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Exchange interactions and local-moment fluctuation corrections in ferromagnets at finite
temperatures based on noncollinear density-functional calculations
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We explore the derivation of interatomic exchange interactions in ferromagnets within density-functional
theory (DFT) and the mapping of DFT results onto a spin Hamiltonian. We delve into the problem of systems
comprising atoms with strong spontaneous moments together with atoms with weak induced moments. All
moments are considered as degrees of freedom, with the strong moments thermally fluctuating only in angle
and the weak moments thermally fluctuating in angle and magnitude. We argue that a quadratic dependence
of the energy on the weak local moments magnitude, which is a good approximation in many cases, allows
for an elimination of the weak-moment degrees of freedom from the thermodynamic expressions in favor of a
renormalization of the Heisenberg interactions among the strong moments. We show that the renormalization
is valid at all temperatures accounting for the thermal fluctuations and resulting in temperature-independent
renormalized interactions. These are shown to be the ones directly derived from total-energy DFT calculations
by constraining the strong-moment directions, as is done, e.g., in spin-spiral methods. We furthermore prove
that within this framework the thermodynamics of the weak-moment subsystem, and in particular all correlation
functions, can be derived as polynomials of the correlation functions of the strong-moment subsystem with
coefficients that depend on the spin susceptibility and that can be calculated within DFT. These conclusions are
rigorous under certain physical assumptions on the measure in the magnetic phase space. We implement the
scheme in the full-potential linearized augmented plane wave method using the concept of spin-spiral states,
considering applicable symmetry relations and the use of the magnetic force theorem. Our analytical results are
corroborated by numerical calculations employing DFT and a Monte Carlo method.
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I. INTRODUCTION

In recent years there has been increasing activity in the
prediction of high-temperature magnetic properties of solids,
especially regarding critical magnetic transition temperatures.
The theoretical approach is founded in many cases on two
assumptions: (i) that the magnetic excitations of a system
can be phenomenologically described within a classical
or quantum Heisenberg model and (ii) that the exchange
parameters entering the model (i.e., the excitation energies)
can be microscopically derived from total energy results of,
e.g., density-functional theory calculations. This “magnetic
multiscale modeling” has proven successful in many cases,
including itinerant elemental ferromagnets such as Fe and
Co,1–4 localized-moment systems such as Gd,5,6 magnetic
alloys as NiMnSb or Co2MnSi,7 or diluted magnetic semicon-
ductors as (Ga,Mn)As.8,9 In these systems, the estimated Curie
temperatures TC are within 10%–15% of the experimental
values, showing that the approach is reliable for practical
purposes.

The derivation of magnetic excitation energies from
density-functional calculations requires additional assump-
tions, since density-functional theory is, in principle, valid
only for the description of the ground state of many-electron
systems. Mainly, one relies on an adiabatic hypothesis, which
conjectures that the slow motion of low-energy magnetic
excitations can be decoupled from the fast motion of intersite
electron hopping, so that the local electronic structure has
time to relax under the constraint that a magnon traverses the
system. Then the magnons are regarded as practically static or
“frozen” objects, and constrained density-functional theory10

is employed. This adiabatic approximation, together with the

realization that the local moments persist until above the
Curie temperature, constitutes a paradigm which has proven
fruitful. Quite a few theories and methods have been based
on it, aimed at the calculation of thermodynamic quantities,
including TC, by harvesting the model parameters from first
principles calculations and working out the thermodynamics
within Monte Carlo methods or other suitable approaches.

Among the first to discuss the adiabatic approximation in
connection to density-functional theory (DFT) calculations
were Gyorffy and co-workers in the development of a
mean-field theory of magnetic fluctuations,11 even though
the concept was applied earlier on the level of solutions to
many-body model Hamiltonians (see, e.g., Small and Heine12).
Later Antropov et al.13 and Halilov et al.14 derived equations
for adiabatic ab initio spin dynamics. Further elaboration came
from Niu and collaborators15 and Gebauer and Baroni,16 who
showed that the Berry curvature enters the adiabatic dynamics
equations; they also demonstrated mathematically how the
Born-Oppenheimer method can be generalized for adiabatic
spin dynamics without the requirement that there should be a
large mass difference defining the time-scale difference.

Based on the adiabatic approximation, a proper
parametrization of the excitation spectrum is called for. In
many, but not all, ferromagnetic systems the magnitude of
the local atomic moments is relatively robust under modest
rotations, so that mainly the pair exchange constants entering
a Heisenberg model are required. From the point of view
of methodology, two approaches are commonly used for the
determination of the pair exchange constants. The first is based
on multiple-scattering theory and Green function methods,
frequently in the approximation of infinitesimal rotations.17

It is widely used in methods where the Green function is
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available.1,2,8,18–24 A variant of this approach is the use of
the disorder-local-moment (DLM) reference state11 as an
approximation to the magnetic disorder at the Curie temper-
ature, from which one obtains exchange parameters25,26 in a
manner analogous to the method of infinitesimal rotations.17

Higher-order interactions (e.g., the biquadratic, fourth order,
or anisotropic exchange) can be also obtained in a systematic
way either from the ferromagnetic ground state27,28 or from
the DLM state.23

The second approach, which we follow in this work, is
based on reciprocal-space calculation of spin-wave excitation
energies by constraining the system to spin spirals of given
wave vectors q. This requires noncollinear calculations,
restricted to the primitive chemical unit cell (in the absence
of spin-orbit coupling) by virtue of a generalized Bloch
theorem.29 A subsequent integration in q space (in the form
of a back-Fourier transformation) yields the pair exchange
constants. Although the force theorem30 is in principle not
necessary here, practically it is often used in order to avoid the
numerical load of a self-consistent calculation for each vector
q. This second approach is well suited for electronic structure
methods which are based on Hamiltonian diagonalization
rather than Green functions, and has been developed, for ex-
ample, for the augmented spherical wave (ASW) method31,32

or the LMTO method.14 Concerning the second approach,
we should also mention that a proper energy fit to a large
number of constrained-moment directions has been used to
extract model parameters, inspired by alloy-theory methods,
for example by applying the Connolly-Williams theory33 to
fit a number of antiferromagnetic states34 or in a more refined
way by applying a systematic spin-cluster expansion including
higher-order interactions35,36 for a fit to noncollinear states.

The results of the two approaches (infinitesimal rotations
and spin-wave spectra) on the values of exchange interactions
agree well, at least as long as the density-functional calcula-
tions are done within the same electronic structure method.22

There is also good agreement in the spin-wave spectra of the
two approaches if these are calculated in the first approach from
a Fourier transformation of the real space coupling parameters,
as long as a sufficiently large number of atomic shells is taken
in the Fourier series.19

The present paper contains two major parts. In the first
part, Secs. II and III, we start by presenting the formalism
for the calculation of pair exchange constants which we have
implemented in the full-potential augmented linearized plane
wave (FLAPW) method.37,38 The approach of spin spirals
and inverse Fourier transformations14 is used to arrive at
formulas for the pair exchange constants in the case of one
or more magnetic atoms per unit cell. Symmetry relations
are derived that reduce the selection of spin spirals to the
irreducible part of the Brillouin zone. Then, we focus on
accuracy tests concerning the use of the force theorem at
finite rotations; we also address the problem of subtracting
the contribution of the magnetization in the interstitial. As a
test, we calculate the Curie temperature of certain compounds
by a Monte Carlo method. In the second part, Sec. IV, we
discuss a way to parametrize the energetic contribution of
longitudinal changes in the atomic spin moment so as to
include them in a Monte Carlo method in the case that we
are faced with a compound containing strong-moment and

induced-moment sublattices. We obtain a scheme for the study
of temperature-dependent magnetic properties and derive
equations that allow a simplification of the computational
method and a reduction of the computational cost under certain
frequently met physical conditions; importantly, we show the
hitherto unnoticed result that the fluctuating weak-moment
degrees of freedom can be analytically eliminated in favor of
renormalized, temperature-independent strong-moment inter-
actions, and that the thermodynamics of the full system (strong
plus weak moments with bare interactions) can be derived from
the thermodynamics of the strong-moment system only with
renormalized interactions (a general derivation is given in the
Appendix). A numerical demonstration of this rigorous result
is presented in the case of the half-Heusler alloy NiMnSb.
Finally, in Sec. V, we place our work in a wider context
comparing with the treatment of the weak moments or the
concept of renormalized exchange interactions presented by
other authors and we state the basic physical assumptions
underlying our result. We then conclude with a summary.

II. AB INITIO CALCULATION OF HEISENBERG
EXCHANGE PARAMETERS

Adopting the adiabatic approximation, the magnetic inter-
actions are modeled by a classical Heisenberg Hamiltonian.
The part of the total energy due to these interactions is then
obtained from the expression

E = −1

2

∑
n,m
αβ

(Rmα �=Rnβ )

J (Rmα,Rnβ)Mmα · Mnβ, (1)

where Rmα(nβ) ≡ Rm(n) + τ α(β). Here, Rm(n) are the lattice
vectors and τα(β) are the basis vectors specifying the positions
of the atoms within the unit cell. Mmα(nβ) are the atomic
magnetic moments at the sites Rmα(nβ), while J (Rmα,Rnβ)
is the exchange coupling constant for the pair of atoms
situated at these sites, and is the quantity to be calculated.
The summations over the indices n,m are carried out over all
lattice vectors, and the ones using indices α,β over all the
atoms in the unit cell. The factor 1/2 takes care of the double
counting and the on-site term (Rmα = Rnβ) is left out.

The constants J (Rmα,Rnβ) contain the information about
the intersite interaction due to the exchange coupling. The
knowledge of these exchange interactions is essential for
the description of thermal excitations in magnetic solids and
their deriving from ab initio calculations is the core problem
in the attempt to describe the system with the Heisenberg
Hamiltonian. The correspondence between the ab initio theory
and the Heisenberg model is established by using the ansatz

J (Rmα,Rnβ) = δ2E

δMmαδMnβ

= δ2EDFT

δMmαδMnβ

, (2)

which follows from Eq. (1), as a defining relation of
J (Rmα,Rnβ) within density-functional theory. Here, δMnα

and δMnβ are to be understood as small differences with
respect to the direction only, not the magnitude. That is,
an appropriate energy functional [usually within the local
density or generalized gradient approximation (LDA or GGA)]
EDFT[ρ,m] of charge density ρ(r) and magnetization density
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m(r) is used in the place of E in Eq. (2). When evaluating
(2), it is assumed that the exchange-correlation field is
collinear within each atom, so that the derivative with respect
to atom-cell integrated moments Mmα = ∫cell mα

m(r)d3r is
meaningful. The intra-atomic collinearity is an approximation,
justified by the energetic dominance of the moment formation
(usually of the order of eV) compared to the formation of
ferromagnetic order (usually of the order of less than 0.1 eV).
From these comments it is also evident that we do not require
that the local moments are quantized either in the form M =√

S(S + 1) μB or Mz = S μB with S integer or half-integer,
as, e.g., would be the case in ferromagnetic semiconductors.39

Rather, Eq. (1) represents the lowest term in an expansion of the
total energy in terms of the magnetization direction, neglecting
longitudinal enhancement or suppression of the moments,
and Eq. (1) represents a classical Heisenberg model, valid
after local quantum spin fluctuations have been averaged out
(see, e.g., the discussion in [14]). There are known cases when
these approximations are insufficient, and we discuss such a
case in Sec. IV.

