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Palmer-Chalker correlations in the XY pyrochlore antiferromagnet Er2Sn2O7
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Er2Sn2O7 is considered, together with Er2Ti2O7, as a realization of the XY antiferromagnet on the pyrochlore
lattice. We present magnetization measurements confirming that Er2Sn2O7 does not order down to 100 mK but
exhibits a freezing below 200 mK. Our neutron scattering experiments evidence the strong XY character of
the Er3+moment and point out the existence of short-range correlations in which the magnetic moments are in
peculiar configurations, the Palmer-Chalker states, predicted theoretically for an XY pyrochlore antiferromagnet
with dipolar interactions. Our estimation of the Er2Sn2O7 parameters confirm the role of the latter interactions
on top of relatively weak and isotropic exchange couplings.
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I. INTRODUCTION

Geometrical frustration has become a central challenge in
contemporary condensed matter physics. It is the source of
many exotic ground states whose description remains chal-
lenging for both theoreticians and experimentalists.1 These
unconventional magnetic states often originate from the strong
degeneracy of the ground state manifold, which prevents the
stabilization of standard magnetic phases. Whatever their type,
perturbations are often driving the low-temperature behav-
iors by lifting partially or totally this extensive degeneracy.
Quantum or thermal fluctuations may also enter into play
to select and stabilize a particular configuration (or a subset
of configurations), a phenomenon called “order by disorder”
mechanism.2 The family of pyrochlore compounds R2T2O7

(R is a rare earth and T = Ti, Sn, Zr,. . . ), with the rare-earth
magnetic moments localized at the vertices of corner-sharing
tetrahedra are model systems to study these subtle order by
disorder effects.3,4

The case of R = Er compounds is of specific interest:
They present a strong XY -like anisotropy, combined with
antiferromagnetic interactions leading to a model with an
extensive classical degeneracy.5,6 The easy magnetic planes are
perpendicular to the local 〈111〉 ternary axes (XY character),
arising from the crystal field properties of the Kramers Er3+
ion. While no signature of long-range order could be detected
down to 100 mK in Er2Sn2O7,7–9 Er2Ti2O7 undergoes a
transition towards an antiferromagnetic Néel phase below
TN = 1.2 K.10–12 This ordered phase has a noncollinear
structure, in which the magnetic moments are perpendicular
to the local 〈111〉 axes in a peculiar configuration denoted
ψ2.13,14 In Er2Ti2O7, this structure is surprising since dipolar
interactions, which are an important perturbation to the
isotropic exchange Hamiltonian, are expected to select other
magnetic states, called Palmer-Chalker states.13,15 However,
by considering general anisotropic exchange parameters, it
has been recently argued that a quantum order by disorder
mechanism16–18 explains this ψ2 ordering and accounts for
many experimental features. In this context, the reasons for
the absence of ordering in Er2Sn2O7 remain an open question.

In this paper we address this issue by determining experi-
mentally the key parameters of the Hamiltonian of Er2Sn2O7:

The crystal electric field (CEF) parameters obtained from
inelastic neutron scattering experiments and the anisotropic
exchange parameters deduced from the magnetization curves.
The main difference between the titanate and stannate pa-
rameters is a weaker and less anisotropic exchange tensor.
By analyzing neutron scattering data, we demonstrate the
existence of short-range correlated domains frozen in the
Palmer-Chalker configurations,15 hence quite different from
the ψ2 configuration selected in Er2Ti2O7.13,14 We finally show
that these configurations are indeed stabilized in a mean-field
calculation for this set of parameters.

Magnetization and ac susceptibility measurements were
performed on a powder sample down to 100 mK using
a superconducting quantum interference device (SQUID)
magnetometer equipped with a dilution refrigerator developed
at the Institut Néel-CNRS Grenoble.19 The neutron mea-
surements were performed on the same sample at the cold
triple-axis spectrometer 4F2 of LLB-Orphée reactor.20

