneto-optical term originating from the spin-orbit inter-
action. By calculating the microscopic quantum probability
current density at second order in 1/me one can build a
macroscopic magneto-optical current which is directly related
to the spin-orbit interaction. In order to do so, we first remind
one of a few general considerations in quantum mechanics.

The well-known expression of the probability current
density of an electron in the presence of an external magnetic
field at first order in 1/me (e > 0) is32

j(1) = ih̄

2me

(ψ∇ψ† − ψ†∇ψ) + e

me

Aψ†ψ

+ h̄

2me

∇ ∧ (ψ†σψ), (19)

where ψ is a Pauli spinor and σ are the Pauli matrices.
When considering a system of N electrons, the previous
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expression can be utilized to build a macroscopic charge
current density which can be used as a source term in the
Maxwell equations. Indeed, by summing over all electrons we
get jMaxwell = ∑N

i=1 −ej(1)
i .

In Ref. 26, Argyres has shown that the first two terms
of (19) can be associated to the polarization current density
jpol = ∂P

∂t
= ∂(χε0 E)

∂t
. By defining the magnetization as M =∑N

i=1
−eh̄
2me

(ψ†
i σψi), one may also notice that the spin term

of (19) leads to the magnetization current density jmag =
∇ ∧ M.

The probability current density can be derived from a
variational principle using the Schrödinger-Pauli hamiltonian
at first-order in 1/me: H (1)(A) = (p+eA)2

2me
− e� + eh̄

2me
σ · B,

with B = ∇ ∧ A. In Ref. 32, this work is performed by
writing the elementary variation of the energy δ〈H (A)〉 ≡∫

ψ†H (δA)ψ dτ with respect to δA and assuming the fol-
lowing relation of the electromagnetic energy:∫

ψ†H (1)(δA)ψ dτ ≡ −
∫

(−e)j(1)(ψ†,ψ) · δA dτ. (20)

Therefore, the calculation of H (1)(δA) leads to the expression
of j(1). Here, we propose to extend this procedure up to the
second order in 1/me by using the nonrelativistic Schrödinger-
Pauli Hamiltonian at second order in 1/me which includes the
spin-orbit interaction33,34

H (2) = (p + eA)2

2me

− e� + eh̄

2me

σ · B + eh̄2

8m2
ec

2
∇ · E

+ eh̄

8m2
ec

2
σ · [E ∧ (p + eA) − (p + eA) ∧ E] . (21)

Moreover, the calculation of H (2)(δA) will give terms
involving ∂tδA because of the presence of the electric
field E = −∇� − ∂tA. Nevertheless one can neglect them
by working in the Coulomb gauge (∇ · A = 0) and in
the quasistatic approximation [c2
A � ∂2

t2 A ⇔ (c2T )δA �
L2(∂tδA) ⇔ cδA � L(∂tδA) with (L = cT )]. Indeed, the
first assumption eliminates the influence of the Darwin term
∇ · δE ≈ ∂t∇ · δA = 0 and the second one shows that the
term σ · (E ∧ δA) is more important than σ · [(∂tδA) ∧ A]
as (EδA) � [(∂tδA)A] is equivalent to cδA � L(∂tδA) with
E ≈ cB ≈ cA/L.

Thus, in the Coulomb gauge and in the quasistatic approx-
imation, using the Hamiltonian of Eq. (21), Eq. (20) at second
order in 1/me reads∫

ψ†
(

e

2me

(p · δA + δA · p) + e2

me

A · δA

+ eh̄

2me

σ · (∇ ∧ δA) + e2h̄

4m2
ec

2
σ · (E ∧ δA)

)
ψ dτ,

which can be easily transformed by integrating by part and
using p = −ih̄∇ (see also Ref. 32) as∫

eδA ·
(

ih̄

2me

(ψ∇ψ† − ψ†∇ψ) + e

me

ψ†ψA

+ h̄

2me

∇ ∧ (ψ†σψ) + eh̄

4m2
ec

2
(ψ†σψ ∧ E)

)
dτ.