Next, the collective transverse magnetic excitations are
approximated by static spin spirals, the energy of which is
calculated within the noncollinear FLAPW method.38,40 For
the Fourier and back-Fourier transformations that are needed
we follow the formalism of Halilov et al.14 In the case of a
spin spiral with wave vector q, the azimuthal angle of the
magnetic moment of an atom at the position Rnα is given
by ϕnα = q · Rnα . The magnetic moment of an atom at the
position Rnα is

Mnα = Mα

⎛
⎜⎝

sin θα cos(q · Rnα + φα)

sin θα sin(q · Rnα + φα)

cos θα

⎞
⎟⎠ , (3)

where θα is the so-called cone angle, a relative angle between
the final and initial direction of the local magnetic moment
(here chosen along the z axis; this choice does not limit
the generality in the absence of spin-orbit coupling), and φα

an eventual phase factor, also called phase angle. Taking
advantage of the translational invariance we define R ≡
Rn − Rm and τ αβ ≡ τ α − τ β ; hence Eq. (1) becomes

E(q; 	; 
) = −1

2

′∑
αβ

R

MαMβJ (τα,τ β − R)

×{sin θα sin θβ cos[q · (ταβ − R) + φα − φβ]

+ cos θα cos θβ}. (4)

Here, the energy E is a function of the spin-spiral vector q, as
well as of the cone and phase angles of the magnetic moments
on all the atoms of the unit cell. The dependence on these
angles is collectively expressed by 	 for the set of all cone
angles {θα} and by 
 for the set of all phase angles {φα} in
the argument of E. To account for the condition τ α �= τ β − R
under which the sum in Eq. (4) is conducted (and is indicated
by a prime), from now on we set J (τ α,τ α) ≡ 0, for all the
atoms α in the unit cell.

With the aim to obtain the exchange interaction constants
J (τ α,τ β − R) at the minimum of computational expense, we
define in the following a set of expressions which are evaluated

computationally. We first define the Fourier transform

Jαβ(q) =
∑

R

J (τα,τ β − R)eiq·(ταβ−R). (5)

It is straightforward to show that, with the use of this Fourier
transform, Eq. (4) becomes

E(q; 	; 
) = −1

2

∑
αβ

MαMβ{sin θα sin θβRe[Jαβ(q)ei(φα−φβ )]

+ cos θα cos θβJαβ(0)}. (6)

A. Symmetry relations

Starting from the condition that J (Rmα,Rnβ) are real and
symmetric and from the definition of the Fourier transform
Jαβ(q) [Eq. (5)], several useful symmetry relations of Jαβ(q)
can be derived (valid for each q vector):

(1) Jαβ (q) = Jβα(−q),
(2) Re[Jαβ(q)] = Re[Jαβ(−q)],
(3) Im[Jαβ(q)] = −Im[Jαβ(−q)],

(3a) Im[Jαβ(0)] = 0,
(3b) Im[Jαα(q)] = 0,

(4) Jαβ (Ĉq) = Jα′β ′ (q), where Ĉ is a crystal point group
symmetry element and (α′,β ′) are the equivalent sites in the
unit cell to (α,β) via the action of the symmetry element
Ĉ−1, i.e., Ĉ−1τ α = τ α′ + R for some lattice vector R (and
analogously for β).

Symmetry relations 1–3 have been given previously in
Ref. 14. Symmetry relation 4 has the important consequence
that the q vectors can be sampled from the irreducible wedge
of the Brillouin zone, while Jαβ(q) in the rest of the Brillouin
zone can be obtained by the symmetry transformations. In
the case that the crystal possesses the inversion symmetry Î

and if τ α − Îτα ≡ 2τ α and τ β − Îτ β ≡ 2τ β are both lattice
vectors, then from symmetry relations 3 and 4 it follows that
all Jαβ(q) are real. Moreover, due to symmetry relation 1, even
if the system does not possess the inversion symmetry it is not
necessary to make two separate calculations for q and −q.

B. Calculational scheme

To develop a scheme for the calculation of the Fourier
transforms Jαβ (q), we distinguish two different cases in the
calculational setup.

Case 1. All the atoms in the unit cell are ordered in the
collinear ground state, except for atom μ. Its magnetic moment
is tilted by the cone angle θμ and the spin spiral running through
the system will affect only the magnetic moments situated on
the atoms of the same kind as μ. In short,

θμ �= 0, θλ = 0, ∀λ �= μ,

With the use of the symmetry relations for the coefficients
Jαβ(q), from the total energy expression (6) one obtains

Jμμ(q) − Jμμ(0) = −2
Eμ(q) − Eμ(0)

M2
μ sin2 θμ

. (7)
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Case 2. This case will appear only if there are two or
more magnetic atoms in the unit cell. Keeping the rest of the
magnetic moments parallel, the magnetic moments on atoms
μ and ν are tilted by cone angles θμ and θν , respectively, so the
spin spiral running through the system changes the orientation
of magnetic moments on both of these atoms:

θμ,θν �= 0, θλ = 0, ∀λ �= μ,ν,

As we have seen, if the system does not possess inversion
symmetry, the coefficients Jμν(q) are complex for μ �= ν.
Their real and imaginary parts can be obtained as

Re[Jμν(q)] = 1

MμMν sin θμ sin θν

×
{
Eμν

(
0,

π

2

)
− Eμν(q,0) + Eμ(q)

−Eμ(0) + Eν(q) − Eν(0)

}
, (8)

Im[Jμν(q)] = Eμν
(
q, π

2

)− Eμν(q,0)

MμMν sin θμ sin θν

− Re[Jμν(q)], (9)

where Eμν(q,0) and Eμν(q, π
2 ) denote the total energies in

the presence of a spin spiral defined with the wave vector q
and the difference of the phase factors φμ − φν = 0 and π

2 ,
respectively.

C. Brillouin zone integration

We have established that the Fourier transforms Jμν(q)
can be obtained from the differences in total energy between
the states having specified magnetic configurations. Armed
with Eqs. (7), (8), and (9) we are now ready to calculate
the Heisenberg exchange coupling constants, J (τμ,τ ν − R).
First, however, one has to take into account that from Eq. (7)
it is only possible to calculate the difference Jμμ(q) − Jμμ(0),
but not the coefficient Jμμ(q) alone. This problem can be
easily circumvented by introducing the coefficients J̃μν(q),
defined as

J̃μν(q) ≡ Jμν(q) − δμνJμν(0). (10)

Also, for simplicity, the nonzero cone angles can in all
calculations be taken to have the same value θ . Equations (7),
(8), and (9) can now be rewritten as

J̃μμ(q) = −2
Eμ(q) − Eμ(0)

M2
μ sin2 θ

,

Re[J̃μν(q)] = Eμν
(
0, π

2

)− Eμν(q,0)

MμMν sin2 θ
(11)

− 1

2

Mμ

Mν

J̃μμ − 1

2

Mν

Mμ

J̃νν,

Im[J̃μν(q)] = Eμν
(
q, π

2

)− Eμν(q,0)

MμMν sin2 θ
− Re[J̃μν(q)].

The final step will be a simple back-Fourier transform. Using
Eqs. (5) and (10) it is easy to see that

J (τμ,τ ν − R) = 1

VBZ

∫
VBZ

J̃μν(q)e−iq·(τμν−R)d3q. (12)

Finally, we note that from the definition (10) it is clear that
J̃μν(q) satisfies the same symmetry relations as the coefficients
Jμν(q).

The described calculations can be time consuming, since
they involve the determination of small energy differences
(typically of the order of a few mRyd). Due to the oscillatory
phase in Eq. (12), the appropriate size of the q point set
increases with the distance between the two atoms for which
the interaction constant is being calculated, the grid fineness
being basically determined by the inverse of the quantity
|τμν − R| that enters the exponential in Eq. (12). In the spirit
of the Nyquist-Shannon sampling theorem,41 and for |R| �
|τμν |, the q-grid fine spacing in the direction of R should be at
most half the value 2π/|R|. Additionally, sufficient accuracy
requires larger plane-wave basis sets and a finer k-point grid
compared to a simple ground-state calculation. A rule of thumb
for increased accuracy is that, given a q grid the k grid should
be twice as fine per spatial dimension of the lattice in order
to avoid spurious oscillatory behavior of the period of the
grid spacing δk in J̃μν(q). A self-consistent calculation of
all energies needed here is computationally very demanding.
Fortunately, in many cases the spin spiral can be considered a
small enough perturbation that the force theorem30,42 can be
used to calculate the energy differences. We discuss this in the
following subsection.

D. Test of the applicability of the force theorem

The magnon energy is calculated as the difference between
the total energy of the system with a spin spiral (this is an
excited state), and the ground state, which is ferromagnetic
in the systems under study here. A self-consistent calculation
of the spin spiral requires use of a constraint, in the form
of an external spiraling magnetic field, which forces the
magnetization to take the form given in Eq. (3). On the other
hand, an application of the force theorem requires a position
dependent rotation of the exchange-correlation field Bxc so
that its direction acquires the form (3), i.e.,

Bxc
nα = Bxc

α

⎛
⎜⎝

sin θα cos(q · Rnα + φα)

sin θα sin(q · Rnα + φα)

cos θα

⎞
⎟⎠ , (13)

where Bxc
α = (V xc

↑α − V xc
↓α) is the self-consistent exchange-

correlation field of the collinear calculation at atom type α

(V xc
σα is the exchange-correlation potential dependent on spin

σ =↑ ,↓). In the FLAPW method, this rotation is applied in
the muffin-tin spheres, i.e., nonoverlapping spheres around
the atomic nuclei where the potential is expanded in radial
functions and spherical harmonics, as well as in the interstitial
space between these spheres. Using the field of Eq. (13) in
the Kohn-Sham equations yields a (non-self-consistent) sum
of eigenvalues of the occupied levels; according to the force
theorem, the magnon energy is approximated by the difference
of this sum to the sum of eigenvalues of occupied levels in the
self-consistent ferromagnetic ground state.
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FIG. 1. (Color online) Comparison of the force theorem with
self-consistent calculations for NiMnSb. Left: a dispersion curve of a
spin spiral along the [001] direction for a cone angle θ = 30o. Right:
spin spiral energy vs sin2 θ for a short-wavelength spiral along the
[001] direction.

