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Phase transitions in three-dimensional loop models and the C Pn−1 sigma model
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We consider the statistical mechanics of a class of models involving close-packed loops with fugacity n on
three-dimensional lattices. The models exhibit phases of two types as a coupling constant is varied: in one,
all loops are finite, and in the other, some loops are infinitely extended. We show that the loop models are
discretizations of CP n−1 σ models. The finite and infinite loop phases represent, respectively, disordered and
ordered phases of the σ model, and we discuss the relationship between loop properties and σ model correlators.
On large scales, loops are Brownian in an ordered phase and have a nontrivial fractal dimension at a critical
point. We simulate the models, finding continuous transitions between the two phases for n = 1,2,3 and first
order transitions for n � 4. We also give a renormalization-group treatment of the CP n−1 model that shows
how a continuous transition can survive for values of n larger than (but close to) 2, despite the presence of a
cubic invariant in the Landau-Ginzburg description. The results we obtain are of broader relevance to a variety
of problems, including SU(n) quantum magnets in (2 + 1) dimensions, Anderson localization in symmetry class
C, and the statistics of random curves in three dimensions.
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I. INTRODUCTION

This paper is concerned with the statistical physics of a
family of three-dimensional (3D) lattice models for completely
packed loops that have transitions between phases of two types:
one in which there are only short loops, and another in which
some loops are extended. These models and phase transitions
are interesting from several perspectives, since loops play an
important role in a variety of problems from classical statistical
mechanics and are also central to simulations of quantum
systems. Our aim is to identify continuum field theories that
describe long-distance properties of the models, to pin down
the relation to quantum problems, and to study the phase
transitions using large-scale Monte Carlo simulations. We have
previously described some of this work in outline.1 Here we
present a full account as well as additional results.

The models we discuss are characterized by a loop fugacity
n, which can be interpreted as the number of possible colorings
for each loop, and by a coupling constant p, which controls
the distribution of loop lengths; full definitions are given in
Sec. II. A defining feature of loop models, in contrast to spin
systems, is that the basic degrees of freedom are extended
objects. We show in Sec. III, however, that the partition
functions can be rewritten in terms of local degrees of freedom
living on the complex projective space CP n−1 and in this way
we identify the loop models as discretizations of CP n−1 σ

models. In addition, a dictionary can be established, expressing
correlation functions of the σ models in terms of those of
the loop models: most importantly, the two-point correlation
function of the σ model is related to the probability that
two links of the lattice lie on the same loop. The short-loop
phase therefore represents the disordered phase of the σ

model, while infinite loops encode long-range order of the σ

model. The relationship between correlation functions carries
implications for the geometry of loops: in particular, the
physics of Goldstone fluctuations implies that loops in the

ordered phase are Brownian at large distances, while at a
critical point loops have a fractal dimension related to the
correlation exponent η of the σ model.

Depending on the value of the loop fugacity, the loop
models can be mapped to various problems in critical phe-
nomena. Setting n = 1, they represent an important class
of classical phase transitions which (like percolation) are
geometrical rather than thermodynamic in nature, in the sense
that they are visible only in geometrical observables. In
this correspondence, the loops represent line defects in an
environment with quenched disorder. Examples include the
zero lines of a random complex field,2 cosmic strings,3 or
optical vortices.4 The loop models at n = 1 also arise via
exact mappings from network models for certain Anderson
metal-insulator transitions.5,6 At this value of n, the field theory
must either be construed as a replica limit, or augmented
with fermionic degrees of freedom and supersymmetry. The
properties of such σ models and their connection with loop
models have been discussed recently for two-dimensional (2D)
systems7,8 while in previous work we have studied 3D loop
models at n = 1,9 and their general relation to geometrical
phase transitions.10

Remarkably, when n is greater than 1, the same 3D loop
models can be mapped to quantum SU(n) antiferromagnets
in (2 + 1) dimensions by considering an appropriate transfer
matrix. The phase with long loops is then the Néel phase,
and one with only short loops is a valence bond liquid in
which spins dimerize without breaking lattice symmetries.
Indeed, the models we discuss here are closely related to
loop algorithms that have been developed for Monte Carlo
simulation of quantum spin systems.11–13 A feature specific to
our three-dimensional lattice model is that, since the “timelike”
axis is microscopically equivalent to the two “spacelike”
ones, at a continuous quantum phase transition the dynamical
exponent value z = 1 is guaranteed, rather than a matter
for calculation. Loop models with “deconfined” transitions
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to valence bond solid phases may also be constructed by
introducing extra couplings, and will be discussed in a separate
paper.14

Besides their appearance in computational algorithms for
quantum antiferromagnets, loop models with n > 1 have been
examined previously in a variety of other contexts. The
2D CP n−1 σ model has been simulated both by using the
connection between SU(n) magnets in (1 + 1) dimensions and
classical σ models in two dimensions,15 and by means of a
loop representation different from the one we describe here.16

Separately, there have been detailed studies of the properties of
loops that arise in the description of some frustrated classical
antiferromagnets,17,18 and of cycles that occur in statistical
problems involving random permutations.19,20

Loop models can be studied efficiently using Monte Carlo
techniques, and we use simulations both as a check on our
identification of them with σ models and to investigate the
phase transitions: results are presented in Sec. V. As a test we
examine critical phenomena at n = 2: the CP 1 model is known
to be equivalent to the O(3) (or classical Heisenberg) model,
and our results are consistent with previous high precision
investigations21 of that universality class. Moving beyond
this check, an important basic question concerns the nature
of the transition for general n. For n > 2, Landau theory
allows a cubic invariant, implying discontinuous ordering. We
show, however, in Sec. IV, using an expansion around n = 2
and dimension d = 4, that fluctuations lead to a continuous
transition for n < nc, with nc > 2 if d < 4. At n = 3 in three
dimensions we find behavior consistent with a continuous
transition, and obtain the exponent values ν = 0.536(13) and
γ = 0.97(2). If this is indeed a new critical point, it implies
the possibility of similar behavior in two-dimensional quantum
SU(3) magnets. Recent results22 for a bilayer SU(3) magnet are
consistent with this. Large loop fugacity favors the disordered
phase of loop models, which occupies a growing portion of
the phase diagram with increasing n. More detailed features
vary with the choice of lattice: for one (termed the K lattice
below) we find a first-order transition at n � 4 between
ordered and disordered phases; another (the three-dimensional
L lattice) supports only disordered phases at n � 5. First-order
transitions have also been reported23,24 from Monte Carlo
simulations of other lattice discretizations of the CP n−1 model
at n = 4, and from an analytical treatment of the large-n
limit.25

II. MODELS

The models we study are defined as follows. We start with
a directed lattice of coordination number 4 that has two links
entering each node and two links leaving. A close-packed
loop configuration is constructed by selecting for every node
one of the two possible pairings of incoming with outgoing
links. The statistical weight of such a configuration has two
contributions. First, for each node a probability p is associated
with one pairing of links, and 1 − p with the other. Second,
each loop carries a fugacity n. Consider a configuration C in
which the numbers of nodes with each type of pairing are
Np and N1−p respectively, and there are |C| loops, and let
the partition function be Zloops. Then the probability of this

configuration is

Z−1
loops pNp (1 − p)N1−pn|C| (1)

and

Zloops =
∑
C

pNp (1 − p)N1−pn|C| . (2)

The loop fugacity can be generated by allowing each loop
independently to have one of n colors, and summing over loop
colors as well as node pairings. Making an obvious analogy
with a Boltzmann weight, we refer to

E ≡ −Np ln p − N1−p ln(1 − p) (3)

as the energy of a configuration.
A model is fully specified by the choices of lattice and link

directions, and of which pairing attracts which weight at each
node. We study two models on three-dimensional directed
lattices proposed by Cardy.26 They are analogs of the two-
dimensional L lattice and Manhattan lattice and we refer to
them as the three-dimensional L lattice and the K lattice,
respectively. The loop model on the three-dimensional L lattice
is symmetric under p → 1 − p. At p = 0 and p = 1 it has
only loops of minimal length (six steps), but an extended phase
occurs near p = 1/2 provided n is not too large (n � n∗, with
4 < n∗ < 5). The loop model on the K lattice is not symmetric
under p → 1 − p; instead, it is designed to ensure that both
localized and extended phases occur as p is varied. At p = 0 it
has only loops of minimal length, but at p = 1 all trajectories
are extended. It has a transition for all n from a localized phase
at small p to an extended phase near p = 1. Phase diagrams
for loop models on both lattices are illustrated in Fig. 1.