From the above equation one can deduce the probability
current density which includes the correction at second order
in 1/me due to the spin-orbit interaction35

j = j(1) + eh̄

4m2
ec

2
(ψ†σψ ∧ E) + ϑ

(
1/m3

e

)
. (22)

Defining the magnetization as M = ∑N
i=1

−eh̄
2me

(ψ†
i σψi) and

by noting α = e
2mec2 one can build a macroscopic Maxwell’s

charge current with a new term jmo having a magneto-optical
vectorial form and originating directly from the microscopic
spin-orbit interaction

jMaxwell =
N∑

i=1

−eji ; = ∂P
∂t

+ ∇ ∧ M + αM ∧ E︸ ︷︷ ︸
jmo

.

Thus, we propose to add this term to the expression of
the nonlinear indices. Moreover, in a nonlinear medium, the
electric field inside the material is the sum of the external
electric field and the first- and third-order polarization fields.
Indeed, the magneto-optical current has to be completed by
the following expression:

nljmo = αM ∧
(

E + P
ε0

+ P(3)

ε0

)
= αM

ε0
∧ (ε0[ε′]E),

where [ε′] is the tensor discussed in Sec. III B. Using this
expression in the Maxwell-Ampère equation, Eqs. (15) are
modified as follows:

ik ∧ E = iωB,

ik ∧ B = −μ0ε0iω

(
[ε′]E + iαM

ωε0
∧ [ε′]E

)
.

By assuming a magnetization along the z axis, M = Mzez, the
elimination of the magnetic components leads to the following
equations:

n2Ex = (ε′
xx + λε′

xy)Ex + (ε′
xy − λε′

xx)Ey,
(23)

n2Ey = (ε′
xx + λε′

xy)Ey − (ε′
xy − λε′

xx)Ex,

where λ = iαMz

ωε0
= ieMz

2mec2ωε0
represents the modifications car-

ried out by the spin-orbit interaction in Eq. (16). The resolution
of Eq. (23) is the same as the one used to solve Eq. (16).
The solution is obtained by substituting A = (εxx + λεxy), a =
(εxy − λεxx), B = (εxxxx + λεxxxy), and b = (εxxxy − λεxxxx)
in the expressions of n2

± given by Eq. (17).
Finally, using the approximative solution of Eq. (18),

we obtain the expression of the nonlinear indices with the
magneto-optical corrections as

n2
± ≈ (εxx + λεxy) + 2(εxxxx + λεxxxy)E2

± i[(εxy − λεxx)2 − 4(εxxxy − λεxxxx)2E4]1/2. (24)

The above expression improves Eq. (18) and represents an
alternative way to incorporate the SOI in the circular optical
indices.

IV. THEORETICAL MODELING OF THE
SINGLE-PULSE FARADAY EXPERIMENT

In this section we propose to model the single-pulse Faraday
experiment of Ref. 12 presented in Sec. II. The Faraday phase
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propagating through the nickel film is supposed to be defined
by the following relation:

� ≡ �(E) = θ + iη = ωld

2c
[n+(E) − n−(E)] , (25)

where n±(E) is given by Eq. (18) or by Eq. (24). In order
to compare with the experimental values depicted in Fig. 1,
normalized rotation and ellipticity parameters are calculated
using

θ/θmin = Re [�(Eabs)] /Re
[
�

(
Emin

abs

)]
,

η/ηmin = Im [�(Eabs)] /Im
[
�

(
Emin

abs

)]
.

In Ref. 12, the 48 fs laser pulse is centered at λl = 799
nm leading to a central laser pulsation ωl = 2πc

λl
= 2.36 ×

1015 rad/s. The sample is a nickel thin film having a thickness
of d = 7.5 nm. The relation between the amplitude of the
electric field E and the absorbed energy Eabs is obtained from
the formula given in Sec. II, namely, cε0E

2

2 = Eabs (mJ/cm2)×10
0.388×48×10−15 .