II. MAGNETIZATION AND SUSCEPTIBILITY

Our magnetization measurements first confirm the absence
of transition towards a long-range ordered state down to
100 mK. The dc susceptibility keeps increasing with de-
creasing temperature. It presents an upturn below about 2 K,
hence deviating from a Curie-Weiss behavior (see the top
inset of Fig. 1), in agreement with Ref. 7. Below 200 mK,
a freezing is observed, as shown by an irreversibility in the
zero-field-cooled–field-cooled (ZFC-FC) magnetization and
by a frequency dependence in the ac susceptibility (see top of
Fig. 1). The imaginary part of the susceptibility χ ′′ exhibits
a peak whose frequency dependence can be accounted for
by an Arrhenius law τ = τ0 exp(E/kBT ), where τ = 1/2πf ,
τ0 = 4 × 10−5 s, and E/kB = 0.9 K (see bottom of Fig. 1)
in the measured frequency range (0.57–211 Hz). Qualitatively
similar features have been observed in this temperature range
in other spin-liquid compounds such as Gd3Ga5O12

21 or
Tb2Ti2O7.22–24 At the moment, no clear picture emerges to
explain this freezing, but it could be associated with slow
dynamics of correlated spins.

The magnetization curves as a function of field present an
inflection point around 1 T for temperatures below 750 mK
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FIG. 1. (Color online) ac and dc susceptibility vs temperature. ac
susceptibility is plotted for 5.7 < f < 211 Hz with Hac = 1.4 Oe.
Top: M/H and real part of the ac susceptibility χ ′ vs T . M was
measured using the ZFC-FC procedure with H = 50 Oe. Inset: H/M

vs T for H = 100 Oe. The dotted line is a fit to the equation H/M =
0.35 + 0.07T . Bottom: χ ′′ vs T . Inset: τ vs 1/Tmax showing the
Arrhenius behavior with τ0 = 4 × 10−5 s and E/kB = 0.9 K.

(see Fig. 2). This behavior is reminiscent of the field induced
transition observed in Er2Ti2O7,25–28 thus suggesting that a
field induced order might be stabilized above this field in
Er2Sn2O7. Unfortunately, the powder nature of the sample
prevents us from a detailed analysis of this metamagneticlike
behavior. However, it is worth mentioning that preliminary
calculations (using the mean-field model developed in Sec. V)
indicate that reorientations of the magnetic moments occur in
the 1–1.5 T field range for the three main symmetry directions
[110], [100], and [111].

Below 200 mK, an additional curvature develops in the
magnetization curve around 0.2 T (see inset of Fig. 2) which
might be associated with the freezing observed in low field at
these temperatures.

III. XY ANISOTROPY AND CRYSTAL FIELD ANALYSIS

Aiming at a precise determination of the Er3+ anisotropy,
the CEF excitations were measured by means of inelastic
neutron scattering experiments (see Fig. 3), carried out at
temperatures of 1.5, 10, 50, and 100 K. Between 0 and 20 meV,
three CEF levels are observed at E1 = 5.1, E2 = 7.6, and
E3 = 17.2 meV, in agreement with Ref. 8. With increasing
temperature, excited states are populated to the detriment of the
ground CEF state, giving rise to new modes at h̄ω = Ei − Ej .
The analysis of these spectra is based on the simulation of the
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FIG. 2. (Color online) Magnetization M vs internal field Hi

(points), along with simulation (lines) (see text). Corrections for
demagnetizing effects were made assuming a demagnetizing factor
N = 4π/3 (cgs units).33 Results for different sets of parameters
(assuming J4 = 0) are presented to illustrate the sensitivity of the
calculation. Inset: M vs Hi for μ0Hi < 1 T at 100 (green squares),
200 (blue triangles), and 500 mK (red points).

scattering function S(Q,ω):

S(Q,ω) =
∑
m,n

e−Em/kBT

Z
〈m| �J |n〉〈n| �J |m〉

× δ(ω + En − Em),

where the |m〉 and Em are, respectively, the eigenwave
functions and eigenvalues of the CEF Hamiltonian HCEF

FIG. 3. (Color online) Inelastic neutron scattering spectra show-
ing the CEF excitations. The lines correspond to the calculation (see
text) with the parameters obtained from the fit at 1.5 K. At 100 K, the
slight discrepancy is attributed to a small evolution of the parameters
with temperature.
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TABLE I. Stevens coefficients (in K) for Er2Sn2O7 (present work)
and Er2Ti2O7 (from Ref. 29).

B20 B22 B40 B42 B43 B60 B63 B66 g⊥ g‖

Er2Ti2O7 616 0 2850 0 795 858 −493 980 6.8 2.6
Er2Sn2O7 656 0 3010 0 755 738 −653 990 7.52 0.054

(J = 15/2, gJ = 6/5 for Er3+):

HCEF =
∑
m,n

BnmOnm.