The approximation is expected to be better for smaller
perturbations, i.e., for smaller cone angles and/or smaller
magnon wave vectors |q|. As a test, in the left panel of Fig. 1
the dispersion curve is shown for a spin spiral in NiMnSb,
defined by a cone angle θ = 30o, and a spin-wave vector
along [001] direction. The force-theorem and self-consistent
calculations agree rather well. The right panel of Fig. 1
shows the dependence of the magnon energy on the squared
sinus of the cone angle (sin2 θ ) for a fixed spin-spiral vector
q = (0,0,1)π/alat. We see a maximal deviation of the order of
7%–8% for the unfavorable case of θ = 90o and q = π/alat,
while the deviation starts becoming visible at cone angles
larger than θmax ∼ 50o.

A general conclusion is that if one wants to use the force
theorem to obtain the spin-spiral dispersion within the whole
first Brillouin zone of the crystal, a cone angle θ = 30o seems
to be a reasonable choice, since the energy differences are not
too large for the magnon to stop being a small perturbation,
but are also not too small so that one would have to employ

a very large basis, or k-point set. This cone angle was used
in the calculation of the Heisenberg interaction constants J

presented in Sec. III.
We close this section with a comment on a spurious effect

of the exchange-correlation field in the interstitial region when
the force theorem is used. (The interstitial region is covered
by empty spheres or empty cells in some ab initio methods,
e.g., in the ASW31,32 or LMTO method,14 if the structures
are relatively open, as are for instance the half-Heusler or the
zinc-blende structure.) In a force-theorem application, the trial
exchange-correlation potential in the interstitial is a smooth
periodic function. However, in a self-consistent spin-spiral
calculation, the resulting exchange-correlation potential is
in many cases a much less smooth, although still periodic,
function.43 Then the interstitial magnetization in the force-
theorem calculation can cause a serious overestimation of the
spin-spiral energy. This spurious energy contribution can be
circumvented by setting the magnetic part of the exchange-
correlation potential in the interstitial to zero. Depending on the
volume filling of the touching “muffin-tin”atomic spheres of
the system, the spurious energy can be considerable, becoming
larger for open systems. In Fig. 2(a) we show a calculated
example for NiMnSb. The self-consistent spiral energy and
the force-theorem energy (here normalized to sin2 θ ) are
practically identical, if we set Bxc = 0 in the interstitial in the
force theorem calculation (in the self-consistent calculation,
Bxc is nonzero also in the interstitial); if this correction is
not used, then the spiral energy is strongly overestimated.
Figures 2(b)–2(d) show the same for Fe2MnSi in the full-
Heusler structure, FeMnSi in the half-Heusler structure, and
FeSi in the zinc-blende structure. All three structures are based
on an fcc lattice and were calculated here with the same
lattice parameter alat = 5.663 Å, but differ in the number
of atoms in the unit cell and therefore in the volume of
the interstitial region. Fe2MnSi has the smallest interstitial
region, and evidently the interstitial magnetization has almost
no effect; both force theorem calculations practically coincide
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FIG. 2. (Color online) (a) Spiral energy E(q,θ ) as function of sin2 θ in NiMnSb for the cases of (i) a self-consistent calculation (including
the self-consistent, spiraling polarization of the interstitial), (ii) a force-theorem calculation including the polarization of the interstitial, and
(iii) a force-theorem calculation excluding the polarization of the interstitial. Evidently, case (ii) strongly overestimates the spiral energy, since
the non-collinearity of the interstitial polarization is poorly treated. Case (iii), on the other hand, is a good approximation to the exact result (i).
The spiral wave vector is q = (0,0,0.15)(π/alat). (b), (c), (d) Same as in (a) but for Fe2MnSi, FeMnSi, and FeSi, in full-Heusler, half-Heusler,
and zinc-blende structures, respectively, to demonstrate the effect of increasing the volume of the interstitial. The structures correspond to an
fcc lattice with four, three, and two atoms per unit cell, respectively. All three were calculated at the same lattice parameter (alat = 5.663 Å)
and at a spiral vector of q = (0,0,0.25)(π/alat).
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FIG. 3. (Color online) Heisenberg exchange interaction parame-
ters of Co2MnSi (a) and NiMnSb (b) as a function of the distance R

between the atoms (in units of the lattice constant alat). The lines are
guides to the eye.

with the self-consistent result. For FeMnSi, however, the
interstitial volume is larger and the spiral energy is strongly
overestimated in the force theorem calculation, if the interstital
magnetization is not set to zero. The effect is even stronger for
FeSi, where the interstitial volume is largest.

III. EXCHANGE INTERACTION PARAMETERS
AND CURIE TEMPERATURE

Following the prescription of Sec. II we calculated
Heisenberg exchange interaction parameters (Jij ; i,j are
abbreviations of mα,nβ) of Co2MnSi and NiMnSb, shown in
Fig. 3, and used a Monte Carlo method to obtain an estimate of
the Curie temperatures for these compounds. The calculations
for both compounds were performed within the generalized
gradient approximation44 on a 4096 k-point mesh with 2744
q points in the full Brillouin zone. The plane-wave cutoff was
kmax = 3.8 a.u.−1. The convergence was checked with respect
to the above parameters.

In Co2MnSi, both Co and Mn atoms have strong and
stable magnetic moments, whose interaction is described with
J parameters depicted in Fig. 3(a). In NiMnSb, though the

magnetic moment of Ni is small and actually induced by
the Mn surrounding atoms, both Ni and Mn were treated as
magnetic atoms and the parameters of Mn-Mn, Ni-Ni, and Mn-
Ni interaction were calculated [Fig. 3(b)]. As will be discussed
in Sec. IV, this treatment gives an insight into the thermal
behavior of the Ni sublattice and with the use of an extended
Heisenberg model more useful information can be obtained.

Co2MnSi and NiMnSb are half-metallic ferromagnets, i.e.,
the density of states (DOS) in one spin direction (here majority
spin) is metallic, while in the other spin direction the DOS
shows a band gap around the Fermi level.

For a non-half-metallic ferromagnet, the interaction con-
stants Jij as a function of distance follow a decaying oscillating
behavior that in the simplest case is of the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) type, decaying with |Ri − Rj |−3,
but in general can have many superimposed periods and a
different decay power law depending on the details of the Fermi
surface.2 On the other hand, for half-metallic ferromagnets
the gap at one spin direction leads to an imaginary wave
vector and an exponential decay with distance.2 In both
cases shown in Fig. 3, we notice this very fast decay of
the interaction parameters with the distance between the
atoms. For a comparison, in Fig. 4, the exchange interaction
parameters of fcc Co (which is not half-metallic) are shown.
The decay here is much slower.

In a short digression, we compare the results of the spin-
spiral approach within the FLAPW method to the approach
of infinitesimal rotations17 calculated with the full-potential
Korringa-Kohn-Rostoker Green function method (KKR).45 In
KKR we use both the ferromagnetic state and the disordered
local moment (DLM) state as reference points (see also the
discussion in Sec. V B). We see in Fig. 4 that the agreement
is good for fcc Co, with a deviation of 3% nearest-neighbor
coupling, if the ferromagnetic state is used as a reference, while

0.5 1 1.5 2
R/a

lat
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0.0

0.5

1.0

1.5

2.0

2.5

J ij M
i M

j [m
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yd
] FLAPW spiral

KKR ferro
KKR DLM

fcc Co

FIG. 4. (Color online) Heisenberg exchange interaction parame-
ters of fcc Co as a function of the distance R between the atoms (in
units of the lattice constant alat). The lines are guides to the eye. Red
circles: results calculated with the FLAPW method. Blue diamonds:
results calculated with the Korringa-Kohn-Rostoker (KKR) Green
function method within the approximation of infinitesimal rotations
with the ferromagnetic state as reference. Green triangles: results
calculated again with KKR but with the disordered local moment
(DLM) state as reference.
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the deviation is large if the DLM state is used as reference (also
the atomic moment decreases from 1.65 μB in the ground state
to 1.08 μB in the DLM state). For Co2MnSi (not shown here)
we find that the difference between KKR and FLAPW is larger,
with the Mn-Co nearest-neighbor coupling being approxi-
mately 10% weaker in the KKR calculation, while if the DLM
state is used as reference, the Co moment vanishes altogether.

Once the exchange interactions are known, the effective
Heisenberg model can be solved for the Curie temperature.
While the mean field approximation is computationally the
simplest method to this task, it is known (and has been
shown in practice) that the resulting TC is overestimated.
The random phase approximation (also known as Tyablikov
approximation), on the other hand, is rather accurate.46 The
most accurate, but numerically more expensive, way to
calculate TC of a classical Heisenberg model is the Monte Carlo
method, in particular when taking advantage of the cumulant
expansion to account for the finite size of the simulation
supercells. In this work we applied the Monte Carlo method,
locating TC by the peak in the temperature-dependent, static
susceptibility. As the simulation supercells are rather large,
finite-size corrections to TC are small.

We also show Monte Carlo magnetization curves for
Co2MnSi in Fig. 5.47 The classical Heisenberg Hamiltonian,
Eq. (1), was used to model the systems, assuming that the
magnetic moments can change their orientation, but not their
length. NiMnSb is discussed in more detail in Sec. IV. In
the calculations the Metropolis method was employed. A
supercell of 2048 unit cells (4096 magnetic atoms) was used
for NiMnSb and one of 2197 unit cells (6591 magnetic atoms)
for Co2MnSi; interactions to neighbors up to a distance of
four lattice constants were included. For each temperature
the number of Monte Carlo sampling events was 5000, after
allowing an initial relaxation time of 1000 steps and taking
one sampling event every 10 sweeps of the lattice.

The magnetization curves (Fig. 5) do not go to a sharp zero
at TC, but rather have a tail, as a result of the finite supercell.
The peak of the susceptibility is, on the other hand, rather
sharp and its position can be used to determine the Curie
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FIG. 5. (Color online) Magnetic moment M(T ) per unit cell (blue
full line), partial moment of the Mn and Co sublattices (green dashed
lines), and susceptibility χ (T ) (red full line) as functions of the
temperature T , for Co2MnSi. The peak of the susceptibility at 980 K
indicates the Curie temperature (experimentally found to be 985 K).
Note that the susceptibilities are shown in an arbritary scale.

temperature. From the positions of these peaks, we estimated
for Co2MnSi (Fig. 5, left) TC = 980 K (experimental48 985 K),
and for NiMnSb (see Sec. IV) TC = 870 K (experimental48

value being 730 K). Note that here, for NiMnSb, the Ni moment
was also taken into account within the Heisenberg model (but
see also the discussion in Sec. IV, in particular Sec. IV C).
For fcc Co we find a Curie temperature of 1200 K, while
the experimental result is 1403 K (the high-temperature stable
phase of Co is fcc).