In order to check the importance of the magneto-optical
parameters, the study will be first performed using Eq. (18)
and then using Eq. (24). To complete the study it remains
to evaluate the dielectric tensor elements εxx , εxy , εxxxx , and
εxxxy . In order to do so, and since the most important issue
addressed in this work is the nonlinear dependence of the
signal with the amplitude of the electric field [see Eqs. (18)
and (24)], we propose to evaluate the dielectric response
functions within a rather simple theoretical framework: the
anharmonic Drude-Voigt model.

A. Classical description of nickel

In this part we develop a classical model for describing
metallic and ferromagnetic properties of nickel. Let us recall
that the nickel atom has the following electronic structure:
[Ar]4s23d8. The nonlinear properties in the material are related
to the bound electrons, and the conductivity properties to the
free charge carriers.

The assumptions used in the present modeling are the
following:

(i) According to Refs. 36 and 37, there is 0.6 conducting
electron per atomic nickel site. We assume that the valence
electronic shell can be modeled by one electron which is
screened by the nucleus and the other core electrons. One
fraction xb of this electron is considered to be bound and
another fraction xf is considered to be free with xb + xf = 1
[Fig. 2(a)].

(ii) The microscopic first- and third-order displacements of
the bound and free charges (r(1)

b ,r(1)
f ,r(3)

b ,r(3)
f ) are determined

using the anharmonic Drude-Voigt model and lead to the
macroscopic polarization densities (P(1)

b ,P(1)
f ,P(3)

b ,P(3)
f ) with

P(k)
a = 1

V

∑Na

i −er(k)
ai

, where a = b,f and k = 1,3.
(iii) The total electric field acting on the charges inside

the material is the sum of the external laser electric field and
the polarization field generated by the charges. Moreover, we
assume that the free electrons dynamics is influenced by the
bound charges dynamics, but not the contrary [Fig. 2(b)].

(iv) Finally, the effective magnetic field inside the material
is noted Bmat and corresponds to the Weiss molecular field.

FIG. 2. (Color online) (a) Zener representation of a ferromagnetic
material (see text). (b) Laser and polarization electric fields acting on
bound and free electrons.

Thus, the dielectric tensor elements are determined by
calculating the following quantity:

D = ε0E + P(1)
b + P(1)

f + P(3)
b + P(3)

f

= ε0
(
1 + [

χ
(1)
b

] + [
χ

(1)
f

] + [
χ

(3)
b (E2)

] + [
χ

(3)
f (E2)

])
E.

(26)

Let us stress that our description of Ni is rather crude mainly
due to the fact that in the effective-mass picture one neglects
many-electron correlations and that the decomposition in free
and bound electrons is performed more or less artificially.
Here, a fully ab initio calculation including correlation effects
would normally be necessary.19 However, as shown in the
following, despite their weaknesses all these approximations
lead to interesting results. Furthermore, due to its simplicity
(which is not the case for first-principles models) this model
might be useful for experimentalists for analyzing their data.

B. Dielectric matter-bound electrons

The equation of motion is almost identical to Eq. (9)
of Sec. III A; we have just added the contribution of the
polarization field and write τb for the damping associated to
the bound electrons. It leads to

r̈b + 1

τb

ṙb + ω2
0rb

= − eE
mb

− e

mb

ṙb ∧ Bmat + br3
b − e

mbε0

(
P(1)

b + P(3)
b

)
.

As before, the above equation is split into two different ones
with rb(t) = r(1)

b (t) + r(3)
b (t):

r̈(1)
b + 1

τb

ṙ(1)
b + ω2

0r(1)
b = − eE

mb

− eP(1)
b

mbε0
− eṙ(1)

b

mb

∧ Bmat,

r̈(3)
b + 1

τb

ṙ(3)
b + ω2

0r(3)
b = b

(
r(1)
b

)3 − eP(3)
b

mbε0
− eṙ(3)

b

mb

∧ Bmat.