The Onm are the Stevens operators and the Bnm are the
associated coefficients that remain to be determined (Ref. 29
and references therein). Z is the partition function defined by
Z = ∑

m e−Em/kBT . Fitting the data through this model yields
the coefficients listed in Table I (see also Appendix A). The
wave functions of the ground doublet lead to g⊥ = 7.52 ± 0.1
and g‖ = 0.054 ± 0.02. For comparison, the Er2Ti2O7 values
from Ref. 29 are also given, showing that both compounds
have rather similar CEF schemes, but that the Er3+ magnetic
moment has a stronger planar character in Er2Sn2O7.

IV. DIFFUSE ELASTIC SCATTERING AND
PALMER-CHALKER CORRELATIONS

To further describe the spin liquid state of Er2Sn2O7, we
have measured the spin-spin correlation function S(Q,ω) at
1.5 K. An elastic response is observed, forming a broad peak
centered at Q = 1.1 Å−1, consistent with the results of Ref. 8.
This response is typical of an elastic diffuse scattering where
spin correlations extend over a few interatomic distances
and are frozen at the time scale of the neutron probe. It is
accompanied by a quasielastic contribution corresponding to
fluctuations of this short-range ordered pattern with typical
rate γ = 0.5 meV, namely a typical time of τ ∼ 10 ps. The
intensities of both contributions increase continuously with
decreasing temperature.

Such a diffuse peak does not preclude any type of mag-
netic correlations in general. However, given the similarities
between Er2Sn2O7 and Er2Ti2O7, both being antiferromagnets
and sharing an XY anisotropy, we propose to model the
magnetic ground state in Er2Sn2O7 by considering finite
size magnetic domains (to account for the peak broadening),
chosen among the symmetry allowed patterns for a k = 0
propagation vector. This modeling is based on a refinement
which is constrained by symmetry and physical arguments, as
explained below.

The symmetry analysis, performed in the space group
Fd-3m using the BasIreps software30 shows that the basis
states of the k = 0 manifold transform as linear combinations
of the basis vectors of four irreducible representations (IRs),
labeled 	3,5,7,9 in group theory.13,14 The XY anisotropy is
minimized only for (i) linear combinations of the two basis
vectors ψ1 and ψ2 which transform according to 	5; and (ii) a
discrete set of basis vectors ψ3,4,5 which transform according
to 	7.31 The ground state of Er2Ti2O7 and the Palmer-Chalker
states (PC)15 correspond to ψ2 and ψ3,4,5, respectively, namely
to different IRs. Table II and the right side of Fig. 4 provide

TABLE II. Coordinates of the moments at the four sites of a
tetrahedron in the different ψ sets (see text). Note that ψ3,4,5 are
obtained by reversing a pair of antiparallel spins in the ψ1 series.

Site 1 2 3 4
CEF axis (1,1, − 1) (−1, − 1, − 1) (−1,1,1) (1, − 1,1)

	5 ψ1 (−1,1,0) (1, − 1,0) (1,1,0) (−1, − 1,0)
(0,1,1) (0, − 1,1) (0,1, − 1) (0, − 1, − 1)
(1,0,1) (−1,0,1) (−1,0, − 1) (1,0, − 1)

ψ2 (1,1,2) (−1, − 1,2) (−1,1, − 2) (1, − 1, − 2)
(−2,1, − 1) (2, − 1, − 1) (2,1,1) (−2, − 1,1)

(−1,2,1) (1, − 2,1) (1,2, − 1) (−1, − 2, − 1)

	7 ψ3 (1, − 1,0) (−1,1,0) (1,1,0) (−1, − 1,0)
ψ4 (0,1,1) (0,1, − 1) (0, − 1,1) (0, − 1, − 1)
ψ5 (−1,0, − 1) (−1,0,1) (1,0,1) (1,0, − 1)

the coordinates of these basis vectors and a sketch of the ψ2

and ψ3 magnetic structures (see also Appendix B).
We proceed by fitting the crystalline structure at 50 K to