Both lattices are defined on a graph G that has cubic
symmetry; they differ in their link orientations. To construct the
graph G, take two interpenetrating cubic lattices C1 ≡ (2Z)3

and C2 ≡ (2Z + 1)3 as illustrated in Fig. 2. The edges (or
links) of G are formed by the intersections of the faces of C1

with the faces of C2. The nodes of G lie on the midpoints of the
edges of C1 or of C2 (although these edges do not themselves
belong to G), and the four links that meet at a node lie on two
orthogonal axes.

The L lattice, illustrated in Fig. 3, has the property that both
incoming links at a node lie on the same axis, and both outgoing
links lie on the other axis (Fig. 4). This is sufficient to fix the
orientation of all links on the lattice up to a global twofold
choice, which is arbitrary. The K lattice has the alternative
property that all links lying on a given axis are directed in
the same sense (Fig. 5). In addition, links on nearest-neighbor
parallel axes are oppositely directed.

To specify in a more formal way the assignment of weights
p and 1 − p in each case, we describe the unique configuration
of loops contributing to Zloops at p = 0. For both lattices this
consists solely of nonplanar loops of six links. Each such loop
can be defined by giving the coordinates of an initial site and
the orientations of the first three steps from this site, since the
remaining three steps have opposite orientations in the same
order. The unit cell of the three-dimensional L lattice contains
four such loops, and that of the K lattice contains two loops,
as set out in Table I.

We take links to have unit length. In simulations we
use cubic samples of linear size L with periodic boundary
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FIG. 1. (Color online) Phase diagrams for the L and K lattices. Continuous transitions are indicated by blue dots and a single line and
first-order transitions by red dots and a double line. For the L lattice, the point p = 1/2, n = 4 lies in the extended phase, as shown in the inset.

conditions. The number of nodes is then N = 3L3/4 for both
lattices.

III. FIELD THEORY DESCRIPTION

In this section we give a simple way to connect the loop
models to field theory (Secs. III A and III B). We also discuss
(Sec. III C) the relationship between loop observables and
correlation functions of the field theory, and the use of a
replicalike limit or supersymmetry (SUSY) to extend the range
of correlation functions expressible in that field theory. A
compact account of these ideas appeared in Ref. 1; see also
the related discussion in Ref. 10. We discuss the relation to
quantum problems described by the same field theories in
Sec. III D.

A. Introduction of local degrees of freedom

The loop models may be related to lattice “magnets” for
spins located on the links l of the lattice. Neglecting for now
complications associated with replicas or supersymmetry (and
taking n to be a positive integer), these spins are n-component
complex vectors zl with

zl = (
z1
l , . . . ,z

n
l

)
and z†l zl = n. (4)

FIG. 2. (Color online) Left: a cube of C1, with the lines of
intersection with C2 marked in red. These lines form the links of
the L and K lattices. Right: with the orientations corresponding to
the L lattice added. The nodes lie on two sublattices, marked in yellow
and black.

The action for these degrees of freedom will be chosen
so that a graphical expansion generates the sum over loop
configurations defining Zloops. This leads to a U(1) gauge
symmetry,

zl ∼ eiφl zl , (5)

implying that the spins live on CP n−1—the manifold of fixed-
length complex vectors modulo the equivalence (5).

The required action may be written as a sum of contributions
from nodes. Letting the trace “Tr” stand for an integral over
the fixed-length vectors z, normalized so Tr 1 = 1, we write

Z = Tr exp

(
−

∑
nodes

Snode

)
. (6)

To define Snode label the links at a node as in Figs. 4 and 5,
with the weight p pairing being i → o, i ′ → o′ and the weight

FIG. 3. (Color online) Loops on the 3D L lattice at p = 0. The
bounding planes of the Wigner-Seitz unit cell are shaded and each of
the four loops of Table I has a different color.
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FIG. 4. (Color online) A node on the L lattice, together with the
labeling of links used in Eq. (7).

1 − p pairing being i → o′, i ′ → o. Then

exp(−Snode) = p (z†ozi)(z
†
o′zi ′) + (1 − p) (z†ozi ′)(z

†
o′zi). (7)

The total action is invariant under the gauge transformation (5),
as the phase φl cancels between the terms for the two nodes
adjacent to link l.

The two terms in e−Snode are in correspondence with the
two node configurations in the loop model. This leads to a
simple expression for the partition function in terms of loop
configurations C, of the form

Tr
∏

nodes

exp(−Snode) =
∑
C

WC
∏

loops in C
Tr (z†1z2) . . . (z†�z1).

(8)

Here we have used the labels 1, . . . ,� for the links lying on
a loop of length � and WC = pNp (1 − p)N1−p is the weight
associated with the nodes. Next, perform the integrals over
the zs using Tr zα

l z̄
β

l = δαβ (repeated indices are summed
throughout) to obtain

Tr (z†1z2) . . . (z†�z1) = Tr
(
z̄
α1
1 z

α1
2

)(
z̄
α2
2 z

α2
3

)
. . .

(
z̄
α�

� z
α�

1

)
= δα1α2δα2α3 . . . δα�α1 . (9)

The Kronecker δs force the spin indices αi to be equal for all
the links i on a given loop. The remaining free index gives the
desired sum over n colors for each loop, so that

Z =
∑
C

∑
loop

colours

WC = Zloops. (10)

This establishes the correspondence between the loop models
and models with local “magnetic” degrees of freedom. Its
utility is that we may now make the simplest conjectures for
the models’ continuum descriptions, taking account of the
SU(n) global and U(1) gauge symmetries of the lattice action
appearing in Eq. (6).

1�p pi'

i o

o'

FIG. 5. (Color online) A node on the K lattice, together with the
labeling of links used in Eq. (7).

TABLE I. Initial position and first three steps of the hexagons
forming the L and K lattices.

L lattice K lattice

(0,1,0) x̂ ŷ ẑ (0,0,0) x̂ ŷ ẑ
(1,0,1) x̂ ŷ −ẑ (1,0,0) x̂ −ẑ −ŷ
(0,1,2) x̂ −ŷ −ẑ
(1,2,1) x̂ −ŷ ẑ

Note that this lattice action is complex valued. When
coarse graining is considered carefully, the naive real action
resulting from a derivative expansion has to be supplemented
with imaginary terms associated with hedgehog defects,14 but
for the transitions considered in this paper the consequence
of these terms is only to renormalize the parameters in the
effective Lagrangian, and not to change the naive result.