IV. CONSIDERATION OF LONGITUDINAL
MOMENT FLUCTUATIONS

So far we have discussed a formalism and examples of
calculation of exchange parameters for a Heisenberg model,
assuming that the magnitude of the local magnetic moments
is rigid. However, as is long known, certain systems are
weakly magnetic and the moment formation takes place at
a relatively low energy scale, comparable to the magnon ener-
gies. Moriya’s quantum mechanical spin fluctuation theory49

already factors in these effects. An introduction of a classical
Hamiltonian including longitudinal and transverse degrees of
freedom has been done by Uhl and Kübler50 by parametrizing
ab initio total energy results; thermodynamic quantities were
then obtained within a mean-field approach which coupled
longitudinal and transverse degrees of freedom.32,50 More
elaborate approaches by a classical fit of the energy to density-
functional results, including transversal and longitudinal de-
grees of freedom, together with Monte Carlo or classical spin-
dynamics calculations, were presented, e.g., by Rosengaard
and Johansson,51 Ruban et al.20 Ma and Dudarev,52 or Derlet.53

Particularly interesting are compounds of a strongly mag-
netic and a weakly magnetic subsystem, where the weak
moments cannot be treated as having rigid magnitude, but on
the other hand are large enough that they cannot be neglected.
Examples are FePt, FePd, or NiMnSb, where the strongly mag-
netic atoms are Fe and Mn, while the weakly magnetic atoms
are Pt, Pd, and Ni. Then the assumption of rigid Heisenberg
spins does no longer seem plausible. One way to circumvent
this is to use only the strong magnetic moments as independent
variables, but with their pair exchange parameters renormal-
ized by the exchange among the weakly magnetic atoms and
by the enhanced susceptibility. Such an approach was, for
example, used by Mryasov et al.54,55 to model the temperature
dependence of the magnetic anisotropy in FePt. Sandratskii
et al.56 also find improvement in the theoretical results if the
weak moments are not treated as independent, rigid Heisenberg
spins, but rather fully adjust to the magnetization of the strong-
moment sublattice. There is, however, the point of view of
treating the weak moments not as fully enslaved to their strong-
moment environment, but as independent degrees of freedom
whose fluctuation can affect the thermodynamics. This point
of view has been pushed for example in order to understand the
antiferromagnetic-to-ferromagnetic transition of FeRh.57,58

In this section we develop a method of treating such
systems, emphasizing the choice of the energetically relevant
magnetic degrees of freedom at temperatures up to the critical
temperature, as well as the practical implementation of these
degrees of freedom to models that can be solved via Monte
Carlo simulations. The additional challenge, compared to the
theory developed in the previous sections, stems from two
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facts. First, a treatment of the weak moments as independent
degrees of freedom must include the energy scale of the
moments magnitude as well as their direction. Second, if the
interactions of the strong moments are calculated as described
earlier, by considering noncollinear magnetic configurations,
then the calculated energies include a spurious contribution
because the magnitude of the weak moments changes during
the application of the noncollinear constraint. This spurious
contribution must be accounted for. However, at the end we
see that, in certain commonly occurring situations, the degrees
of freedom of the weak-moment atoms can be eliminated in
the statistical-mechanical calculations by using renormalized
exchange parameters, while the statistical averages of the
weak moments follow directly from the averages of the strong
moments. We show that this is an exact result if the weak
degrees of freedom give only quadratic contributions to the
energy. Here we make a step-by-step approach for the special
case where the weak moments do not interact with each other,
while we present the more general case when they interact in
the Appendix.

A. General approach

The magnetically strong atoms are the main carriers
of spin moment that also acts as an effective field Heff

polarizing the magnetically weak atoms. The polarization of
the latter is strengthened by an enhanced local susceptibility,
which (neglecting complications from the band structure) is
χ = χPauli/(1 − IχPauli) (with χPauli the Pauli paramagnetic
susceptibility and I the exchange integral). Let us denote by M
the rigid-magnitude local moment of the magnetically strong
atoms and by μ the supple local moment of the magnetically
weak atoms. A simple expression that parametrizes the energy
in terms of the local moment μ and the polarizing field Heff is

Eloc[Heff,μ] = −Heff · μ + aμ2 + bμ4. (14)

It is implied that Heff = κ
∑

n∈neighb Mn + Hext, where Mn

is the summed moment of the neighboring atoms inducing
a polarization, κ is a phenomenological parameter which
encapsulates all microscopic processes (in particular electron
hoppings) that couple μ to Mn, while Hext is an external
magnetic field that we henceforth set to zero.59 In the absence
of a field Heff Eq. (14) contains only even powers of μ, because
symmetry requires Eloc[0,μ] = Eloc[0, − μ].

In Eq. (14) we always must have b � 0. The case of
spontaneous polarization is described by a < 0 and b > 0,
while the case of induced magnetic moments is described by
a > 0. In this case, the on-site susceptibility is

χ = ∂μ/∂H eff|H eff=0 = 1/(2a). (15)

Thus the enhancement of the susceptibility is contained in the
parameter a.

Equation (14), if the fourth-order term is negligible, can be
written as

Eloc[Heff,μ] = a

(
μ − 1

2a
Heff

)2

− 1

4a
(H eff)2, if b = 0.

(16)

To elaborate on these ideas we use NiMnSb as a concrete
example. In this case the Mn subsystem is magnetically strong
and the Ni subsystem magnetically weak. We have also found

that in this case it is a good approximation to set b = 0 (as
we show below), which we adopt. Combining Eq. (14) at
b = 0 with the Heisenberg-model energy expression for the
Mn subsystem results in the extended model Hamiltonian

H({M i ; μl}) = −1

2

∑
ij∈Mn

J b
ij M i · Mj

+
∑
l∈Ni

[
aμ2

l − κμl ·
∑
n(l)

Mn

]
, (17)

where
∑

n(l) Mn is the sum of the moments of the Mn nearest
neighbors of the lth Ni atom, n(l), and M i and μl refer to
the Mn and Ni moment, respectively. The superscript “b”in
the Mn-Mn exchange interaction is placed in anticipation that
it does not coincide with the quantity calculated within the
method presented in Sec. II, but with a “bare” quantity, as will
be discussed below. It has been also assumed that the Ni-Ni
interaction can be neglected, as there are no Ni-Ni nearest
neighbor pairs, while from the calculations it becomes evident
that more distant Ni-Ni interactions are negligible (the case
where the interactions among the weak-sublattice moments
are non-negligible is discussed in the Appendix). The above
equation can be rewritten in a somewhat more convenient form,
if we define (with an obvious notation)

J b
Mn-Ni =

{
κ, nearest neighbors Mn-Ni,

0, otherwise,
(18)

JNi−Ni = 0. (19)

Then Eq. (17) takes the form

H = −1

2

[ ∑
ij∈Mn

J b
ij M i · Mj +

∑
i∈Mn,l∈Ni

J b
il M i · μl

+
∑

j∈Mn,l∈Ni

J b
ljμl · Mj

]
+
∑
l∈Ni

aμ2
l . (20)

This form is appealing, as it contains a Heisenberg-like
expression among all magnetic atoms plus a local correction
term that accounts for the longitudinal degree of freedom of
the Ni moments. However, it is important to remember that the
Ni moments included in the scalar products of the right-hand
side (RHS) can change in size as well as angle, deviating from
the traditional Heisenberg model.

We can derive the parameters κ and a from DFT calcula-
tions as follows. From Eq. (16) it follows that the equilibrium
value of the Ni moment at T = 0 and for zero external field is
linearly dependent to the polarizing neigboring Mn moments:

μeq = κ

2a
NcM, (21)

where Nc = 4 is the coordination number of a Ni atom with
respect to Mn neighbors. From this expression one can deduce
the ratio κ/a once M and μeq have been calculated in the
ferromagnetic state by an ab initio method. On the other
hand, a can be determined by introducing into the DFT
calculation a constraint on the Ni moment, either in the form of
a longitudinal magnetic field constraining the magnitude or in
the form of a transverse magnetic field constraining the angle θ

of μ with respect to the moment directions at the Mn neighbors,
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FIG. 6. (Color online) Top: dependence of the total energy on the
Ni moment in NiMnSb under the constraint of an external field acting
on the Ni atoms. Circles: calculated data (within DFT). Dashed curve:
parabolic fit to Eq. (16) with a = 53 mRyd/μ2

B. Bottom: dependence
of the Ni moment and the total energy on the constraining angle
θ tilting the Ni moment away from the Mn moment in NiMnSb.
Blue squares: μeq(θ ) (scale displayed on the left-side ordinate).
Red circles: EDFT(θ ) − EDFT(0) (scale displayed on the right-side
ordinate). The broken lines correspond to fits to Eqs. (22) and
(23). In the energy fit, the last part of Eq. (23) was used with the
prefactor a = 55.3 mRyd/μ2

B fitted to the low-angle contributions
(θ = 15◦ and 30◦).

but allowing the magnitude to relax to μeq(θ ). The former
method results in a parabolic (for b = 0) moment dependence
of the total energy, as suggested by Eqs. (14) and (16). The
latter method results in the following dependence, as can be
easily found by an energy minimization of Eq. (16) at a given θ :

μeq(θ ) = μeq(0) cos θ, (22)

Eloc(θ ) − Eloc(0) = a[μeq(θ ) − μeq(0)]2,

= aμeq(0)2 sin2 θ. (23)

If the extended Heisenberg model provides a good
approximation to the energetics of the system, then
Eqs. (16) and (23) should both yield a good approximation
to the calculated DFT energy difference, when a constraint
is applied on the Ni moment, and the extracted parameter a

for the two cases should be approximately the same. We find
that this is the case in NiMnSb (see Fig. 6).60 This allows us
to extract the value of a from the DFT calculation and from
this the value of κ (equivalent to J b

Mn-Ni) via Eq. (21). Thus
the ingredients of formula (20) are accessible.

There remains, however, a correction to be made,
connected to a “renormalization”of the Mn-Mn exchange
constants which have been calculated within the spin-spiral
method described in Sec. II. To clarify the problem we
remind the reader that, when calculating spin spirals, one
normally constrains the direction of the moments but not
their magnitude. For the Ni atoms, where the rigid-moment
approximation is not valid, the magnitude μ is reduced by the
spin-spiral formation due to the canting of the neighboring
Mn moments in different directions. This effect provides
an additional, indirect energy contribution to the spin spiral
and to the Mn-Mn interaction, compared to the case that
the Ni-moments magnitude would have been kept constant.
It is the spurious contribution that we mentioned in the
introduction to Sec. IV. Let us call this contribution JMn-Ni-Mn.
The calculated Mn-Mn interaction consists thus of two parts:

JMn-Mn = J b
Mn-Mn + JMn-Ni-Mn, (24)

with J b
Mn-Mn the sought-after bare interaction entering Eqs. (18)

and (20), while JMn-Mn is a renormalized interaction that is
probed by the spin-spiral DFT calculation. For more distant Mn
atoms, which have no common Ni neighbor, J b

Mn-Mn coincides
with JMn-Mn.