determine the overall scaling factor and the lattice parameters.
Using these values and assuming a given ψ set, the two
remaining parameters of the proposed model are the amplitude
of the Er3+ moment and the coherence length of the magnetic
domains, which determines the width of the diffuse peaks. As
shown in Fig. 4, subtracting the high temperature data (50 K)
to focus on the magnetic signal only, a very good refinement is
obtained with the vectors ψ3,4,5 of 	7, yielding an Er3+ moment
of 2.8 μB at 1.5 K and a coherence length of about 10 Å.32 A
much worse agreement is obtained with the vectors ψ1 or ψ2

of 	5. In the data (Q < 1.7 Å−1) of Ref. 8, the diffuse peak,
and so the Er3+ moment, keep increasing down to 100 mK. By
comparison with the present results, the Er3+ moment likely
reaches 3.8 μB at 100 mK. Note that powder measurements
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2 

FIG. 4. (Color online) Left: Diffuse magnetic scattering mea-
sured by neutron scattering at 1.5 K. “High” temperature reference
data (T = 50 K) have been subtracted. Exclusion zones have been
considered around Q = 2 Å−1 to eliminate an artifact due to a
slight temperature shift of a nuclear peak. The lines are the result
of a Rietveld fit assuming either the ψ1,2−	5 (green open circles)
or the ψ3,4,5−	7 (blue solid circles) structure. Right: Magnetic
configurations ψ2 and ψ3 (see text and Table II) predicted by the
symmetry analysis for the k = 0 propagation vector.
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cannot distinguish between the basis vectors of either 	5 or
	7. However, for a given representation, the relative intensities
of the (111) and (220) peaks are fixed. The choice between 	5

and 	7 IRs is thus unambiguous.

V. ESTIMATION OF THE EXCHANGE CONSTANTS IN
Er2Sn2O7, ANALYSIS AND DISCUSSION

We proceed with the estimation of the exchange constants
in Er2Sn2O7 by combining neutron data and magnetization
curve analyses. As emphasized above, applying a magnetic
field drives the system towards an ordered state, hence making
a mean-field treatment an acceptable starting point. We thus
follow the mean-field approach proposed in Ref. 16, and
consider the Heisenberg Hamiltonian for R moments �Ji at
sites i of the pyrochlore lattice:

H = HCEF +
∑
〈i,j〉

�Ji(J̃ + J̃ dipi,j )〈 �Jj 〉 + gJ μB
�H · �Ji.

In this expression, �H is an applied magnetic field, J̃ denotes
an (anisotropic) exchange tensor, and J̃ dipi,j is the dipolar
interaction limited to the contribution of the nearest neighbors.
Various conventions have been used to define this anisotropic
exchange.16–18,34,35 Here we assume an exchange tensor which
is diagonal in the (�a,�b,�c) frame linked with a R-R bond:35

�JiJ̃ �Jj =
∑

μ,ν=x,y,z

J
μ

i

(
Jaa

μ

ij a
ν
ij + Jbb

μ

ij b
ν
ij + Jcc

μ

ij c
ν
ij

)
J ν

j

+J4

√
2�bij ( �Ji × �Jj ).

Considering for instance the pair of Er3+ ions at �r1 =
(1/4,3/4,0)a and �r2 = (0,1/2,0)a, where a is the cubic lattice
constant, we define the local bond frame as �a12 = (0,0, −
1), �b12 = 1/

√
2(1, − 1,0), and �c12 = 1/

√
2(−1, − 1,0). This

Hamiltonian, written in terms of bond-exchange constants, has
the great advantage to provide a direct physical interpretation
of the different parameters.

The magnetization is given by M( �H ) = ∑
i �mi

�H
H

, where
the �mi denote the individual magnetic moments. To carry out
this calculation we assume a k = 0 magnetic structure in the
Fd-3m space group with face centered cubic (fcc) symmetry.
In other words, the four Er3+ moments of a given tetrahedron
may be different, but the spin configurations on tetrahedra
connected by fcc lattice translations are the same. Following
a self-consistent treatment, H is diagonalized numerically for
each site to determine the energies Ei,μ and the wave functions
|ψi,μ〉. This yields the magnetic moment (see also Appendix C)

�mi = −gJ μB〈 �Ji〉 = −gJ μB

∑
μ

e−Ei,μ/kBT

Z
〈ψi,μ| �Ji |ψi,μ〉,

where Z = ∑
μ exp (−Ei,μ/kBT ). For a given field amplitude,

this procedure is repeated for different directions to account
for the powder average.