B. Continuum limit

Let us exchange the vector z, which is a redundant
parametrization of CP n−1, for the gauge-invariant matrix Q,
defined by

Qαβ = zαz̄β − δαβ. (11)

Q is Hermitian and traceless, and obeys the nonlinear
constraint (Q + 1)2 = n (Q + 1).

In the continuum we may either retain this constraint, giving
the CP n−1 σ model

Lσ = 1

2g
tr (∇Q)2 (and constraint on Q), (12)

or we may use a formulation in which Q is an arbitrary traceless
Hermitian matrix, giving the soft spin model

Lsoft = tr (∇Q)2 + t tr Q2 + g tr Q3 + λ tr Q4 + λ′(tr Q2)2.

(13)

The existence of hedgehog defects [possible because of the
nontrivial second homotopy group π2(CP n−1) = Z] means
that the second formulation is arguably more natural in three
dimensions. Hedgehogs are known to play an important role
in the vicinity of the critical point, and they proliferate in
disordered phase; they are of course irrelevant in the ordered
phase.27–32 In order to accommodate them in the σ model,
the constraint must be relaxed in the defect core, and the
regularization-dependent physics in the core then determines
a finite fugacity for defects—the condensed formulation (12),
with only the single parameter g, is therefore slightly
misleading.

The manifold CP 1 is simply the sphere, so at the special
value n = 2 the above field theories reduce to the σ model and
soft spin incarnations of the O(3) model. At this value of n,
the cubic term in Lsoft vanishes, and there is only one quartic
term. The O(3) spin S is related to Q via the Pauli matrices.
Setting Q = 1√

2
σ iSi in Lsoft gives

Lsoft = (∇S)2 + t S2 + u (S2)2 (14)

with u = λ′ + λ/2.
This description leads us to expect continuous transitions in

the O(3) universality class for the n = 2 models. Continuous
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transitions are also expected for n < 2. For n > 2, the naive
expectation is a first-order transition, as a result of the cubic
term in Lsoft. However, as we will see in Sec. IV, fluctuations
can invalidate this mean-field prediction when the spatial
dimension is less than 4, and so numerical work is required to
determine what happens in three dimensions.

1. Aside: Compact and noncompact C Pn−1 models

The field theories described above should be distinguished
from the related “noncompact” CP n−1 models, in which z is
coupled to a noncompact U(1) gauge field A:

LNCCPn−1 = 1
2 |(∇ − iA)z|2 + κ(∇ × A)2 + μ|z|2 + λ|z|4.

The universal behavior of the “compact” CP n−1 models (those
discussed in this paper) may also be captured by gauge theories
similar to the above, but with a compact U(1) gauge symmetry.
This distinction is discussed in Refs. 29, 30, and 32. In the
compact case, configurations of the gauge field A are allowed
that contain Dirac monopoles. This leads to confinement of z
quanta, so that at long distances only the neutral degrees of
freedom in Q play a role, and we return to the field theories
already discussed.

In our microscopic models, the gauge symmetry is compact:
the parameter φl in (5) is defined only modulo 2π . A subtlety is
that in some cases29,30 critical points in models with compact
gauge symmetry may be described by emergent noncompact
gauge theories in the continuum. This occurs as a result
of the suppression of Dirac monopoles—or, as it turns out
equivalently, of hedgehog configurations in Q.

C. Correlation functions

The graphical expansion of the lattice field theory (6)
generates a sum over loop configurations in which each loop
carries a color index α = 1, . . . ,n. This leads straightforwardly
to expressions for correlation functions of Q in terms of the
probabilities of geometrically defined events. These relation-
ships are those one would expect from viewing the loops
as worldlines of z quanta, with one of the spatial directions
taken as the imaginary time direction for a quantum problem.
These worldlines come in n colors, one for each component
of z, and since zα is a complex field they carry an orientation
distinguishing particles from antiparticles.

In particular, the operator Q
μν

l = z
μ

l z̄ν
l with μ 	= ν absorbs

an incoming strand/worldline of color μ and emits an outgoing
one of color ν. More precisely, the effect of this operator on the
graphical expansion is to force the loop passing through link l

to change color from μ to ν there. This follows from the fact
that the presence of the operator changes the single link integral
appearing in Eq. (9) from Tr zα

l z̄α′
l = δαα′

to Tr zα
l z̄α′

l Q
μν

l =
Aδανδα′μ (for μ 	= ν), with A = n/(n + 1).

We can use Q to represent the probability G(l,l′) that two
links lie on the same loop, since the correlator 〈Q12

l Q21
l′ 〉

receives contributions only from configurations in which l

and l′ are joined (by a loop with one arm of color 1 and one
arm of color 2) and

G(l,l′) = n

A2

〈
Q12

l Q21
l′

〉
. (15)

In this expression the factor of n compensates for the fact that
there is no sum over color indices for the loop passing through
l1 and l2. In the terminology of loop models, Qαβ is a “two-leg”
operator.

For convenience, we here use the off-diagonal elements
of Q to write geometrical correlators, but all Q correlators
can be expressed in terms of loops; for example 〈tr QlQl′ 〉 =
(n − 1)AG(l,l′). We may think of the diagonal components,
e.g., Q11

l , as operators which measure the color of a link.
The two-leg correlator G(l,l′) generalizes to 2k-leg correla-

tors G2k , which give the probability that two regions are joined
by 2k strands. For example, on the lattice we can define G4 as
the probability that four separate strands connect two nodes.
In the continuum, such correlators may be written

G2k(x,y) ∝ 〈[Q12(x)]k[Q21(y)]k〉, (16)

where Q(x) is the continuum field.
So far, the correlators we have considered involve only two

distinct spin indices α = 1,2. They can therefore be written
down so long as the spin z has at least two components
(n � 2). More complex correlation functions may require the
use of more indices. For example, if n � k we can express
the probability that a single loop passes through all the links
l1, . . . ,lk , in that order as

G(l1, . . . ,lk) = n

Ak

〈
Q12

l1
Q23

l2
. . . Qk1

lk

〉
. (17)

1. Replicas/SUSY

These formulas highlight a potential problem. The com-
plexity of the geometrical correlation functions we can
represent is limited by the number n of spin components at
our disposal, which in turn is set by the loop fugacity. The
problem is most acute at n = 1, when we cannot represent any
correlation functions at all.

The simplest way to get around this is to calculate the de-
sired correlation function assuming that n is sufficiently large,
and subsequently analytically continue to the required value of
n. This is a standard idea in the study of geometrical problems
such as loop models and percolation, and is analogous to the
replica trick in disordered systems. For simplicity, we will use
this replicalike limiting procedure in this paper. However it
should be noted that there is also a more rigorous alternative,
which is to augment the field theory with additional fermionic
degrees of freedom in such a way that the resulting field theory
has a global supersymmetry. For our purposes in this paper,
replicas and SUSY are equivalent and it is easy to translate
between them.