For the derivation of an expression, e.g., in the case
of NiMnSb, giving JMn-Ni-Mn, consider Nc(=4) Mn atoms
as nearest neighbors of a Ni atom. Then the local-energy
expression (16) becomes

Eloc = −κ

Nc∑
n=1

Mn · μ + aμ2

= −1

2

Nc∑
n,n′=1

κ2

2a
Mn · Mn′ − κ2

4a
NcM

2. (25)

Here, n and n′ run through the Mn moments. The second step
follows under the condition that, in the DFT calculation, the
Ni moment relaxes to the particular equilibrium value that is
dictated by the neighboring Mn-moment directions, i.e., μ =
κ
2a

∑
n Mn. From Eq. (25) we obtain the indirect interaction:

JMn-Ni-Mn = − δ2Eloc

δMnδMn′
= κ2

2a
. (26)

At this point it is important to note that, whether one chooses
to work with JMn-Mn or J b

Mn-Mn, depends on the choice of the
degrees of freedom. If only the Mn moments are chosen as
degrees of freedom, then JMn-Mn has to be used. If, however,
the Ni moments are also chosen as independent degrees of
freedom, then J b

Mn-Mn has to be used together with J b
Mn-Ni = κ .

In the latter case, according to the prescription leading to
Eqs. (18) and (26), we arrive at the extended Heisenberg
Hamiltonian (20) with the appropriate bare parameters in the
nearest-neighbor coupling.

B. Analytical elimination of weak degrees of freedom at T > 0

In the previous subsection we discussed the bare and renor-
malized parameters of the model arising from total-energy
calculations of the constrained ground state. In this section
we examine the case of thermodynamic quantities at T > 0,
where it is not a priori obvious that the same renormalization
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is still valid if the weak moments are allowed to fluctuate.
We find that, in the absence of fourth order terms in Eloc

[b = 0 in Eq. (14)], also at T > 0 the weak moments can be
eliminated in favor of the same renormalized parameters as the
ones appearing at T = 0. Our conclusion is based on an exact
analytical integration of the weak-moment part of the partition
function in the case b = 0.

First we observe that the energy functional (16) under the
action of Heff has the same quadratic form as the one with
Heff = 0, only with the minimum shifted to μeq = Heff/(2a).
This simplifies the integration of the partition function. To see
this, we first transform the Hamiltonian (17) in such a way that
the renormalized interactions Jij appear explicitly. We start by
rewriting Eq. (17) as

H({M i ; μl}) = −1

2

∑
ij

J b
ij M i · Mj

+ a
∑

l

⎛
⎝μl − κ

2a

∑
n(l)

Mn

⎞
⎠

2

− κ2

4a

∑
l

⎛
⎝∑

n(l)

Mn

⎞
⎠

2

. (27)

The indices i,j run over the Mn atoms, the index l over the
Ni atoms, and n(l) over the Mn neighbours of the lth Ni atom.
The last term is now split in an interatomic contribution and
an on-site contribution:

− κ2

4a

∑
l

⎛
⎝∑

n(l)

Mn

⎞
⎠

2

= −1

2

∑
l

∑
n(l),n′(l)
n �= n′

κ2

2a
Mn · Mn′ +

∑
l

∑
n(l)

κ2

2a
M2

n

= −1

2

∑
ij ;i �=j

κ2

2a
c(i,j )M i · Mj +

∑
l

∑
n(l)

κ2

2a
M2

n. (28)

In the last step we have converted the sum
∑

l

∑
n (l),n′(l)n�=n′

to a sum over i,j , by introducing a combinatorial factor c(i,j )
that counts how many common Ni neighbors the ith and j th
Mn atoms have. From the structure of NiMnSb it follows
that c(i,j ) = 1, if i,j are nearest neighbors in the Mn fcc
sublattice (i.e., if the distance between i and j is alat/

√
2) and

c(i,j ) = 0 otherwise. Actually, we have recovered the quantity
JMn-Ni-Mn = κ2/(2a) of Eqs. (25) and (26). Finally, the last term
of Eq. (28) is just a constant which can be omitted. Using the
definition (24) and Eq. (26), we combine the first term of the
RHS of Eq. (27) with the first term of the RHS of Eq. (28) to
obtain the renormalized Jij . Then the Hamiltonian to be used
in the partition function takes the following form:

H({M i ; μl})

= −1

2

∑
ij

Jij M i · Mj + a
∑

l

⎛
⎝μl − κ

2a

∑
n(l)

Mn

⎞
⎠

2

= Hr + a
∑

l

⎛
⎝μl − κ

2a

∑
n(l)

Mn

⎞
⎠

2

, (29)

where the Heisenberg Hamiltonian involving only the
Mn sublattice with the renormalized interactions, Hr =
− 1

2

∑
ij Jij M i · Mj , has been introduced for convenience

as part of the full Hamiltonian. Note that there is no
renormalization for the Ni-Mn interactions: either they should
be completely omitted within Hr that includes only the Mn
moments, or they should be given by Eq. (18) in the generalized
model. The spin-spiral result for JMn-Ni does not enter in our
theory.

The partition function is

Z =
∫

d�1 · · · d�N

∫
d3μ1 · · · d3μN exp

{
−H({M i ; μl})

kBT

}
(30)

=
∫

d�1 · · · d�N exp

{
− Hr

kBT

}∫
d3μ1 · · · d3μN

× exp

{
−a

∑
l

(
μl − κ

2a

∑
n(l) Mn

)2
kBT

}
(31)

=
∫

d�1 · · · d�N exp

{
− Hr

kBT

}(
πkBT

a

) 3N
2

(32)

= Zr

(
πkBT

a

) 3N
2

, (33)

where
∫

d�1 · · · d�N denotes an integration over the Mn-
moment solid angles. The integration over the Ni moments∫

d3μ1 · · · d3μN contains only the exponential of a complete
square and has been analytically integrated to (πkBT /a)3N/2,
i.e., it corresponds to the partition function of 3N uncoupled
harmonic degrees of freedom and is independent of the
value of Mn. Zr is the partition function corresponding
to the Hamiltonian Hr . The magnetization 〈M〉 of the Mn
sublattice also turns out to depend only on the renormalized
partition function (and Hamiltonian). The same is true for
any moment-moment correlation function of the Mn sub-
lattice, 〈(M1x)m1x (M1y)m1y · · · (MNz)mNz〉, α ∈ (x,y,z), where
the mnα � 0 are integer exponents defining the order of the
correlation function. To see this we consider explicitly

〈(M1x)m1x (M1y)m1y · · · (MNz)
mNz〉

= 1

Z

∫
d�1 · · · d�N (M1x)m1x · · · (MNz)

mNz exp{−Hr/kBT }

×
∫

d3μ1 · · · d3μN exp

{
−a

∑
l

(
μl − κ

2a

∑
n(l) Mn

)2
kBT

}
(34)

= 1

Zr

∫
d�1 · · · d�N (M1x)m1x · · · (MNz)

mNz

× exp{−Hr/kBT }, (35)

where the Hamiltonian in the exponential has again been
split in two terms according to Eq. (29) and the integration
over d3μ1 · · · d3μN has again been carried out analytically,
canceling out the factor (πkBT /a)3N/2 in the full partition
function. But expression (35) is just the expression for
the correlation function of only the Mn sublattice with the
renormalized Heisenberg interactions. Thus we see that, as far
as the Mn-sublattice magnetization is concerned, one can use
the exchange interactions calculated by the spin-spiral method
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that are renormalized by construction, while neglecting the Ni
moments and the Mn-Ni interaction. If the Ni moments are
to be included, then the bare interactions have to be used in
an extended model, however, the Mn-sublattice properties in
the two cases will be the same. Note, finally, that this exact
result is based on the fact that the exponent in the integration
over d3μ1 · · · d3μN contains a complete square, i.e., that the
“harmonic” approximation, b = 0, is valid; if b �= 0 and one
proceeds to an elimination of the weak degrees of freedom,
then the resulting renormalized strong-moment Hamiltonian
can have higher-order terms (biquadratic, four-spin, etc.) with
temperature-dependent parameters.

A semianalytical result follows in an analogous way also
for the average Ni moment and fluctuation amplitude per atom:

〈μ〉 = κ

2a
Nc 〈M〉, (36)

〈μ2〉 := 1

N

〈[
N∑

l=1

μl

]〉2

(37)

= 1

a

3

2
kBT +

(
κ

2a
Nc

)2 1

N

〈[
N∑

i=1

M i

]2〉

= 1

a

3

2
kBT +

(
κ

2a
Nc

)2

〈M2〉. (38)

That is, there is a “harmonic”part and a part induced by the fluc-
tuation of the Mn sublattice. The former is independent of the

number of atoms, while the latter, 〈M2〉 := 〈[∑N
i=1 M i]2〉/N ,

increases proportionally to the number of magnetic atoms in
the system for T < TC, as in normal Heisenberg systems.61

The longitudinal susceptibility χNi of the Ni sublattice can be
found in a completely analogous way:

kBT χNi = 〈
μ2

z

〉− 〈μz〉2

= 1

a

kBT

2
+
(

κ

2a
Nc

)2(〈
M2

z

〉− 〈Mz〉2
)

(39)

= kBT

[
1

2a
+
(

κ

2a
Nc

)2

χMn

]
, (40)

i.e., there is again a harmonic part and a part proportional to
the Mn sublattice susceptibility. [In Eq. (39), z is implied to
be the direction of magnetization.]

According to these results, as long as the approximation
b = 0 holds, one can deduce the thermodynamic properties
of the weak sublattice by merely a calculation on the strong
sublattice, avoiding the extra numerical cost that a full
Monte Carlo simulation entails. Actually this procedure can
be carried out for higher-order correlation functions of the
Ni moments, 〈(μ1x)m1x (μ1y)m1y · · · (μNz)mNz〉 (α ∈ (x,y,z)),
where once again the mlα � 0 are integer exponents defining
the order of the correlation function. In the resulting formula
the integration over d3μl can be carried out analytically,
yielding a sum of correlation functions of the M i of the
following form:

〈
μ

m1x

1x · · · μmNz

Nz

〉 = 1

Z

∫
d�1 · · · d�Ne

− Hr
kB T

∫
d3μ1 · · · d3μN (μ1x)m1x · · · (μNz)

mNz exp

{
−a

∑
l

(
μl − κ

2a

∑
n(l) Mn

)2
kBT

}

= 1

Zr

∫
d�1 · · · d�Ne

− Hr
kB T

N∏
l=1

∏
a∈xyz

mlα∑
p = 0
p even

(
mlα

p

)
(p − 1)!!

(
kBT

2a

)p/2(
κ

2a

∑
n(l)

Mnα

)ml (α)−p

, (41)

where a change of variables μlα → μlα + κ
2a

∑
n(l) Mnα

has been performed, the binomial expansion of (μlα +
κ
2a

∑
n(l) Mnα)mlα has been used and we have taken into account

that integrals of the type
∫∞
−∞ xpe−ax2 = √π

a
(p − 1)!!/(2a)p/2

for even p and vanish for odd p [for the p = 0 term we accept
the convention (−1)!! = 1]. Due to the presence of products of
Mnα in Eq. (41) it is clear that this expression reduces to a sum
of correlation functions of the M i within the Hamiltonian Hr .
The summations in this expression are too involved to arrive
at a general closed form; however, Eqs. (36), (38), and (40) are
special cases of application of this formula. Obviously, mixed
correlation functions between strong and weak moments can
also be reduced to strong-moment correlation functions of
the renormalized Hamiltonian by first eliminating the weak
moments following the same prescription.