By working in the Fourier space for the ω mode, by summing
over all the Nb bound electrons, and by defining nb = Nb/V ,
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allows us to transform the two latest equations into

P(1)
b = ε0χ

(1)
b E − iξbP(1)

b ∧ ez,

P(3)
b = ε0χ

(3)
b E3 − iξbP(3)

b ∧ ez,

where χ
(1)
b = nbe

2

mbε0Db(ω) , ξb = eωBmat
mbDb(ω) , χ

(3)
b = 3nbbe4

m3
bD

2
b (ω)Db(−ω)

,

and Db(ω) = (ω2
0 − ω2 − nbe

2

mbε0
+ iω

τb
) is the bound electron

response function. Thus, by writing α
(1)
b = χ

(1)
b

1−ξ 2
b

and α
′(3)
b =

χ
(3)
b

1−ξ 2
b

(E2
x + E2

y ), the first- and third-order macroscopic polar-

ization density tensor for bound electrons may be written as

P(1)
b = ε0α

(1)
b

⎡
⎣ 1 −iξb 0

iξb 1 0
0 0 X

⎤
⎦ E, (27)

P(3)
b = ε0α

′(3)
b

⎡
⎣ 1 −iξb 0

iξb 1 0
0 0 X

⎤
⎦ E. (28)

C. Metallic matter-conduction electrons

For the free electrons, the equations of motion are slightly
different. Indeed, there is no Hooke force, the damping factor
is noted τf , and the total electric field is the sum of the external
laser field plus all the polarization fields:

r̈f + 1

τf

ṙf

= − eE
mf

− eṙf

mf

∧ Bmat − e

mf ε0

(
P(1)

b + P(1)
f + P(3)

b + P(3)
f

)
.

Here, the nonlinear character of the equation is introduced
through the nonlinear polarization P(3)

b . Thus, by writing
rf (t) = r(1)

f (t) + r(3)
f (t) we get the two following equations:

r̈(1)
f + 1

τf

ṙ(1)
f = − eE

mf

− eP(1)
f

mf ε0
− eP(1)

b

mf ε0
− eṙ(1)

f

mf

∧ Bmat,

r̈(3)
f + 1

τf

ṙ(3)
f = − eP(3)

b

mf ε0
− eP(3)

f

mf ε0
− eṙ(3)

f

mf

∧ Bmat.

As usual, one sums over all the Nf free electrons in the
Fourier space, so the above equations become

P(1)
f = ε0χ

(1)
f E − iξf P(1)

f ∧ ez + χ
(1)
f P(1)

b ,

P(3)
f = χ

(1)
f P(3)

b − iξf P(3)
f ∧ ez,

where χ
(1)
f = nf e2

mf Df (ω)ε0
, ξf = ieωBmat

mf Df (ω) , nf ≡ Nf /V , and

Df (ω) = (−ω2 − nf e2

mf ε0
+ iω

τf
) is the response function for the

free electrons.
The two coupled systems for the components P

(n)
fx

and P
(n)
fy

(n = 1,3) are solved using the expressions of P(1)
b and P(3)

b

given in Eqs. (27) and (28). Finally, by writing α
(1)
f = χ

(1)
f

1−ξ 2
f

, the

first- and third-order macroscopic polarization density tensor

for free charges may be written as

P(1)
f = ε0αf

⎡
⎣ 1 −iξf 0

iξf 1 0
0 0 X

⎤
⎦ E

+ ε0αbαf

⎡
⎢⎣

(1 + ξbξf ) −i(ξb + ξf ) 0

i(ξb + ξf ) (1 + ξbξf ) 0

0 0 X

⎤
⎥⎦ E,

(29)

P(3)
f = ε0αf α

′(3)
b

⎡
⎢⎣

(1 + ξf ξb) −i(ξf + ξb) 0

i(ξf + ξb) (1 + ξf ξb) 0

0 0 X

⎤
⎥⎦ E. (30)

Let us stress that the first term in Eq. (29) is completely
equivalent to the well-known conductivity tensor [σ ].