The supersymmetric construction is described in Refs. 1,
7,8, and 10, and leads to the so-called CP n+k−1|k model, in
which z is replaced by a supervector ψ with n + k bosonic
components zα and k fermionic ones χα , so that

ψ = (z1, . . . ,zn+k,χ1, . . . ,χk). (18)

The supersymmetry ensures that the value of k does not affect
the partition function or its expansion in loop configurations.
However, increasing k yields more operators.
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2. Phases of the C Pn−1 model

When the CP n−1 spins are disordered, correlators such as
G(x,y) decay exponentially, indicating that long loops are
exponentially suppressed. At a critical point, the anomalous
dimension η of the spin Q determines the decay of G(x,y),

G(x,y) ∼ |x − y|−(1+η), (19)

the fractal dimension of a loop33,34

df = 5 − η

2
, (20)

and the probability P (l) that the loop passing though a given
link is of length l:

P (l) ∼ l1−τ , τ = 11 − η

5 − η
. (21)

If the mean-field estimate η = 0 is a good approximation, the
loops have a fractal dimension close to 5/2.

When the spins are ordered, G(x,y) is long ranged,
indicating the appearance of extended loops. The nature of
these extended loops in a large, finite sample of linear size
L depends on whether curves are allowed to terminate at the
boundary or whether all loops are closed. In the former case
the extended loops have length O(L2), since the loops in this
phase have fractal dimension 2. In the latter case they have
a length O(L3): although the fractal dimension of a segment
of radius � L is still 2, the number of times a given extended
loop crosses the sample is of order L. We now focus on the
case with only closed loops, which pertains to our simulations
with periodic boundary conditions.

The magnitude of order parameter in this phase is pro-
portional to the fraction of links lying on extended loops.
To demonstrate this, consider applying a magnetic field
h ∼ O(L−2) that couples to Q via a term in the action
δS = −h

∑
l Q

11
l . In the spin language, the field fixes the

direction of symmetry breaking to z ∼ (1,0, . . . ,0) and the
order parameter is simply the average 〈Q11

l 〉 calculated in
the presence of the weak field h. In the graphical expansion,
δS endows loops of color α = 1 with a small additional length
fugacity: finite strands are insensitive to h but extended strands
are forced to be of color α = 1, so that they alone contribute
to 〈Q11

l 〉.
In the extended phase, contributions to the 2k-leg cor-

relation functions G2k may be split up according to how
many of the strands are finite and how many are infinite, and
the power-law decay of the geometrical correlation function
depends only on the former. Let G̃m be the probability that m

finite strands connect x and y, irrespective of the number of
infinite strands. Then we find

G̃m(x,y) ∼ |x − y|−m. (22)

These exponents are also independent of how many of the finite
strands are oriented from x to y (rather than the reverse) and
whether the strands join together form a single loop or many
loops. The exponent values indicate that within the extended
phase a single walk is Brownian on long scales, having for
example a fractal dimension of 2.

To arrive at this result, consider again the effect of a weak
symmetry breaking field, with δS = −h

∑
l Q

11
l . We can then

regard the operators zα and z̄α for α > 1 as absorbing/emitting

�1�p� p� �T �ΑΒ
Α'Β'

Α Β

Α' Β'

Α Β

Α' Β'

Α Β

Α' Β'

FIG. 6. (Color online) Graphical representation of the transfer
matrix for a single node. The indices α,β,α′,β ′ denote link colors.
Imaginary time increases in the vertical direction, with the lower links
being at time τ and the upper links at time τ + �τ .

strands which must be finite, while z1 and z̄1 absorb/emit
strands that may be extended. At large separations, the
dominant contribution to any correlator is given by setting z1

equal to a constant (determined by the strength of long-range
order) while contributions from components with α > 1 are
proportional to Goldstone mode correlators, with two-point
functions that decay inversely with separation. For example
the correlator 〈(z1z̄2)m(x)(z̄1z2)m(y)〉, which forces m finite
strands to propagate from x to y, decays as |x − y|−m. This
argument is readily generalized to give Eq. (22).

D. Transfer matrices and quantum magnets

The link colors provide a convenient basis for the transfer
matrix, which acts between “time” slices formed by planes
of the lattice and which defines an associated quantum
Hamiltonian. We briefly review a standard simple example,35

then describe the qualitative features of the Hamiltonians
corresponding to the 3D loop models.

Consider first of all the transfer matrix T for a single node
of the type shown in Fig. 6. In component form this is T

α′β ′
αβ ,

where the upper indices are the colors of the links at time
τ + �τ , and the lower indices those at time τ . This matrix has
two terms,

T
α′β ′
αβ = (1 − p)δα′

α δ
β ′
β + p δα′β ′

δαβ, (23)

corresponding to the two node configurations. The partition
function tr T N defines a quasi-one-dimensional loop model
with N nodes. The transfer matrix is also the imaginary
time evolution operator for a two-site quantum problem with
Hamiltonian H , related via

T = e−�τH . (24)

Each site (we label them A and B) has an n-dimensional
Hilbert space, spanned by kets |α〉A and |α〉B respectively. In
terms of these

T = (1 − p)1 + p
∑
αβ

|α〉A|α〉B〈β|A〈β|B (25)

= (1 − p)1 + p nPAB. (26)

In the second line PAB is the projector onto the state
1√
n

∑
α |α〉A|α〉B . This state is a singlet under SU(n) trans-

formations that act as

|α〉A −→ Uαβ |β〉A and |α〉B −→ U ∗
αβ |β〉B. (27)

The degrees of freedom at A and B are SU(n) spins, transform-
ing in the fundamental and antifundamental representation
respectively.
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At n = 2 they are standard spin-1/2 degrees of freedom.
In this case it is convenient to relabel the basis states as Sz

eigenstates for spin operators SA and SB ,

|1〉A = |↑〉A, |1〉B = |↓〉B,
(28)

|2〉A = |↓〉A, |2〉B = −|↑〉B.

Both spins then transform in the same representation (this
is possible at n = 2 because the fundamental representation
of SU(2) is pseudoreal). The singlet takes the usual form

1√
2
[| ↑〉A| ↓〉B − | ↓〉A| ↑〉B], and the projector onto it is

PAB = 1/4 − SA · SB .
For the single node we can easily extract the form of the

Hamiltonian. Dropping an additive constant, it is

H = J PAB, (29)

with J = �τ−1 ln[1 + pn/(1 − p)].
For 2D or 3D loop models, the Hamiltonian will not

generally take a simple explicit form. If we insist on one,
we must take a continuum limit in imaginary time—this
corresponds to making the node weights anisotropic in such
a way that the transfer matrix becomes close to the identity.
This procedure is standard for the loop model on the two-
dimensional L lattice:35 the resulting Hamiltonian describes a
nearest-neighbor spin chain, and the node parameter in the loop
model controls dimerization in the strength of the exchange.
For the 3D models we take the view that the precise form of
H is less important than the degrees of freedom, symmetries,
and phase structure of H .

For both the L and K lattice we take imaginary time to run
parallel to the vertical axis of Fig. 2. The links intersecting
a time slice (which is of thickness two link lengths in the K

lattice and four in the L lattice) then form a square lattice
with lattice spacing

√
2, as shown in Fig. 7. One sublattice

consists of upgoing and the other of downgoing links; as in
the single-node example, this leads to an SU(n) magnet with
spins in the fundamental representation on one sublattice and
in the antifundamental representation on the other. The transfer
matrix T for a given lattice is a sum over configurations
within the time slice, in analogy to Eq. (23). The phase
structure of the models is like that of nearest-neighbor SU(n)

FIG. 7. (Color online) The K lattice at p = 0: this short loop
phase corresponds to a staggered dimer state. The square lattice for
the associated quantum problem is formed by the links and filled
circles in a time slice, shown in black.

magnets with dimerization in the strength of the exchange,
H = ∑

〈ij〉 JijPij ; of course the actual Hamiltonian, given by
the logarithm of T , would not take this simple form.