We should stress that choosing to eliminate the weak
moments in favor of renormalized interactions does not mean
that the weak moments are physically less valid as degrees
of freedom; to do so is merely a matter of mathematical or
computational convenience, especially since efficient methods

exist for the calculation of thermodynamic quantities within
the classical Heisenberg model.

C. Calculations in NiMnSb

We exemplify the above results with calculations in
NiMnSb. First we establish which interactions can be ne-
glected. To this end we performed calculations of the exchange
coupling parameters by the spin-spiral method. As it turns
out, the Ni-Ni interactions are negligible. About the Mn-Mn
interactions, Fig. 3(b) suggests that it should be enough to
include up to second neigbors, but this is misleading; we find
by Monte Carlo calculations a second neighbor approximation
leads to an overestimation of approximately 100 K in TC

compared to the value including also more distant neighbors;
therefore, we include Mn-Mn interactions up to a distance
of three lattice parameters. Among the Mn-Ni interactions
[Fig. 3(b)] only the nearest-neighbor coupling has some
small influence, changing TC by a modest 20 K. Given the
conclusions of the previous subsection, the Mn-Ni interaction
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should be excluded for an estimation of TC, since the Mn-Mn
interactions are already renormalized (in the corresponding
spin-spiral calculations the magnitude of the Ni moment was
allowed to relax). The Mn-Ni interaction must be included
if one wishes to extract information on the behavior of the
Ni magnetization; then, however, the interaction type and
strength has to be corrected, since the Ni atoms belong to
a soft-magnetic sublattice.

After deriving the exchange parameters Jij by the spin-
spiral method, utilizing the force theorem which according
to Fig. 2(a) is accurate enough for this purpose, we per-
formed constrained-angle calculations for the Ni moments
with full self-consistency. From the total-energy results shown
in Fig. 6, together with Eq. (23), we deduce a value of
a = 55.3 mRyd/μ2

B. Given this, together with the ground-
state magnetic moments of Mn M = 3.71 μB and of Ni
μeq = 0.26 μB, Eqs. (18) and (21) yield a value of J b

Mn-Ni ≡
κ = 1.94 mRyd/μ2

B. This bare value J b
Mn-Ni is significantly

different than the value of 0.92 mRyd/μ2
B for the Mn-Ni

interaction, which was derived from the spin-spiral calculation
[Fig. 3(b)]. Finally, from Eqs. (24) and (26) we can extract
the bare value of the nearest-neighbor Mn-Mn interaction:
J b

Mn-Mn = 0.066 mRyd/μ2
B, which shows a reduction of about

1/3 compared to the corresponding renormalized value. Note
that the equilibrium moments have to be multiplied to these
values if comparison is to be made with the energies shown
in Fig. 3(b). Then one obtains J b

Mn-MnM
2 = 0.91 mRyd and

J b
Mn-NiMμeq = 1.87 mRyd; i.e., the Mn-Mn bare interaction

is weaker than the Mn-Ni, which is not surprising, since the Ni
polarization stems from a direct, nearest-neighbor exchange
interaction with Mn.

Next we present a series of Monte Carlo–simulation results,
examining the effect and importance of the bare interactions.
We performed simulations in the framework of the traditional
model (only transverse fluctuations allowed) as well as the
extended model (longitudinal fluctuations also allowed), with
the renormalized and bare parameters. Putting it all together,
we must substitute the above-found parameters J b

Mn-Mn, J b
Mn-Ni,

and a, into the extended Hamiltonian (20), which is to be
treated with a Monte Carlo method where the (weak) Ni
moments μl should be allowed to vary in length and direction
while the (strong) Mn moments should be allowed to vary in
direction only. In this particular example, a distinction between
bare and renormalized interactions was made only for the
nearest-neighbor Mn-Mn and Mn-Ni coupling. The longer-
range Mn-Ni coupling was assumed to vanish; thus there can
be no renormalization in the longer-range Mn-Mn coupling
[as the distant Mn atoms have no common Ni neighbor,
i.e., JMn-Ni-Mn = 0 for distant atoms in Eq. (24)]. The Ni-Ni
coupling was also assumed to vanish. The results are to be com-
pared with calculations employing the traditional Hamiltonian

H({M i}) = −1

2

∑
ij∈Mn

Jij M i · Mj (42)

containing only the Mn moments that vary in direction,
where now Jij are the Mn-Mn renormalized parameters, i.e.,
obtained from the spin-spiral method presented in Sec. II
and shown (multiplied by the moments) in Fig. 3(b). In both
cases the Mn-Mn interaction was included up to a distance
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FIG. 7. (Color online) Top: Monte Carlo results on the mag-
netization of NiMnSb under various assumptions on the model
and the interactions. (a)–(c) Only transverse fluctuations are taken.
(a) Interactions as derived by force-theorem, spin-spiral calculations,
including Mn-Mn and Mn-Ni. (b) Same as (a), but with bare Mn-Ni
interactions J b

Mn-Ni [Eq. (17)]. (c) Same as (b), but additionally with
bare Mn-Mn interactions J b

Mn-Mn [given by Eqs. (24) and (26)].
(d), (e) Also longitudinal fluctuations of the Ni moment are allowed.
(d) Bare Mn-Ni interactions. (e) Bare Mn-Ni and Mn-Mn interactions.
Evidently, taking the Mn-Ni bare interaction alone leads to an overes-
timation of the excitation energies and TC, which is corrected when the
bare Mn-Mn interaction is also taken. Bottom: magnetization curve
and susceptibility of the Mn sublattice in NiMnSb calculated within
different models. Squares (magnetization) and circles (susceptibility):
only transverse fluctuations with renormalized Mn-Mn interactions,
neglecting completely the Ni moments. Full line: transverse and
longitudinal fluctuations are allowed for the Ni atoms, only transverse
for Mn, with bare Mn-Mn and Mn-Ni parameters; only the Mn
sublattice magnetization and susceptibility is shown [i.e., corre-
sponding to the Mn part of curve (e) in the top panel]. Note on
the susceptibility units that 1 μ2

B/mRyd = 4.254 × 10−3 μB/T. The
temperature dependence of the magnetization and susceptibility is
identical in the two cases for reasons that are explained in the text.

of three lattice parameters. The first set of results is contained
in Fig. 7, where magnetization curves are shown, calculated
within different assumptions. Here we omit showing the
susceptibility, but the Curie temperature can be recognized by
the characteristic inflection point of the magnetization curve.
The central results are included in curves (a) and (e) of the
top panel, as well as in the bottom panel, while curves (b), (c),
and (d) merely show that neglecting some of the degrees of
freedom or some of the bare constants leads to almost arbitrary
results. In the simulations including longitudinal moment
fluctuations, more Monte Carlo steps were necessary, typically
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by an order of magnitude, in order to arrive at the same quality
as in the simulations including only transverse fluctuations.

Curve (a) shows the result of the traditional model with
spin-spiral-derived (i.e., renormalized) Mn-Mn exchange pa-
rameters, including spin-spiral-derived Mn-Ni interactions.
This results in TC = 870 K. Curve (b) includes the bare Mn-Ni
parameters, but stays within the traditional model. TC increases
by a modest amount of 60 K, since the bare Mn-Ni param-
eters are stronger than the spin-spiral-calculated ones. Curve
(c) also stays within the traditional model, but includes the bare
Mn-Mn interaction, which is weaker by a factor 1/3 compared
to the renormalized value; TC drops significantly to 730 K. This
coincides with the experimental value, but the coincidence is
probably fortuitous: the longitudinal fluctuations at Ni, that
are essential to the derivation of the bare parameters, are yet
unaccounted for in the simulation (see, however, the discussion
on the phase space measure in Sec. V). Next comes curve
(d), where the longitudinal fluctuations are allowed for in the
simulation, but taking the bare Mn-Ni and the renormalized
Mn-Mn exchange. The increase in TC (1090 K) with respect to
curve (b) (same parameters but rigid Ni moment) is striking.
The difference stems from the fact that the Ni local moment
becomes larger at high temperatures (see discussion on Fig. 8
below), thus the ferromagnetic contribution JMn-Ni M · μ to the
Hamiltonian is effectively strengthened. Finally, if we account
also for the (weaker) bare Mn-Mn coupling in the extended
model, we obtain curve (e), which is very close to the original
curve (a), also with a very similar TC = 850 K. This value,
however, is the same that one obtains if the traditional model
is used, but with the Ni moments completely neglected. In fact,
the corresponding magnetization curve falls exactly on top of
the Mn contribution to curve (e), and the same is true for the
Mn-sublattice susceptibility. This striking agreement is also
demonstrated in the bottom panel of Fig. 7, and is expected on
the basis of Eq. (35) and the discussion thereafter.

Let us consider now the contrast between the traditional
model with spin-spiral calculated interactions and the extended
model with bare interactions. Monte Carlo results on these
are shown in Figs. 8(a) and 8(b), representing the traditional
and extended model, respectively. The main difference lies
in the behavior of the Ni-sublattice magnetization 〈μz〉 and
susceptibility χNi. For better comparison we have scaled
up these quantities. In Fig. 8(a) we see that the traditional
model results in a Ni magnetization that drops rather fast
with temperature, much faster than the Mn magnetization.
This is due to the relatively weak coupling between the
Mn and Ni sublattices. Although the difference in energy
scale is not directly obvious from Fig. 3, recall that a Mn
atom is surrounded by four only Ni atoms but by 12 Mn
atoms at distance alat/

√
2 and six Mn atoms at distance alat,

where the exchange coupling is still appreciable. The Ni
susceptibility, χNi, shows a large plateau below TC and follows
the critical peak of Mn at TC rather weakly. The behavior of
the Mn magnetization and susceptibility, on the other hand, is
characteristic of a ferromagnetic phase transition.