D. Total response function

We are now ready for providing analytical expressions for
the diagonal and nondiagonal elements of the dielectric tensor
defined by formula (26). By summing the contribution of
Eqs. (27)–(30) and by defining α

′(3)
b = α

(3)
b (E2

x + E2
y ) one gets

εxx = 1 + αb + αf + αf αb(1 + ξbξf ),

εxy = −i[ξbαb + ξf αf + αbαf (ξb + ξf )],
(31)

εxxxx = α
(3)
b + α

(3)
b αf (1 + ξbξf ),

εxxxy = −i
[
ξbα

(3)
b + α

(3)
b αf (ξb + ξb)

]
.

In order to obtain the numerical values of these functions
one has to fix the values of the following parameters: ω0, ωp,
τb, τf , xb, xf , a, and Bmat. The ω0 pulsation is associated
to the energy band gap between the electronic bands 3d and
4s of Ni. Argyres in Ref. 26 gives the values h̄ω0 = 4 eV.
The value of the plasma pulsation h̄ωp = 4.87 eV can be
found in Ref. 38. The damping factors τb and τf for bound
and free charge carriers may be fixed at 10−15 and 10−14

s.39,40 According to Refs. 36, 37, and 41 we have xb = 0.4
and xf = 0.6. The distance a is calculated with the lattice
parameter al of Ni which crystallizes in a face-centered cubic
(fcc) structure. By using the atomic mass MNi = 58.69 g/mol,
the mass density ρ = 8.902 g/cm3, the Avogadro’s number
NA, and the relation ρ = 4MNi/(NAa3

l ) we determine
al = 3.51 × 10−10 m. In a fcc structure the distance between
two nearly neighbors is a =

√
2

2 al = 2.48 × 10−10 m. The
value of the effective magnetic field will be discussed in the
next section. Finally, we have assumed that mf = mb = me.

In this case, one can write xf ω2
p = nf e2

mf ε0
and xbω

2
p = nbe

2

mbε0
.

V. RESULTS

A. Study without spin-orbit interaction

In this part we do not consider the SOI. By using
Eq. (25) we first plot the curves θmin = Re[�(Emin

abs )] and
ηmin = Im[�(Emin

abs )] as functions of Bmat obtained for the
lowest value of the absorbed energy (Emin

abs = 10−3 mJ/cm2).
Then, the comparison is made with the experimental values
given by the authors of Ref. 12: θmin

exp = 7 mrad and ηmin
exp =

9.7 mrad.
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FIG. 3. (Color online) Faraday rotation and ellipticity at Emin
abs =

10−3 mJ/cm2 (lowest value of the absorbed energy) as functions of
the internal magnetic field Bmat along with their experimental values
taken from Ref. 12. Different values of the effective electron mass
meff/me are used: 0.4, 0.6, 0.8, and 1 (by step of 0.2). Inset: value of
Bmat which matches the experimental value of θmin as a function of
meff/me.

Due to the fact that nickel has a band structure, the
calculation is also performed by substituting the electron mass
me by an effective mass meff . The results are presented in
Fig. 3 for different values of meff/me included in the interval
meff/me ∈ [0.3,1].

The first finding is that, with Bmat ≈ 103 T (which is
the order of magnitude of the Weiss molecular field in
ferromagnetic materials), we recover the order of magnitude
of the experimental value of the rotation parameter θmin

exp .
Moreover, for decreasing values of meff , the intersection of
the curves with θmin

exp leads to smaller values of Bmat (see the
inset of Fig. 3). Let us mention that the tabulated value of Bmat

for nickel is 510 T.26

Unfortunately, for the ellipticity parameter ηmin, theoretical
estimates are always much smaller in comparison to the
experimental value. Indeed, the ellipticity parameter is related
to the absorbtion in the material and cannot be perfectly
accounted for within this classical model.