The extended phase in the loop models corresponds to
the Néel phase, while the short-loop phase corresponds to
a dimerized phase. The pattern of dimerization in a short-loop
phase can be seen from the representative configuration in
which all loops have the minimal length of 6. These loops
connect the links within a time slice in pairs; in the quantum
problem singlets form between the paired sites. For the
L lattice there are four packings of minimal-length loops,
corresponding to the four columnar packings of singlets on
the square lattice. When p = 1/2 these packings are related
by lattice symmetry, which is broken when p 	= 1/2. That is,
varying p away from 1/2 imposes a specific dimerization in the
couplings in H . For the K lattice there is only a single packing
of minimal-length loops, which corresponds to a staggered
packing of singlets.

IV. THE C Pn−1 MODEL NEAR n = 2 AND d = 4

At n = 2, when the cubic term in Lsoft vanishes, the upper
critical dimension of the CP n−1 model is 4 rather than 6. This
allows a double expansion in

� = n − 2 and ε = 4 − d. (30)

This idea has been discussed previously for the Q-state Potts
model, where the expansion is about the Ising limit.36 The
conclusions below for the CP n−1 model are qualitatively
identical. In particular, a universal nc appears, which is greater
than the mean-field value 2 when d < 4.

To begin with, recall the Wilson-Fisher37 renormalization
group (RG) equations for the O(3) (or CP 1) model (14). To
lowest nontrivial order these are, after rescaling u → u/22,

du

d ln L
= εu − u2,

dt

d ln L
=

(
2 − 5

11
u

)
t. (31)

Setting t = 0, there are fixed points at u = 0 and u = ε. For
ε > 0, the latter is stable in the u direction, and describes
the critical CP 1 model, while the former is unstable in the u

direction and describes the tricritical point.
We now consider a formal expansion of these equations

in � (compare the approach to the 2 + ε dimensional O(n)
model in Ref. 38), deferring the field-theoretic interpretation
until Sec. IV A. The leading contribution is a modification to
the RG equation for u:

du

d ln L
= −a� + εu − u2. (32)

The consistent scaling is to take � to be O(ε2), and u to be O(ε)
as at the Wilson Fisher fixed point. Here a is an undetermined
universal constant, assumed positive in order to give sensible
RG flows.

Figure 8 shows the resulting RG fixed points in the (u,�)
plane for fixed ε > 0. As � is increased from zero, the critical
and tricritical fixed points approach each other, annihilating at
a critical nc given to this order by

nc � 2 + ε2

4a
. (33)
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NAHUM, CHALKER, SERNA, ORTUÑO, AND SOMOZA PHYSICAL REVIEW B 88, 134411 (2013)

u

c

FIG. 8. (Color online) RG fixed points and flows in the (u,�)
plane for d < 4, showing critical (red full curve) and tricritical (blue
dashed curve) fixed points merging at �c.

The thermal and leading irrelevant exponents at the critical
point are

yt � 2 − 5

22
(ε +

√
ε2 − 4a�), yirr � −

√
ε2 − 4a�.

The anomalous dimension η is O(ε2), as in the O(N ) model.
Analogous formulas hold for the Potts model.36

Precisely at nc, the irrelevant exponent vanishes and there
are logarithmic corrections to scaling. Above nc, there are no
fixed points: the RG flows go off to large negative u, which we
interpret as a first-order transition.

The size of discontinuities at this first-order transition
decreases rapidly as n approaches nc from above. Integrating
Eq. (32) from a microscopic scale at which u is positive and
of order 1 to the scale of the correlation length ξ , where u is
negative and of order 1, gives

ξ ∼ exp

(
2π

ε

√
nc − 2

n − nc

)
. (34)

Similar forms hold for other quantities such as the latent heat.39

The asymptotic form ξ ∼ exp(const/
√

n − nc) is in fact more
general than the lowest-order expansion we consider here,
since it depends only on the mechanism by which the critical
point disappears at nc.36,39,40

In Fig. 9 we show the RG fixed points in the (d,u) plane for
n > 2 and n < 2. Note that when n < 2 the fixed points below
four dimensions are smoothly connected to those above. This is
in agreement with our belief that a 6 − ε expansion is possible
in the model with n = 1.10 For n > 2 a branch of fixed points
appears above four dimensions. These fixed points, which are
at negative u, are not expected to correspond to genuine critical

d 4

u

d 4

u

FIG. 9. (Color online) RG fixed points and flows in the (u,d)
plane. Left: for n < 2. Right: for n > 2.

points, as a result of unboundedness of the fixed point potential
[this phenomenon is present even in the O(N ) model37].

A. More concrete picture

Let us rewrite the soft spin CP n−1 model as

Lsoft spin = tr(∇Q)2 + t tr Q2 + u

22
tr Q4 + V (Q) , (35)

collecting the operators that vanish at n = 2 into V (Q). There
is one of these at cubic and one at quartic order, and we allow
for higher terms with

V (Q) = g1 tr Q3 + g2
(

tr Q4 − 1
2 (tr Q2)2

) + · · · . (36)

The two operators shown explicitly vanish when n = 2, by
virtue of the tracelessness of Q.

The RG equations for t and u must of course be independent
of the gi when n = 2, so any term which depends on the latter
must have a coefficient proportional to �. This phenomenon
also occurs in the Potts model.36 To the order that we require,
the RG equations for u and gi hence have the form

du

d ln L
= εu − u2 − �f (g1,g2, . . .),

(37)
dgi

d ln L
= βi(g1,g2, . . .),

and we have checked explicitly that the f term is of order
�, not higher. The cubic coupling g1 is strongly relevant at
the four-dimensional Gaussian fixed point, which obstructs
a perturbative calculation of f and βi . However to obtain
Eq. (32) we need only assume that the gi flow to fixed point
values g∗

i under the RG equations (37), and expand around
these with gi = g∗

i + δgi , obtaining

du

d ln L
� εu − u2 − �f (g∗

1 ,g
∗
2 , . . .),

dδgi

d ln L
� −bij δgj .

The first of these equations yields Eq. (32), with a =
f (g∗

1 ,g
∗
2 , . . .). The second yields subleading (order 1) irrel-

evant exponents associated with the operators in V (Q).

B. Two upper critical dimensions at n = 2

In order to analytically continue in n it is important
to realize that it is the operators in V (Q), and not their
couplings, which vanish when n = 2. We may consider higher-
dimensional versions of the loop models discussed here, and
this observation leads to the conclusion that for n = 2 such
models have two distinct upper critical dimensions.

For correlators that can be written down using only two
spin indices, we do not need a replica limit or SUSY. We
set n = 2 directly, giving the O(3) model with upper critical
dimension 4. At the critical point these correlators will thus
have Gaussian behavior for d � 4. However for correlators
that require more than two indices, we are forced either to
analytically continue in n or to use SUSY. In either case, the
cubic term reappears (in the SUSY formulation, the soft-spin
CP n+k−1|k model, it is str Q3, where str is the supertrace),
leading to a non-Gaussian theory below six dimensions. These
correlators are thus expected to have nontrivial behavior for
d < 6. This could be tested numerically by a simulation in
four dimensions.
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V. SIMULATIONS

A. Monte Carlo procedure

To describe our Monte Carlo procedure, we explain in
the following how configurations are labeled, how an initial
state is constructed, and what Monte Carlo updates are used.
Our approach is similar to ones used in loop algorithms for
simulations of quantum spin systems.11

We generate the fugacity n from a sum on loop colors, and
so a configuration of the model is specified by the pairing of
incoming and outgoing links at each node and by a color
for each link, with the constraint that all links belonging
to the same loop must have the same color. This approach
imposes the requirement that n is integer: we have developed
an alternative algorithm that works for any real positive n, but
it is less efficient.