Since J4 is an antisymmetric exchange constant
(Dzyaloshinskii-Moriya like), it is expected to be smaller than
the symmetric ones Ja,b,c. Assuming J4 = ±0.005 K,37 the
magnetization curve is then well reproduced by the blue and

TABLE III. Anisotropic exchange parameters for Er2Sn2O7

(present work) and Er2Ti2O7.17,36 Error bars are given in parentheses.
Positive values correspond to antiferromagnetic couplings. The
conversion from original values17 to the Ja,b,c,4 set is detailed in
Appendix D.

Er2Sn2O7 Er2Ti2O7 Er2Ti2O7

Coupling (present work) (Ref. 17) (Ref. 36)

Ja 0.03 (± 0.017) −0.078 (± 0.06) −0.030 (± 0.01)
Jb 0.03 (± 0.005) 0.078 (± 0.01) 0.05 (± 0.005)
Jc 0.04 (± 0.005) 0.078 (± 0.07) 0.105 (± 0.01)
J4 ± 0.005 0.02 (± 0.03) ± 0.005
g⊥ 7.52 5.97 6.8
g‖ 0.054 2.45 2.6

black sets of parameters in Fig. 2:

Ja ∼ 0.03 ± 0.017 K, Jb ∼ 0.03 ± 0.005 K,

Jc ∼ 0.04 ± 0.005 K.

Incorporating the nearest neighbors contribution of the dipo-
lar interaction (Dnn = 0.022 K, see Appendix C) in these
anisotropic exchange constants leads to the effective pa-
rameters J ′

a ∼ 0.05 ± 0.017 K, J ′
b ∼ 0.05 ± 0.005 K, and

J ′
c ∼ ±0.005 K.
Next, it is of great interest to compare these results

with the Er2Ti2O7 exchange parameters listed in Table III
and obtained from spin waves17 or magnetization curve
analysis.36 We first note that the J4 value in Er2Ti2O7 is also
almost zero when considering the error bars. Interestingly,
the symmetric exchange couplings in Er2Sn2O7 are smaller
and more isotropic than in Er2Ti2O7, thus making the dipolar
interaction the main anisotropic interaction.

In this context, according to a number of theoretical
works,6,15,16 the ground states in Er2Sn2O7 should belong to
the 	7 representation, that is to say to the Palmer-Chalker
states. The mean-field phase diagram (see Fig. 5) computed in
zero field as a function of Ja/Jc and Jb/Jc confirms this
assumption. As quoted in Ref. 16, the energetic selection
at play in this approach is quite weak and neglects the
influence of quantum and thermal fluctuations. Nonetheless, it
is useful to explore the type of correlations that might develop
depending on the exchange parameters. First, the calculation
predicts a canted ferromagnetic (CF) state in the negative
Jb/Jc region, which might be relevant in the case of other
XY pyrochlores, namely Yb2Ti2O7

3,38 or Yb2Sn2O7.39 As for
the Er2Ti2O7 parameters, they lead in this phase diagram to
a long-range ordered antiferromagnetic phase labeled AF1,
almost identical to ψ2 (	5). This ground state is obtained
for a strongly anisotropic exchange tensor and especially for
ferromagnetic and weakly antiferromagnetic Ja/Jc. Finally,
the Er2Sn2O7 parameters lead to a different ground state
labeled AF2, which exactly corresponds to the Palmer-Chalker
states (	7), with a magnetic moment of 3.9 μB and a mean-field
ordering temperature TN ∼ 1.3 K.

The obtained energy difference between the three states of
	7 is very small so that the ultimate selection is expected to be
very fragile with respect to any fluctuations. This mean-field
phase diagram thus confirms that the anisotropy and exchange
parameters in Er2Sn2O7 stabilize Palmer-Chalker correlations
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FIG. 5. (Color online) Mean-field phase diagram for Er2Sn2O7

(with the above determined CEF coefficients). Jc and J4 are fixed
to 0.04 K and 0, respectively, while dipolar interaction is included.
The AF1 phase resembles very much the ψ2 state with the moments
coordinates at the four sites (x,x,y), (−x, − x,y), (−x,x, − y), and
(x, − x, − y) and y ≈ 2x. The moments coordinates in the CF phase
are (x,x,y), (−x, − x,y), (x, − x,y), and (−x,x,y). The shaded area
corresponds to the region that accounts for the M(H ) measurements
at 500 mK in Er2Sn2O7.

as measured experimentally, suggesting that Er2Sn2O7 is akin
to an XY pyrochlore antiferromagnet with dipolar interactions.