Normalized rotation θ/θmin and ellipticity η/ηmin as func-
tions of the absorbed energy for different values of the effective
electron mass are depicted in Figs. 4 and 5. For each value
of meff , the associated internal magnetic field is determined
using the results of the previous study performed at the lowest
absorbed energy (we have chosen the results given by θmin

which are more realistic than the ones given by ηmin; see the
inset of Fig. 3).

First of all, it can be clearly seen that the shape of the
theoretical curves exhibits a nonlinear dependence very similar
to the experimental one. Not only the shape but also the
experimental values are reproduced for realistic parameters,
namely, meff/me = 0.3. For both rotation and ellipticity, the
relative change increases as the values of meff/me decrease,

FIG. 4. (Color online) Normalized Faraday rotation for different
values of the effective mass as a function of the absorbed energy. Full
circles represent the experimental data taken from Ref. 12.

until going beyond the experimental result for meff/me = 0.3
(only valid for η).

In Fig. 6 we investigate the influence of the populations
of bound and free electrons controlled by the values of xb

and xf (xb + xf = 1). Indeed, these quantities are only known
approximatively. Three cases are considered (xb = 0.38, xf =
0.62), (xb = 0.40, xf = 0.6), and (xb = 0.42, xf = 0.58)
with meff/me = 1.

B. Study including the spin-orbit interaction

Here we perform a similar study to that of the previous
section but now incorporating the spin-orbit interaction by
using a nonzero value of the magneto-optical parameter λ =

ieMz

2mc2ωε0
in Eq. (24). In order to be compatible with our classical

description, the parameter λ, which is a function of Mz, must
be expressed as a function of the internal magnetic field Bmat.

FIG. 5. Normalized Faraday ellipticity for different values of the
effective mass as a function of the absorbed energy. Open circles
represent the experimental data taken from Ref. 12.
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FIG. 6. Normalized Faraday rotation and ellipticity for different
values of xb as functions of the absorbed energy. meff/me = 1.

By choosing the minimal relation Bmat = μ0Mz, λ may be
written as

λ = iωBmat

2ω
, (32)

where ωBmat = eBmat
m

is the cyclotron pulsation of the ferromag-
netic material and ω is the pulsation of the external electric
field. The magneto-optical parameter originating from the SOI
thus quantizes the competition between these two pulsations.
This modification incorporated into the optical indices given
by Eq. (24) gives interesting results in comparison with the
case where λ = 0.

The result of the calculations of θmin = Re[�(Emin
abs )] and

ηmin = Im[�(Emin
abs )] with λ 	= 0 as functions of Bmat for the

lowest energy (Emin
abs = 10−3 mJ/cm2) are presented in Fig. 7.

Compared to Fig. 3, the intersection between the theoretical
estimates of θmin and the experimental data θmin

exp appears for

FIG. 7. (Color online) Faraday rotation and ellipticity at Emin
abs =

10−3 mJ/cm2 as a function of Bmat with λ 	= 0 along with their
experimental values taken from Ref. 12.

FIG. 8. (Color online) Normalized Faraday rotation for different
values of the effective mass as a function of the absorbed energy
with λ 	= 0. Open circles represent the experimental data taken from
Ref. 12.

smaller values of Bmat. Therefore, one concludes that the
incorporation of the SOI in the model leads to more realistic
values for describing the effective magnetic field inside a nickel
ferromagnetic sample. However, theoretical estimates of the
ellipticity ηmin are still really far from the measured value ηmin

exp .
Using this new value of Bmat, the normalized rotation θ/θmin

and ellipticity η/ηmin as functions of the absorbed energy and
for different values of meff/me are depicted in Figs. 8 and 9.
The evolution of θ/θmin is shown in Fig. 8. It can be clearly
seen that the results are very similar to those of Fig. 4 where
λ = 0. At first glance one is tempted to say that the SOI has no
effect. This conclusion is of course wrong. Indeed two effects
due to the SOI cancel each other. The first one is the decrease of
the effective magnetic field imposed by the result at the lowest
energy (see Fig. 7) and the second one is the modification due
to λ 	= 0 of the optical indices given by Eq. (24).