In Fig. 8(b) we see results within the extended model.
Here, the Ni magnetization follows the behavior of Mn. The
susceptibility χNi starts off at a finite value at T = 0, which
coincides with the value given by Eq. (15), in contrast to the
vanishing susceptibility at T = 0 for rigid-moment systems.
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FIG. 8. (Color online) Magnetization curves and sublattice sus-
ceptibility in the traditional and extended model. The notation
is as follows: 〈M〉 and 〈μ〉 stand for the temperature-dependent
magnetization of the Mn and Ni sublattices, respectively, 〈|μ|〉 stands
for the thermal average of the absolute value of the Ni local moment,
χMn,Ni for the sublattice susceptibilities of Mn and Ni, and M0

Mn,Ni for
the ground-state local moments. (a) Traditional model (only trans-
verse fluctuations of the moment) with the interactions derived by
force-theorem from spin-spiral calculations. The Mn magnetization
shows a typical ferromagnetic behavior with a susceptibility peak
at TC. On the other hand, the Ni magnetization drops rather fast,
with an atypical susceptibility showing a plateau over a wide region.
(b) Extended model (longitudinal fluctuations of the Ni moment
are allowed) with bare Mn-Ni and Mn-Mn interactions. The Mn
magnetization hardly changes compared to (a), and the TC is very
similar, but the behavior of the Ni magnetization and susceptibility
are completely different, following the critical behavior of the Mn
sublattice. At T = 0, the Ni susceptibility does not vanish, behaving
as it is expected for a system with nonrigid moments, reaching
the value χ = 1/(2a) = 0.009 μ2

B/mRyd at T = 0. The average
of the magnitude of the local Ni moment increases with temperature.
The Monte Carlo simulations included 2048 unit cells (4096 atoms).
The Ni-related quantities have been scaled up by the annotated factors
in order to demonstrate the agreement with Eqs. (36) and (40): 〈μ〉 and
〈|μ|〉 by a factor M0

Mn/M
0
Ni = 14.2 and χNi by (M0

Mn/M
0
Ni)

2 = 201.
In particular, the blue squares show the validity of Eq. (40), i.e., the
derivation of the Ni from the Mn susceptibility. The latter coincides
with the χMn of the traditional renormalized model, as is demonstrated
in Fig. 7 (bottom panel).

At TC the Ni susceptibility shows a peak following the critical
behavior. The Ni magnetization and susceptibility have been
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scaled up by appropriate factors to show that Eqs. (36) and (40)
are reproduced by the Monte Carlo simulation. A technical
point to be mentioned for accuracy is that, in calculating 〈μz〉
and 〈μ2

z〉 in the simulation, one should take the projection
of
∑

l μl in the direction of the total moment at each Monte
Carlo step, instead of making the approximation to calculate
the average and variance of |∑l μl|.

It is also interesting to see that the average magnitude of
the local Ni moment (dotted line) increases monotonically
with temperature. This effect, pointed out by Sandratskii62

in an analytical low-temperature approximation for NiMnSb,
is connected to the fact that even above TC there is some
short-range order in the system, so that the equilibrium value
of 〈μ〉 = κ

2a
Nc〈M〉 is nonvanishing. On top of this, the fluc-

tuations of μ shift the value of 〈|μ|〉 = 〈(μ2
x + μ2

y + μ2
z)1/2〉

to higher values. The increase is expected to cease when μ

reaches such high values that the approximation b = 0 is no
longer valid (so that the fluctuations are moderated by the
fourth-order term); this correction does not apply for NiMnSb,
however, at least at temperatures as high as TC, since the
constrained-DFT calculation shown in Fig. 6 (top panel) yields
a quadratic energy dependence at values of μ comparable to
the ones close to TC in Fig. 8(b).

Experimentally, the temperature dependent magnetization
of NiMnSb follows Bloch’s T 3/2 law up to about 70–
100 K,63,64 which cannot be reproduced within classical
Heisenberg models. Element (or sublattice) specific experi-
ments were done using neutron scattering65 and x-ray magnetic
circular dichroism (XMCD).66 Neutron scattering65 at 15 K
and 260 K shows a thermally stable Ni moment (0.18 μB), but
a decreasing Mn moment (dropping from 3.79 μB at 15 K to
3.55 μB at 260 K). Contrary to this, according to the XMCD
results of Ref. 66 both the Ni and Mn moments drop rapidly at
80 K to half their ground-state values, and then level off up to
at least 250 K. Such behavior would be counterintuitive; the
authors in Ref. 66 write that surface effects possibly complicate
the interpretation of MCD data.

V. FINAL REMARKS

A. Remarks on the treatment of the weak moments
and on the concept of renormalization

Recently, Wysocki, Glasbrenner, and Belashchenko67

(WGB) presented a study of a classical spin-fluctuation model.
Their model Hamiltonian is similar to the one that we use
here, with the difference that in the WGB paper all atoms
can change the magnitude of their moments, the fourth-order
term is not neglected, and in practice only one atomic species
is considered in their calculations. WGB point out that the
magnetic moments are not canonical variables; therefore, there
is no obvious way to choose the phase space measure, which
should therefore be given as part of the model together with the
Hamiltonian. In the present work we have chosen what they
call uniform phase space measure, which basically amounts
to dividing the μ space in equal-volume infinitesimal cells
with equal integration weight, and which is the most common
choice in the literature.68,69 It also amounts to taking a simple
d3μ integration with no further weight in Eqs. (30), (34), and
(41). Different choices of measure can lead to qualitatively

different results, e.g., a fast drop of magnetization in the weakly
magnetic sublattice, as also shown by Sandratskii,62 or even
a first-order transition, as WGB find.67 The correct measure
can only be certified by the best classical approximation to the
full quantum-mechanical solution, which, however, remains
an open problem. However, if it is assumed that the correct
measure is not uniform but, e.g., proportional to μ−2 (this
was one alternative choise by WGB), then the weak-sublattice
magnetization will drop fast at low temperatures, so that close
to TC only the bare parameters of the strong sublattice would
be relevant.

Mryasov et al.54 have discussed the idea of renormalized
interactions in the case of FePt alloys. Related is also the
work by Polesya et al.21 who adopt a model for FePd and
CoPt alloys. In these works, the weak moments of Pd or Pt
are determined from the strong moments of their neighbors
via the susceptibility. However, even at higher temperatures
the weak moments are not treated as independent variables
that can fluctuate (either in direction or in length) but rather
as enslaved quantities to their immediate neighborhood, i.e.,
their role in the thermodynamics is only to mediate an
additional interaction between the strong moments. Our idea
of renormalization has an analogous starting point but goes
along a different path, since we consider the weak moments in
the spin Hamiltonian as independent fluctuating variables. In
addition, the main novelty of the present study in this respect
is the formal and numerical proof of the equivalence of two
approaches: all thermodynamic quantities can be derived by
using either the extended model with bare interactions or the
traditional model with renormalized interactions. Furthermore,
it is shown in the present study that the renormalized
interactions are actually the ones that are harvested by the
spin-spiral approach within density-functional calculations
with no further manipulations; however, manipulations are
necessary if one wishes to extract the bare parameters. The
present result holds under the assumption of a uniform phase
space measure and of a quadratic on-site energy. The latter
seems to hold true, e.g., for NiMnSb and for FePt,54,55,62 but
not, for example, in the case of FeRh,55,58 where higher-order
corrections are necessary. In the case that either of these
two requirements is not met, most probably a hypothesis of
temperature-independent renormalized interactions cannot be
justified on the grounds of fluctuating weak moments, but
should instead be conjectured as an ad hoc hypothesis within
the model.

Bruno70 also introduces a concept of renormalized ex-
change parameters. However, his approach encapsulates dif-
ferent physics than our present approach. Bruno’s renormal-
ization corrects for a systematic error, mainly due to the
difference of the constraining-field direction to the resulting
moment direction when the force theorem is applied. Our
renormalization, on the other hand, concerns the error due to
the reduction of the weak-moment magnitude when the strong
moments are tilted.

Yet another concept of renormalization is described by
Lounis and Dederichs.71 Using a multiple-scattering approach,
they consider the energy expansion as a function of the angles
between moments. As they find, at high angles corrections
are necessary to the phenomenological Hamiltonian (e.g.,
biquadratic or four-spin terms). However, at low angles these
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corrections can be partly included in the Heisenberg model
via a renormalization of the exchange parameters, recovering
correct energy scales and Curie temperatures.

B. Remarks on the prediction of the Curie temperature

The Curie temperatures calculated within the mainstream
approach to the adiabatic spin-dynamics are in many cases
in agreement with experiment to within 10%–15%, but with
no obvious systematics toward over- or underestimation. The
main source of error is not clear. Considering the most serious
approximations made, error can stem from the following.

(i) The use of local density functional theory (LDA or GGA)
for total energy calculations without further corrections for
electron exchange and correlation.

(ii) The use of the adiabatic approximation.
(iii) The assumption of a classical, rather than quantum,

Heisenberg model.
(iv) The assumption that the exchange constants do not

change as a function of temperature.
(v) The assumption of rigid spins of the strong moments in

the Heisenberg model.
In general, these factors have possibly different weight for

different materials. Concerning point (i), theories that provide
a better treatment of correlations exist, e.g., the LSDA + U

or LSDA combined with dynamical mean field theory at zero
or finite temperatures. Also within such theories exchange
parameters can be derived (see, e.g., Ref. 18). However,
parameters are required (as is the Coulomb repulsion U ), and
it is usually not obvious how to determine these uniquely.

As for point (ii), there are promising developments in the
calculation of magnon spectra (including magnon lifetime ef-
fects) within time-dependent density functional theory72–74 or
many-body perturbation theory.75 These can prove very useful
in the future (they can also be extended to finite temperatures);
however, at this point they are computationally too demanding
for systematic calculations of the Curie temperature.

Point (iii) (the classical assumption), can be improved
upon by using the random phase approximation to solve the
quantum Heisenberg model. However, for itinerant electron
systems the local moment M does not correspond to some
integer or half-integer value of the spin S either in the form
M = √

S(S + 1) μB or in the form Mz = S μB. In fact,
calculations of Heusler compounds in Ref. 7 have shown that
for a reasonable choice of S the Curie temperature is strongly
overestimated, while the classical limit of the random phase
approximation, with a choice of large S (with appropriate
normalization of the exchange parameters so that the product
JijSiSj remains constant), results in reasonable values of
TC. Therefore, a quantum Heisenberg model is perhaps a
better choice for a correct description of the shape of the
magnetization curve M(T ), but a poor choice for a correct
TC, at least in itinerant electron systems, if the exchange
constants are calculated within the adiabatic approximation.
This conclusion is in accordance to the spirit of adiabatic spin
dynamcics,13 where the effective interactions Jnn′ correspond
to the equation of motion of the expectation value of the local
moments, i.e., to classical quantities, not operators.

Corrections to point (iv) can be treated within local density
functional theory if the exchange constants are calculated

starting from a disordered local moment state. This requires
use of the coherent-potential approximation (CPA), and has
been proposed, for example, in Ref. 3. The use of the CPA
for the description of the disordered local moment state at TC

underestimates the existence of magnetic short range order
(which is known to be present); however, it constitutes a
promising approach, since it can be systematically improved,
e.g., by the use of a nonlocal CPA.76

Finally, point (v) becomes a serious approximation in
systems of weak magnetic moments, such as ferromagnetic
Ni, and has been widely discussed in the literature as we noted
in Sec. IV. Corresponding corrections for multiple-scattering
based methods have been recently proposed, e.g., by Bruno70

and Shallcross and co-workers.3 In a more recent work by
Ruban et al.20 based on an expansion of the energy within
the disordered local moment state, promising results were
obtained showing the fundamental importance of longitudinal
corrections to the local moment for TC in ferromagnetic Ni.