An initial state is constructed by choosing at random the
configuration of each node with the specified probability.
A color is associated with each loop, chosen with equal
probability from n alternatives.

Subsequent states are generated using three kinds of Monte
Carlo move. In the first, a node is chosen at random. If the two
loop strands passing through the chosen node have different
colors, the node configuration is not changed, but if they both
have the same color, it is changed according to the following
rules. Denote the node configuration that has probability 1 − p

by α and the one with probability p by β. For p < 1/2 a node
in configuration α is changed to β with probability p/(1 − p),
and one in configuration β is always changed to α. For p >

1/2, a node in configuration α is always changed to β, and
a node in configuration β is changed to α with probability
(1 − p)/p. In the second type of Monte Carlo move, a link is
chosen at random and the color of all the links of the loop to
which it belongs is changed to a different color, chosen with
uniform probability from the n − 1 possibilities. The third
type of move is to recolor all loops in the system, with the new
colors selected independently and at random for each loop. It
is designed to ensure that the colors of short loops equilibrate
efficiently.

The first two types of move are intercalated, with ten node
updates followed by one color change. For a sample with N

nodes we call N/10 such sequences a Monte Carlo sweep.
Measurements are performed every two Monte Carlo sweeps
and the third type of move is applied after each measurement
sweep. The autocorrelation function of the energy is used to
estimate a correlation time.

We consider loop models with an integer number of colors
1 � n � 10, and system sizes of up to 7.5 × 105 links for
n � 2, and 6 × 109 for n = 1. The minimum number of Monte
Carlo sweeps used is 105 for any n, p and L, and increases
with decreasing L.

B. Observables

We measure observables for the loop models that are related
to those of the CP n−1 model. In particular, we calculate
quantities with the same scaling behavior as the stiffness,
susceptibility, order parameter, and heat capacity of the σ

model, and we compute the Binder cumulant for the energy.
We also evaluate the fractal dimension of loops. Detailed

definitions and expected finite-size scaling behavior are as
follows.

1. Stiffness

As a quantity equivalent to the σ model stiffness, we study
the average number nw(p,L) of curves winding around the
sample in a given direction.41 More precisely, we pick a plane
of the lattice and count for each configuration the number
of sections of trajectory that leave this plane on a given side
and wind around the sample to reach the same plane from
the opposite side. It is a property of the models that for each
such trajectory section winding in the given direction, there is
another trajectory section winding in the opposite direction.
For large sample size nw(p,L) approaches zero in a phase
with only short loops, and is proportional to L in a phase
with extended trajectories. If there is a continuous transition
between these phases at a critical point pc with correlation
length exponent ν, one expects the finite-size scaling behavior

nw(p,L) = fw(L1/ν[p − pc]). (38)

2. Susceptibility

The susceptibility of the σ model can be expressed in the
standard way as the spatial integral of the connected part of a
two-point correlation function. With this as motivation, let n(s)
be the number of loops of length s in a given configuration.
Then the spatial integral of the two-point correlation function
in Eq. (15) is proportional to 〈∑ss

2n(s)〉, where 〈. . .〉 denotes
an average over configurations. We split n(s) into contributions
next(s) and nloc(s) from extended and localized loops, with
n(s) = nloc(s) + next(s). Here we define extended loops to be
those that contribute to nw. We then take as our definition of
the susceptibility χ

χL3 =
〈

L3∑
s=0

s2n(s)

〉
−

〈
L3∑
s=0

s2next(s)

〉
=

〈
L3∑
s=0

s2nloc(s)

〉
.

(39)

On approaching a continuous transition, χ in an infinite system
diverges with a critical exponent γ , while the expected scaling
form in a finite system is

χ = Lγ/νfχ (L1/ν[p − pc]). (40)

3. Order parameter

The value of the order parameter M can be extracted from
the correlation function used to compute the susceptibility: the
disconnected part—the second term on the right-hand side of
Eq. (39)—is proportional to M2. Hence we take

ML3 =
√√√√〈

L3∑
s=0

s2next(s)

〉
. (41)

At a continuous transition M varies with critical exponent β

and has the finite-size scaling behavior

M = L−β/νfM(L1/ν[p − pc]). (42)
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4. Heat capacity

The heat capacity C can be expressed in the usual way in
terms of fluctuations in the energy. Absorbing a constant, we
take from Eq. (3)

CL3 = 〈
N2

p

〉 − 〈Np〉2. (43)

Introducing the critical exponent α, we expect the finite-size
scaling form

C = L−α/νfC[L1/ν(p − pc)]. (44)

5. Fractal dimension

To evaluate the fractal dimension df of loops we measure
the end-to-end distance R(s) of portions of trajectories as a
function of arc length s. Evidently, while on average R(s)
increases with s for small s, it must decrease to zero for each
loop as s approaches the loop length. To eliminate these finite-
loop effects we retain only those contributions to R(s) for
which s is less than one-third of the loop length. We then
expect

〈R(s)〉 ∝ s1/df . (45)

6. Binder cumulant

As a tool for distinguishing between first-order and contin-
uous transitions, we compute the Binder cumulant VL for the
energy. This is defined by

VL ≡ 1 − 1

3

〈
n4

p

〉〈
n2

p

〉2 . (46)

C. Critical behavior for C P1

We use the loop model with n = 2 as a test case, since there
is a clear expectation that it should have a phase transition with
critical behavior in the same universality class as that of the
O(3) model in three dimensions, which in turn is known to
high precision from previous simulations.21 We study system
sizes 32 � L � 100. We find similar results on both the K

lattice and the L lattice. For conciseness we present data only
in the former case.

The existence of a phase transition is evident from the
behavior of nw(p,L) displayed in Fig. 10. The winding number
is expected to decrease with increasing system size in a phase
with only short loops, and to increase with system size in a
phase with extended loops. In confirmation, curves of nw(p,L)
as a function of p cross at a common point for different L. To
illustrate this in detail, we show in the lower right inset to
Fig. 10 the crossing point p∗ for curves at two successive
system sizes L1 and L2 as a function of the inverse of
the geometrical mean size L = √

L1L2. We fit this to the
form pc + a/Lb (full line), obtaining pc = 0.381 38(4) and
b = 3.0(5). For a first approach to determining the exponent
ν, we plot in the upper left inset to Fig. 10 the gradient
dnw(p∗)/dp as a function of L on a double logarithmic scale.
As expected from Eq. (38), the data fit well to a straight
line. The inverse gradient of this line yields the estimate
ν = 0.68(3).

L
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FIG. 10. (Color online) Winding number for n = 2. Main panel:
nw(p,L) as a function of p for different system sizes L. Left inset:
dnw(p)/dp at crossing points p∗ vs L on log-log scales. Right inset:
p∗ vs 1/L.