FIG. 9. Normalized Faraday ellipticity for different values of the
effective mass as a function of the absorbed energy with λ 	= 0. Open
circles represent the experimental data taken from Ref. 12.
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Finally, in Fig. (9) the relative change of the normalized
ellipticity η/ηmin as a function of the absorbed energy is
depicted. One can clearly see that the theoretical estimations
are in complete disagreement with the experimental mea-
surements, being worse than the situation depicted in Fig. 5
where λ = 0. Indeed, we have already emphasized that the
ellipticity parameter which is related to the light absorption of
the physical system seems to be difficult to model by using a
classical framework.

VI. DISCUSSION AND CONCLUSIONS

A. Discussion

Here, we discuss the advantages and the limits of this work
and propose some ideas to improve the model.

The most important result is that the nonlinear shape
of the theoretical estimates seems to follow the trend of
the experimental results. Therefore this suggests that both
Eqs. (18) and (24) are appropriate for describing a nonlinear
anisotropic medium. The results obtained for θmin and θ/θmin

are in good agreement with the experimental values, especially
when λ 	= 0 because, for this case, the needed value of Bmat

is more realistic. This confirms the crucial role played by
the spin-orbit interaction in the Faraday effect, and Eq. (24)
can also be seen as a new manner to incorporate SOI
effects in a macroscopical description of magneto-optical
phenomena.

Moreover, the modeling of ηmin and η/ηmin is unsatisfac-
tory. The theoretical estimates are two orders of magnitude
below the experimental value ηmin

exp . We have described classi-
cally the absorption through the damping factors τb and τf and
their values were fixed in the frame of linear optics. In such
conditions involving nonlinear effects, a classical description
seems to be clearly inadequate. The use of a classical
framework was done on purpose for the sake of simplicity but
one could improve the modeling by using quantum dielectric
response functions. Let us also mention, that we have worked
with only one mode ω of the electromagnetic field without
considering the spectral distribution 
ω of the laser pulse.
However, we strongly believe that the main conclusions will
be not affected by this improvement of the model.

Another important comment concerns the magnetization
dynamic which is missing in the present model. Indeed, the

latter uses a “static” magnetization Bmat = f (M) and the
difference between the theoretical predictions and the experi-
mental data could be associated to this missing ingredient. This
interpretation leads to two interesting conclusions. First, the
part of the magneto-optical signal calculated in Figs. 4 and 8 is
thus mainly related to the nonlinear response of free and bound
electrons, classically explained by a nonlinear distortion of
their orbital momenta. Secondly, finding the appropriate value
of meff/me could also help to fix the difference between the
theoretical predictions and the experimental results.

Thus, we propose that the spin-orbit interaction and the
charge motion influenced by the effective magnetic field have
to be considered in the nonlinear regime. This idea must be put
in contrast with the common belief that the effective magnetic
field in a ferromagnetic material cannot affect the motion
of charges. This model could be also improved by adding
a magnetization dynamic (e.g., through the Bloch equations)
and/or by calculating the dielectric response functions in a
more rigorous way (e.g., using a quantum modeling).

B. Conclusions

Based on the classical anharmonic Drude-Voigt theory,
a rather simple model is developed for modeling ultrafast
nonlinear coherent magneto-optical experiments performed on
ferromagnetic thin films. Theoretical estimations of the Fara-
day rotation angles are compared to available experimental
values of nickel thin film and give meaningful insights about
the physical mechanisms underlying the observed coherent
magneto-optical phenomena. Under realistic conditions, the
model successfully explains the observed trends. The crucial
role played by the spin-orbit mechanism resulting from the
direct interaction between the external electric field of the
laser and the electron spins of the sample is underlined.
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