The role of the latter interactions in stabilizing Palmer-
Chalker states was pointed out in the case of the Heisenberg
pyrochlore Gd2Sn2O7. It undergoes a first-order transition
towards a long-range order at about 1 K,40–43 this ordering
being robust with respect to quantum fluctuations.44 The lack
of ordering in Er2Sn2O7 thus remains puzzling, but the XY

anisotropy as well as the proximity of the AF1 phase might be
key ingredients to explain it.

VI. SUMMARY

In summary, Er2Sn2O7 does not exhibit long-range order
down to the base temperature probed of 100 mK, but shows a
macroscopic freezing below 200 mK. The magnetic moments
have a very strong planar character. From the analysis of the
magnetization curve within a mean-field model, the exchange
couplings are found to be relatively weak and isotropic. At
1.5 K, the diffuse magnetic scattering is well reproduced
by considering short-range correlations corresponding to
Palmer-Chalker configurations. These results can be accounted
for by a mean-field model which confirms that, with the
Er2Sn2O7 parameters deduced from the experiments, Palmer-
Chalker configurations, stabilized by the dipolar interactions,
should be the ground state. In that context, the absence of
ordering in Er2Sn2O7 remains an open issue, but the present
estimation of the CEF parameters and exchange couplings
appears to be a starting point for further theoretical calculation.
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TABLE IV. CEF calculations for different Bnm parameters: The
two first transitions E1,2 along with the g-Landé factors g⊥ and g‖
are listed.

B20 B40 B43 B60 B63 B66 E1 E2

(K) (K) (K) (K) (K) (K) (meV) (meV) g‖ g⊥

656 3010 755 738 −653 990 5.08 7.64 0.054 7.53
700 5.03 7.70 0.125 7.57
600 5.15 7.56 0.034 7.47

2710 5.47 8.59 1.065 7.81
3310 4.77 6.92 1.405 7.09

800 4.90 7.41 0.013 7.52
700 5.30 7.91 0.10 7.53

800 5.74 7.91 0.052 7.47
700 4.70 7.48 0.16 7.57

−600 4.93 7.18 0.98 7.28
−700 5.24 8.14 0.84 7.68

1100 5.38 8.64 0.22 7.64
900 4.81 6.75 0.17 7.39
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APPENDIX A: CRYSTAL FIELD

The CEF parameters are determined using the standard
Hamiltonian

HCEF =
∑
m,n

BnmOnm.

The transition between levels give rise to dispersionless modes
in elastic neutron scattering data. The positions and intensities
of these modes are fitted in the present study. To illustrate
the sensitivity of our determination, we present in Table IV
the results of CEF calculations for different sets of Bnm. The
g-Landé factors are determined by considering the projection
of the magnetic moment operator in the subspace spanned
by the ground doublet wave functions. The error bars on the
g-Landé factors are estimated from these calculations. We
provide the energies of the two first transitions (experimentally
observed at E1 = 5.1 ± 0.05 and E2 = 7.6 ± 0.05 meV) as
well as g⊥ and g‖.

APPENDIX B: DETAILS ABOUT THE ψ2 BASIS VECTOR

The description of the possible magnetic structures in
Er2Ti2O7 and Er2Sn2O7 XY antiferromagnets is based on the
symmetry analysis performed in the Fd-3m space group for
a k = 0 propagation vector. As explained in the main text,
Er2Ti2O7 undergoes a transition towards an antiferromagnetic
Néel phase below TN = 1.2 K.10–12 This ordered phase has
a noncollinear structure, in which the magnetic moments
are perpendicular to the local 〈111〉 axes. This configuration
corresponds to the ψ2 basis vector of the 	5 irreducible
representation.

To better figure out this peculiar configuration, a different
approach can be followed,17,18 considering a series of XY de-
generate classical configurations where the magnetic moment
at site i is defined in a local frame (�ai,�bi,�ei) given in Table V.
Each magnetic moment points along �ui = cos φ�ai + sin φ�bi ,
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TABLE V. (�ai,�bi,�ei) frame for the different sites of a tetrahedron.