An alternative method for the determination of ν is to
attempt a scaling collapse of all data. In this approach we
construct the scaling function numerically, allowing for a
nonlinear dependence of the scaling variable on distance from
the critical point and including corrections to scaling governed
by a leading irrelevant exponent yirr < 0. The quality of the fit
and the number of fitting parameters supported by the data are
judged by the value of χ2 compared to the number of degrees
of freedom. We use for the scaling variable

x = L1/ν[(p − pc) + A(p − pc)2], (47)

finding that inclusion of the term in (p − pc)2 is justified by the
fit, while addition of a further term proportional to (p − pc)3

would not be. We construct a fitting function fsplines(x) using
cubic B splines with 16 points. We combine it with corrections
to scaling, characterized by yirr and an mth order polynomial
Pm(x), in two alternative ways: either as

f1(x,L) = fsplines(x)[1 + Pm(x)Lyirr ] (48)

or as

f2(x,L) = fsplines(x) + Pm(x)Lyirr . (49)

We achieve the best fit using the form f1(x,L) with m = 1.
It yields ν = 0.706(8), yirr = −1.0(3) and pc = 0.381 41(5)
with χ2 = 300.5 for 291 degrees of freedom. This scaling
collapse is illustrated in Fig. 4 of Ref. 1.

As a further demonstration that our results for n = 2
are indeed compatible with the universality class of the
O(3) model, we attempt a scaling collapse using the best
available exponent estimate21 for that class, ν = 0.7112. We
omit finite-size corrections, leaving the value of pc as the
only fitting parameter. The fitted value of pc is 0.381 20(10).
This procedure results in good overlap of data from different
systems sizes, as illustrated in Fig. 11.

We analyze data for the susceptibility and for the order
parameter by adapting the approach summarized for the
winding number in Eqs. (47)–(49). Taking into account the
fits for all three observables, our best exponent estimates are
ν = 0.708(5) and γ = 1.39(1).
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FIG. 11. (Color online) Scaling collapse at n = 2 of nw(p) as a
function of L1/ν(p − pc) using the best estimate of ν for the O(3)
model, without allowing for corrections to scaling.

As an alternative, we also attempt collapse of data for the
susceptibility using the best exponent estimates for the O(3)
model. The outcome is shown in Fig. 12: we plot χL−γ /ν/(1 +
ALyirr ) as a function of L1/ν(p − pc), fixing the values21 ν =
0.7112, γ = 1.3960 and yirr = −0.8. This leaves the values of
pc and A as the only fitting parameters: the fitted values are
pc = 0.381 45(15) and A = 1.58(20). Again we obtain good
overlap of data from different system sizes. We note that the
values of pc obtained using different methods are consistent
within statistical errors.

Measurement of the fractal dimension of loops at the critical
point yields df = 2.475(20), implying η = 0.05(4), which is
consistent with the result η = 0.0375(5) from previous high-
precision Monte Carlo studies.21

We have repeated the same procedure for data from the L

lattice with similar results. From an analysis of the winding
number, the susceptibility, and the order parameter on this
lattice, we obtain for the critical exponents the values ν =
0.708(4) and γ = 1.383(10). These values again agree within
errors with the best estimates for the O(3) model.21
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FIG. 12. (Color online) Scaling collapse of data for susceptibility
χ as a function of (p − pc)L1/ν at n = 2 using for the exponents the
best estimates for the O(3) model.
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FIG. 13. (Color online) Evidence for a first-order transition at
n = 4 on the K lattice for L = 80: probability distribution of the
energy showing the double-peaked form that is characteristic of a
first-order transition.

D. Identifying the order of transitions

The phase transition in the loop model on the K lattice may
be continuous or first order, depending on the value of n, and
in this subsection we set out our approaches to determining
the order of the transition from Monte Carlo data. Indeed, as
discussed in Sec. IV, while we expect a continuous transition
at n = 2 from the equivalence to the O(3) model, a first-order
transition would be natural for larger n since Landau theory
admits a cubic invariant if n 	= 2. Our results for the K lattice
are in fact consistent with a continuous transition at n = 3 and
with first-order transitions for n � 4. Note that the loop model
on the L lattice at n � 5 has no extended phase but exhibits
a first-order transition at p = 1/2 between two symmetry-
related short-loop phases (see Fig. 1).

Distinguishing the order of a transition using simulations
is delicate in marginal cases because of finite-size effects. We
therefore begin by discussing simple limiting examples. For
n = 2 we take it as established by the results of Sec. V C that
the transitions on both lattices are continuous. On the other
hand, the transition for n = 4 on the K lattice is first order.
To demonstrate this, we show in Fig. 13 the distribution of
n+ = Np/(Np + N1−p) (essentially the energy distribution)
for three different values of p very close to the transition. The
double-peaked form, characteristic of a first-order transition,
is very clear.

More generally, an established diagnostic for the order of a
transition is provided by the Binder cumulant VL. In a system
with a continuous transition one expects limL→∞ VL = 2/3
everywhere in the phase diagram, critical points included, but
at a first-order transition point limL→∞ VL < 2/3.43

We illustrate the behavior of the Binder cumulant for n = 3
on the K lattice (anticipated to be a marginal case) in Fig. 14.
As a function of p, VL has a minimum near the transition point
and approaches VL = 2/3 far from the transition on either side.
The minimum becomes shallower with increasing L and the
key issue is its limiting value. To focus on this we show in
Fig. 15 the difference 2/3 − [VL]min as a function of L on a
double logarithmic scale. The data for n = 4 on the K lattice
indicate a finite limiting value for 2/3 − [VL]min at large L,
and hence a first-order transition in this case. For other cases
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NAHUM, CHALKER, SERNA, ORTUÑO, AND SOMOZA PHYSICAL REVIEW B 88, 134411 (2013)

0.435 0.44 0.445 0.45 0.455

0.666

0.6662

0.6664

0.6666

L

32
40
52
64
80
100

p

V
L

FIG. 14. (Color online) Binder cumulant VL at n = 3: behavior
of VL as a function of p for a sequence of system sizes L.

(n = 2 and n = 3 on both lattices, and n = 4 on the L lattice)
the data fit a straight line with finite slope, as expected for a
continuous transition. If any of these transitions is in fact first
order, the correlation length at the transition must be larger
than 100 lattice spacings (but see Sec. V F for a discussion of
the L lattice transition with n = 4).

A measure of the discontinuity at a first-order transition is
given by �V (n) = limL→∞ 2/3 − [VL]min. For the loop model
with n � 4 on the K lattice we can obtain �V (n) with high
precision. As shown in Fig. 16, the dependence of �V (n) on
n can be fitted to functional forms with a critical value nc

separating first order from continuous transitions that is larger
than or close to 3. Thus the transition at n = 3 is apparently
second order, but nc < 4.

An alternative method for characterizing the nature of a
transition is to construct a parameter-free scaling function that
has a fixed limiting form if the transition is continuous, but
not if it is first order. Consider for loop models the probability
P1(p,L) that a configuration has exactly one winding curve, as
a function of the average number 〈nW(p,L)〉 of winding curves.

n

K : n=2
K : n=3
K : n=4
L : n=2
L : n=3
L : n=4
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FIG. 15. (Color online) Distinguishing continuous from first-
order transitions: log-log plot of the dependence on system size of
the deviation 2/3 − [VL]min of the minimum value of the Binder
cumulant VL from its theoretical value far from the transition. Data
give evidence of a continuous transition at n = 2 and n = 3, and a
first-order transition on the K lattice at n = 4.
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FIG. 16. (Color online) The discontinuity �V (n) at first-order
transitions as a function of n, with fits to a second-order polynomial
P2(n) and to the functional form Ae−B(n−nc )−1/2

motivated by Eq. (34).
The fitted values below which the transition is continuous are nc =
3.78(4) and nc = 3.0(2), respectively.