VI. SUMMARY AND CONCLUSIONS

In the first part of this work we have investigated the calcu-
lation of interatomic exchange constants that we implemented
in the FLAPW method based on the concept of adiabatic spin
dynamics. The exchange constants are harvested by an inverse
Fourier transformation involving static spin-spiral energies.14

Symmetry relations obeyed by the spin spiral energies have
been found to greatly reduce the numerical effort, in particular
regarding confinement of the inverse Fourier transformation in
the irreducible wedge of the Brillouin zone. Furthermore, the
force-theorem approximation has been tested and found to be
adequate for small cone angles of the spin spirals. However,
we have shown that application of the force theorem requires
special treatment of the intersitial region, namely setting there
the magnetic part of the exchange-correlation field to zero.

In the second part of the present work we have proposed a
way to explore multicomponent systems where a magnetically
strong sublattice coexists with a magnetically weak sublattice,
necessitating a consideration of longitudinal and transverse
changes of the weak local magnetic moments while they are
still treated as independent variables. We find the rigorous
result that, under the frequently met condition of a parabolic
dependence of the energy on the weak-moment magnitude, the
weak moments and their interactions can be eliminated via an
analytical integration of the partition function in favor of the
strong moments with renormalized, temperature-independent
exchange constants, with the renormalization accounting for
the weak-moment fluctuations at nonzero temperatures. We
also show that the renormalized constants are actually the ones
probed by constrained spin-spiral calculations of the strong-
moment subsystem, thus simplifying calculations. Finally, we
show that the thermodynamic correlation functions of the full
system including the strong and weak moments can be derived
as polynomials of the correlation functions of the system
of strong moments only but with renormalized interactions.
This renormalization will affect various quantities such as
temperature-dependent magnetization, susceptibility, or spin-
stiffness constant. The method can prove useful for systems
comprising 3d atoms with strong moments together with 4d or
5d atoms with weak moments, such as transition-metal alloys,
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MARJANA LEŽAIĆ et al. PHYSICAL REVIEW B 88, 134403 (2013)

Heusler alloys, or 3d overlayers deposited on 4d or 5d metal
surfaces.
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APPENDIX

We provide a derivation of a formula concerning the
renormalization of interactions J b

ij of the strong-moment
subsystem, {M i},i ∈ {1, . . . ,Ns} when it is in contact with
a weak-moment subsystem, {μl},l,l′ ∈ {1, . . . ,Nw}, in the
presence of interactions All′ among the moments of the weak
subsystem. The main complication in the presence of All′ �= 0
for l �= l′ is that the strong moments are interacting with a
system of coupled harmonic terms, instead of independent
harmonic terms which were treated in Sec. IV. In particular,
we adopt the following conventions. The Hamiltonian reads

H = Hs + Hw + Hint, (A1)

where the strong-system, weak-system, and interacting parts
are, respectively,

Hs = −1

2

∑
ij

i �= j

J b
ij M i · Mj , (A2)

Hw =
∑
ll′

All′μl · μl′ , (A3)

Hint = −
∑

l

∑
n∈n(l)

κ

2a
Mn · μl . (A4)

In Eq. (A3), the diagonal part All = a > 0 is the quadratic
on-site energy term, while the off-diagonal terms All′ describe
intersite interactions between the weak moments.77–79 In the
case of ferromagnetic coupling it is expected that All′ < 0 for
l �= l′ (but with the determinant det|All′ | > 0).

The strategy is to eliminate the weak moments by in-
tegrating analytically the weak plus interacting part of the
partition function, ending up with renormalized interactions
of the strong moments. To this end we take advantage of the
identity∫

dx1 · · · dxN exp

[
−
∑
λλ′

Cλλ′xλxλ′ +
∑

λ

bλxλ

]

= πN/2

√
det C

exp

[∑
λλ′

(C−1)λλ′bλbλ′

]
, (A5)

where det C is the determinant of the positive-definite matrix
C. It is convenient to use a combined index λ = (l,α)
with α ∈ {xyz} and define bλ = 1

kBT
κ
2a

∑
n(l) Mlα and Cλλ′ =

1
kBT

All′δαα′ . Then (C−1)λλ′ = kBT (A−1)ll′δαα′ . Applying this

to the partition function Z yields

Z =
∫

d�1 · · · d�Nse
−Hs/kBT

×
∫

d3μ1 · · · d3μNwe−(Hw+Hint)/kBT (A6)

= (πkBT )3Nw/2

(det A)3/2

∫
d�1 · · · d�Ns exp

[
− 1

kBT
Hs

]

× exp

[
− 1

kBT

(
κ

2a

)2∑
ll′

(A−1)ll′
∑
n(l)

∑
n(l′)

Mn · Mn′

]

(A7)

= (πkBT )3Nw/2

(det A)3/2

∫
d�1 · · · d�Ns exp

[
− 1

kBT
Hr

]
, (A8)

where a renormalized Hamiltonian of the strong-moment
sublattice has been introduced,

Hr = −1

2

∑
ij

i �= j

J b
ij M i · Mj

+
(

κ

2a

)2∑
ll′

(A−1)ll′
∑
n(l)

∑
n′(l′)

Mn · Mn′ . (A9)

This reduces to Hr of Eq. (29) if All′ = aδll′ . Expression
(A9) is obviously of the traditional Heisenberg type, but a
further reduction to a form with renormalized parameters,
Hr = − 1

2

∑
J r

ij M i · Mj , requires knowledge of the specific
geometry of each problem taking into account the sums over
neighbors of l and l′,

∑
n(l) and

∑
n′(l′).

Thermal averages 〈f ({M i})〉 can be calculated by

〈f ({M i})〉 = 1

Z
(πkBT )3Nw/2

(det A)3/2

×
∫

d�1 · · · d�Nsf ({M i}) exp

[
− 1

kBT
Hr

s

]
.

(A10)

Thus the factor (πkBT )3Nw/2

(det A)3/2 cancels and the determinant det A
need not be calculated. Thus one ends up with a usual
Heisenberg-model treatment. To gain some more insight, one
can recognize that in the presence of nondiagonal All′ we
have, formally, a system of coupled harmonic oscillators
interacting with the strong moments. The normal modes
of the coupled oscillators are itinerant, and therefore the
renormalized interactions are also long ranged. Even if All′ are
short ranged, making the matrix A sparse, Eq. (A9) shows that
the renormalized interactions involve the matrix A−1, which
is normally not sparse.

To complete the circle, it has to be shown for practical
applications that the renormalized interactions appearing in
Eq. (A9) are the quantities that are probed by a DFT calculation
where the directions of the strong moments are constrained. In
other words, in such a DFT calculation the weak moments
are allowed to relax to their equilibrium values under the
directional constraint on the strong moments. The question is
if then the energy dependence (A9) is recovered, assuming that
Eqs. (A2)–(A4) are a good approximation to the DFT energy
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landscape. The answer is straightforward if we calculate
the total energy of the constrained Heisenberg Hamiltonian,
i.e., without an integration over the M i . The constrained
partition function is just the last term of Eq. (A6), Z1 =∫

d3μ1 · · · d3μNwe−(Hw+Hint)/kBT . The total energy at T → 0
is

E = Hs({M i}) + kT 2

Z1

∂Z1

∂T

∣∣∣∣
T =0

(A11)

= Hs({M i}) +
(

κ

2a

)2∑
ll′

(A−1)ll′
∑
n(l)

∑
n′(l′)

Mn · Mn′

(A12)

Q.E.D. This means that constrained (spin spiral) DFT calcu-
lations on the strong sublattice are already corresponding to
the renormalized Hamiltonian and are therefore by virtue of
Eqs. (A6) and (A8) sufficient for the calculation of the strong-
sublattice thermal averages, without the need to calculate the
bare parameters or All′ .

However, if the weak-sublattice thermal averages are to
be calculated, one must additionally gain knowledge on the
matrix All′ of Eq. (A3) as well as of the bare parameters J b

of Eq. (A3) and of κ in Eq. (A4). The scheme presented in
Sec. IV A shows how this can be done in the rather simple
case of NiMnSb (where All′ = aδll′ is diagonal), but in general
this problem must be solved according to the geometry and
other factors in each case. In particular, for the calculation

of the off-diagonal All′ , probably it is easiest to calculate
directly the susceptibility matrix (A−1)ll′ by applying in the
DFT calculation a longitudinal external field on one atom and
probing the response in the moment of the neighboring atoms,
or to make a transformation to the normal modes in Fourier
space and calculate A(q).

If all the ingredients are available, then one can calculate
thermal averages and correlation functions of the weak
moments either by a direct Monte Carlo calculation or by
reducing these correlation functions to correlations of the
strong moments in the presence of only the renormalized
Hamiltonian, in an analogous way to the case of Eq. (41),
where the parameters All′ and κ must be inevitably contained
in the expansion coefficients. We present an outline of how
this is achieved in practice. The complication here compared
to Eq. (41) is that the matrix All′ is not diagonal. It is,
however, real and symmetric; therefore, one proceeds by
bringing it to a diagonal form D with elements Dl . If
R is the diagonalization matrix, then D = RART , and we
define the transformation of the moment coordinates μ̃qα =∑

l Rqlμlα and M̃qα =∑n RqnMnα . Also since All′ is real and
symmetric the phase-space element is unchanged: d3μ̃ = d3μ.
(This transformation is analogous to one bringing a system
of coupled harmonic oscillators in a normal-mode represen-
tation.) Then one has, for the arbitrary correlation function
among the xyz components of the Nw weak moments,
〈(μ1x)m1x · · · (μNwz)mNwz〉, the following integral:

∫
d3μ1 · · · d3μNw (μ1x)m1x · · · (μNwz)

mNwz exp

⎧⎨
⎩ 1

kBT

⎡
⎣−

∑
ll′α

All′μlαμl′α + κ

2a

∑
lα

∑
n(l)

Mnαμlα

⎤
⎦
⎫⎬
⎭

=
∫

d3μ̃1 · · · d3μ̃Nw

(∑
k

RT
1kμ̃kx

)m1x

· · ·
(∑

k

RT
Nwkμ̃kwz

)mNwz

exp

⎧⎨
⎩ 1

kBT

⎡
⎣−

∑
lα

Dlμ̃
2
lα + κ

2a

∑
lα

∑
n(l)

M̃nαμ̃lα

⎤
⎦
⎫⎬
⎭

=
∏
lα

∫
d3μ̃lα

(∑
k

RT
lkμ̃kα

)mlα

exp

⎧⎪⎨
⎪⎩

1

kBT

⎡
⎢⎣−Dl

⎛
⎝μ̃lα − 1

Dl

κ

2a

∑
n(l)

M̃nα

⎞
⎠

2

− 1

4Dl

⎛
⎝ κ

2a

∑
n(l)

M̃nα

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (A13)

The last expression can be handled by expanding the term (
∑

k RT
lkμ̃kα)mlα and proceeding to an analytic integration of powers of

μ̃ times the exponential just as in Eq. (41). Mixed correlation functions between strong and weak moments can also be reduced
to strong-moment correlation functions in the renormalized model via this prescribed route.
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