Site 1 2 3 4
CEF axis �ei (1,1, − 1) (−1, − 1, − 1) (−1,1,1) (1, − 1,1)

Position ( 1
4 , 3

4 ,0) (0, 1
2 ,0) (0, 3

4 , 1
4 ) ( 1

4 , 1
2 , 1

4 )

�ai (−2,1, − 1) (2, − 1, − 1) (2,1,1) (−2, − 1,1)

�bi (0,1,1) (0, − 1,1) (0,1, − 1) (0, − 1, − 1)

where φ is a continuous parameter. �ei is the local CEF axis.
With these notations, the six domains of the ψ2 magnetic
structure are obtained for φ = nπ/3, n = 0, . . . ,5, while the
ψ1 (Refs. 13 and 17, also called ψ3 in Refs. 14 and 18) are
generated for φ = π/6 + nπ/3, n = 0, . . . ,5.

These configurations are classically degenerate since for
arbitrary φ, the classical energy given by Ec = [4Ja −
2(3Jb + Jc)]m2, where (Ja,Jb,Jc) are the bond exchange
parameters defined in the main text, does not depend on φ.
The studies published in Refs. 17 and 18 have shown further
that the zero-point energy Eo(φ), calculated in the spin-wave
approximation as a function of φ, breaks this degeneracy,
exhibiting weak minima for the six ψ2 domains. A particular
ordered ground state is thus selected by this quantum order by
disorder mechanism.

APPENDIX C: MEAN-FIELD MODEL

The present mean-field study follows the approach of
Ref. 16; it is based on the following Hamiltonian for R
moments �Ji at site i:

H = HCEF +
∑
〈i,j〉

�Ji(J̃ + J̃ dipi,j )〈 �Jj 〉 + gJ μB
�H · �Ji.

In this expression, �H is an applied magnetic field, J̃ denotes
the anisotropic exchange tensor, and J̃ dipi,j is the dipolar
interaction limited to the contribution of the nearest neighbors.
Various conventions have been used to define this anisotropic
exchange.16–18,34 Here we assume an exchange tensor which
is diagonal in the (�a,�b,�c) frame linked with a R-R bond.
Considering for instance the pair of Er3+ ions at �r1 =
(1/4,3/4,0)a and �r2 = (0,1/2,0)a, where a is the cubic lattice
constant, we define the local bond frame as �a12 = (0,0, − 1),
�b12 = 1/

√
2(1, − 1,0), and �c12 = 1/

√
2(−1, − 1,0):

�JiJ̃ �Jj =
∑

μ,ν=x,y,z

J
μ

i

(
Jaa

μ

ij a
ν
ij + Jbb

μ

ij b
ν
ij + Jcc

μ

ij c
ν
ij

)
J ν

j

+J4

√
2�bij ( �Ji × �Jj ).

Owing to the form of the dipolar interaction, we have

J̃ dipi,j = Dnn(�aij �aij + �bij
�bij − 2�cij �cij ),

with Dnn = μo

4π

(gJ μB )2

r3
nn

and where rnn is the nearest neigh-
bor distance in the pyrochlore lattice. If we incorporate
it in the anisotropic exchange constants (Ja,Jb,Jc), we
obtain

J ′
a = Ja + Dnn, J ′

b = Jb + Dnn, J ′
c = Jc − 2Dnn.

As usual in mean-field approximations, a self-consistent
treatment is carried out to solve the problem: Starting from
a random configuration for the 〈 �Jj 〉, the contribution to H at
site i is diagonalized in the Hilbert space of the Er3+ magnetic
moment defined by the {|Jz〉},Jz = −15/2, . . . ,15/2 basis
vectors, and taking into account the external magnetic field
�H as well as the molecular field

∑
〈i,j〉 �Ji(J̃ + J̃ dipi,j )〈 �Jj 〉.

This yields the energies Ei,μ and the wave functions |ψi,μ〉.
The updated magnetic moments:

〈 �Ji〉 =
∑

μ

e−Ei,μ/kBT

Z
〈ψi,μ| �Ji |ψi,μ〉,

Z =
∑

μ

exp(−Ei,μ/kBT )

is used to proceed at site j , and this is repeated until
convergence. The magnetization is then given by

M( �H ) =
∑

i

�mi

�H
H

.