At a continuous transition one expects this function to be
independent of system size, provided finite-size corrections to
scaling are not important. By contrast, the number of spanning
curves jumps at a first-order transition, from zero in one phase
to a value proportional to L in the other phase. In this case
P1(p,L) therefore approaches zero with increasing L for all
〈nW(p,L)〉. In Fig. 17 we present this scaling function for
n = 2 (top inset), n = 3 (main panel), and n = 4 (bottom
inset) for the K lattice. The data for different system sizes
lie on a single curve for n = 2, while those for n = 4 do not.
Data for n = 3 lie close to a single curve, although with larger
deviations than at n = 2. Provided these deviations may be
attributed to finite-size corrections to scaling, the results of
this analysis are consistent with the ones from the behavior of
the Binder cumulant.
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FIG. 17. (Color online) Parameter-free scaling collapse. Data for
the probability P1(p,L) that a configuration has exactly one winding
curve as a function of the average number nW(p,L) of winding curves:
main panel n = 3; top inset n = 2. Bottom inset: contrasting behavior
at n = 4.
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FIG. 18. (Color online) Scaling for n = 3. Main panel: number of
winding curves nw(p) plotted as a function of p for different system
sizes L. Left inset: dependence of nw at crossing points on L. Right
inset: p∗ vs 1/L.

E. Critical behavior for C P2

Having established that the transition in the loop model
with n = 3 on the K lattice has a correlation length that appears
divergent and certainly grows larger than the largest accessible
system sizes, we next characterize the critical behavior. We
follow the methods described in Sec. V C for n = 2, except
that in the present case independent values of critical exponents
are not available.

The unscaled data for nw(p,L) are displayed as a function
of p for several system sizes in Fig. 18 (main panel): the
transition point is apparent from the crossing of curves for
different system sizes. In the lower right inset to Fig. 18 we
show the dependence of the probability p∗ at which data for
two successive sizes cross, as a function of the inverse of the
geometrical mean L of these sizes. The continuous curve is a fit
of the form pc + a/Lb, with pc = 0.442 91(2) and b = 2.1(3).
In the upper left inset to Fig. 18 we plot the dependence on L of
the winding number nw at which data for two successive sizes
cross. It shows that the finite-size effects in this observable
are not negligible. Nevertheless, we have undertaken a scaling
collapse of all the data, using a nonlinear scaling variable and
including corrections to scaling as in Sec. V C. Results were
presented previously in Fig. 4 of Ref. 1. Improved statistics of
data obtained more recently makes χ2 values for the collapse
larger and seems to indicate that the finite-size effects are not
fully under control. The best estimates that we obtain are ν =
0.51(2), where the quoted error is statistical and systematic
errors are difficult to estimate.

By contrast, we find that analysis of the scaling behavior of
the susceptibility χ is more straightforward. Its dependence
on p and system size is shown in Fig. 19. It has a peak
near the critical point which grows with L. Plotting χL−γ /ν

as a function of x = L1/ν[(p − pc) + A(p − pc)2], these data
exhibit scaling collapse, as illustrated in the inset to Fig. 19,
with χ2 = 53 for 60 degrees of freedom. The exponent
values resulting from this procedure are ν = 0.542(16) and
γ /ν = 1.78(2), and γ = 0.97(2).

Data for the heat capacity C are presented in Fig. 20. It is
strongly divergent at the transition but values in the smaller
system sizes are dominated by a smooth background. To effect
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FIG. 19. (Color online) The susceptibility χ at n = 3 for the K

lattice. Inset: scaling collapse of data in the main panel, using the
scaling variable x defined in Eq. (47).

a scaling collapse we therefore subtract an L-independent
contribution Creg that varies smoothly with p, plotting (C −
Creg)L−α/ν as a function of L1/ν[(p − pc) + A(p − pc)2]: see
Fig. 20 inset. From this approach we obtain χ2 = 73 with 95
degrees of freedom; assuming the d-dimensional hyperscaling
relation α = 2 − dν, we find ν = 0.526(15).

Inclusion of corrections to scaling in the analysis of χ and
C does not change significantly our exponent estimates or the
scaling collapse, and we were unable to determine a reliable
value for yirr.

From a study of loops at the critical point (data not shown)
we find the fractal dimension value df = 2.40(3). This implies
η = 0.20(6), which is broadly consistent with the value η =
0.22(2) obtained using hyperscaling and our analysis of χ .

Combining the results from our analysis of data on the
K lattice for χ , C, the order parameter (not shown), and
using bootstrap methods to determine errors, our best estimates
for the two independent critical exponents are ν = 0.536(13)
and η = 0.23(2). The scaling relations γ = (2 − η)ν and β =
ν(1 + η)/2 imply γ = 0.97(2) and β = 0.33(1). The given
uncertainties are obtained from a purely statistical analysis.
The results may also be affected by systematic errors: from
the dispersion in the values of ν obtained from analysis of

L

32
40
52
64
80
100

0.435 0.44 0.445 0.45 0.455
0.5

1

1.5

2

2.5

p

C

-15 -10 -5 0 5
0.01

0.02

0.03

0.04

0.05

0.06

x

(C
−

C
r
e
g
)L

−
α

/
ν

FIG. 20. (Color online) Heat capacity as a function of p at n = 3
for the K lattice. Inset: scaling collapse of the divergent contribution
to the heat capacity.
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different observables, we believe that the systematic errors
in our exponent values are comparable in magnitude to the
statistical ones. Similar but less exhaustive analysis for the L

lattice gives compatible exponent values, although with much
larger uncertainties.

F. L lattice at n = 4

The case n = 4 on the L lattice deserves specific discussion.
In the phase diagram for this lattice (see Fig. 1) the line p =
1/2 is within an extended phase for small n and is the location
of first-order transitions for large n. The point p = 1/2, n = n∗
at which behavior changes is expected to be a deconfined
critical point.14 At n = 4 as a function of p we find two distinct
transitions, at pc and 1 − pc, with pc = 0.4994(3), indicating
that n∗ > 4. This is confirmed by the fact that behavior at
p = 1/2, n = 4 matches that expected in the extended phase:
nW (1/2,L) is quite accurately proportional to L for our largest
system sizes. While we expect from universality and our results
on the K lattice that the transition on the L lattice at n = 4
should be first order, the proximity of the two transitions at pc

and 1 − pc and of the critical point at n∗ makes it natural that
the correlation length at the transition should be very large.

VI. CONCLUDING REMARKS

In summary, we have shown that the loop models we con-
sider provide lattice representations of CP n−1 σ models, and

we have set out the correspondence between loop observables
and σ model correlators. The models have phase transitions
between paramagnetic and ordered phases, which we argue
using an RG treatment are continuous for n � nc; from
simulations we give evidence that nc > 3 in three dimensions.

There is scope for further work on these and related loop
models, in several directions. First, within the ordered phases
of the models studied, a quantity of interest is the length
distribution of long loops, expected to take a universal form.44

Second, starting with the loop models on the L lattice at the
symmetric point p = 1/2, one can induce a phase transition by
introducing an extra coupling. The short loop phase established
in this way exhibits spontaneous symmetry breaking and the
transition is a candidate for a deconfined critical point.14 Third,
and separately, models with undirected loops are interesting as
representations of RP n−1 σ models, corresponding at n = 2
to the O(2) model and at n = 3 to models for the liquid
crystal isotropic-nematic transition: it would be of interest
to investigate the order of the transition and possible critical
behavior as a function of n for these undirected models.
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