APPENDIX D: RELATION WITH QUANTUM PSEUDOSPIN
HALF MODELS

The anisotropic exchange Hamiltonian can be rewritten
in terms of couplings between the spin components of a
pseudospin half defined in the subspace of the ground CEF
doublet:

H′ =
∑
i,j

JzzSz
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+J±±(γijS+
i S+

j + γ ∗
ijS−

i S−
j )

+Jz±
[
Sz

i (ζijS+
j + ζ ∗

ijS−
j ) + i ↔ j

]
,

TABLE VI. Anisotropic exchange parameters for Er2Ti2O7 and
Er2Sn2O7. (J±±, J±, Jz±,Jzz) are given in 10−2 meV, while the other
sets are in K. Positive values correspond to AF couplings.

Er2Ti2O7 Er2Ti2O7 Er2Sn2O7

Coupling (Ref. 17) (Ref. 36) (present work)

J±± 4.2 (± 0.5) 3.2 (± 1) 7.4 (± 1.5)
J± 6.5 (± 0.75) 6.7 (± 1) 1.35 (± 1.5)
Jz± −0.88 (± 1.5) 1.32 (± 0.5) 0.025 (± 0.01)
Jzz −2.5 (± 1.8) −1.75 (± 0.4) 0.0

J ′
a −0.056 (± 0.06) −0.008 (± 0.01) 0.052 (± 0.017)

J ′
b 0.10 (± 0.01) 0.072 (± 0.005) 0.052 (± 0.005)

J ′
c 0.034 (± 0.07) 0.061 (± 0.01) −0.004 (± 0.005)

J4 0.02 (± 0.03) ± 0.005 0

Ja −0.078 (± 0.06) −0.03 (± 0.01) 0.03 (± 0.017)
Jb 0.078 (± 0.01) 0.05 (± 0.005) 0.03 (± 0.005)
Jc 0.078 (± 0.07) 0.105 (± 0.01) 0.04 (± 0.005)
J4 0.02 (± 0.03) ± 0.005 ± 0.005

g⊥ 5.97 6.8 7.52
g‖ 2.45 2.6 0.054
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(J±±,J±,Jz±,Jzz) is the set of effective exchange parameters.
Note that “sanserif” notations refer to local bases. The states
of this pseudospin half span the ground CEF wave functions
doublet, using the relation

gJ
�J = g �S or �J = λ�S. (D1)

In the context of pyrochlores, the λ = g

gJ
matrix is diagonal

and takes the form

λ =

⎛
⎜⎝

λ⊥
λ⊥

λz

⎞
⎟⎠ . (D2)

We call M the matrix that connects the local and
global bases and A the matrix connecting (Sx,Sy,Sz) and
(S+,S−,Sz) (we omit the indexes for sake of clarity),
so that

�J = MλA�S, (D3)

A =

⎛
⎜⎝

1/2 1/2

−i/2 i/2

1

⎞
⎟⎠ , (D4)

with �S = (S+,S−,Sz). We thus have

H =
∑
ij,uv

Su
i

(
AT λMT

i JMjλA
)uv

Sv
i (D5)

and we finally get the following relations:

Jzz = λ2
z

Ja − 2Jc − 4J4

3
,

J± = −λ2
⊥

2Ja − 3Jb − Jc + 4J4

12
,

Jz± = λ⊥λz

Ja + Jc − J4

3
√

2
,

J±± = λ2
⊥

2Ja + 3Jb − Jc + 4J4

12
,

and conversely

Ja = 4

3

J±± − J±
λ2

⊥
+ 4

√
2

3

Jz±
λ⊥λz

+ 1

3

Jzz

λ2
z

,

Jb = 2
J±± + J±

λ2
⊥

,

Jc = 2

3

−J±± + J±
λ2

⊥
+ 4

√
2

3

Jz±
λ⊥λz

− 2

3

Jzz

λ2
z

,

J4 = 2

3

J±± − J±
λ2

⊥
−

√
2

3

Jz±
λ⊥λz

− 1

3

Jzz

λ2
z

.

Table VI provides the different sets of anisotropic ex-
change parameters for Er2Ti2O7 (Refs. 17 and 36) and
Er2Sn2O7 (present work) deduced from this transformation.
This procedure is similar to the ones detailed in Refs. 17, 34,
and 45.
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