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Coarse-grained kinetic Monte Carlo simulation of diffusion in alloys
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We present a coarse-grained Monte Carlo method designed for the simulation of vacancy-mediated diffusion
phenomena. A coarse-grained master equation is derived from the atomic scale master equation using an
assumption of local equilibrium within each coarse-grained cell. Atomic kinetic Monte Carlo (AKMC)
simulations are used to perform both the thermodynamic and the kinetic parametrization of the coarse-grained
simulations. Quantitative reproduction of flux couplings is achieved in the coarse-grained simulation. The ability
of the CKMC method to simulate kinetics controlled by diffusion such as a precipitate dissolution and the
decay of sinusoidal modulations of the concentration field is illustrated on body-centered-cubic (bcc) model
alloys with a clustering tendency. It is shown on the case of a model of the Fe-Cu alloy previously developed
that the use of this method can reduce the computational cost of a kinetic simulation by several orders of
magnitude.
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I. INTRODUCTION

The microstructure of alloys determines to a large extent
their physical and mechanical properties. It has been shown
that in crystalline alloys, atomic diffusion controls the chemi-
cal homogenization of castings1,2 and the rate of precipitation
of second phases during heat treatments.3,4 The predominant
mechanism of diffusion in alloys is the vacancy mechanism.
Exchanges of vacancies with neighboring atoms lead to atomic
fluxes. The mediation of the exchanges by the dilute vacancies
and the differences between exchange frequencies induce
deviations of the atom and vacancy migration paths from
a random path. These kinetic correlations lead to couplings
between atomic fluxes. Strong kinetic correlation effects are
known to induce phenomena such as the dragging of solute
atoms by vacancies.5 A spectacular example of flux coupling
is the radiation induced segregation (RIS): under irradiation,
point defects that are created in the bulk tend to migrate toward
point defect sinks like dislocations or grain boundaries. The
kinetic coupling between point defects and atoms produces
atomic fluxes which can lead to heterogeneities of the
concentration field, as observed, for example, in austenitic
steels where chromium depletion appears at grain boundary
under irradiation.6–8

The evolution of these microstructures can be quantita-
tively predicted using atomic kinetic Monte Carlo (AKMC)
simulations based on a vacancy diffusion mechanism.2,4,9

While they provide impressive results on the early stages
of a two-phase separation and ordering kinetics, they are
rapidly limited by the cost of CPU time and fail to predict
late stage kinetics. A multiscale approach for dilute systems,
coupling density functional theory calculations, atomic kinetic
Monte Carlo models, and mesoscale methods such as cluster
dynamics10 and event-based Monte Carlo11 bridges the gap
between atomic scale diffusion mechanisms and long-term
microstructure evolutions. This kind of approach remains,
however, to be done for concentrated alloys.

RIS can be qualitatively simulated using continuous diffu-
sion models.12 These simulations rely on the out of equilibrium
thermodynamic equations that relate the flux Jα through a

surface S of an atomic species α to a linear combination of the
gradient of chemical potential μβ of all the atomic species β

through the Onsager matrix Lαβ :

Jα = −S
∑

β

Lαβ∇
(

μβ

kBT

)
, (1)

where kB stands for the Boltzmann constant and T for
the temperature. Continuous diffusion models are, however,
limited by their deterministic nature that limits their field
of application. Another efficient approach for the simulation
of microstructural evolutions consists in using stochastic
coarse-grained methods. The phase field method13–17 proved
to be very efficient for describing elastic effects on the
microstructure.14,18 Coarse-grained Monte Carlo simulations
were applied with success to chemical adsorption19–22 and to
the diffusion of charge defects.23 A coarse-graining procedure
consists in dividing a system defined at a given scale into
cells defined at a larger scale. Subcell degrees of freedom are
integrated to provide kinetic equations at the coarse-grained
scale that describe the evolution of the system with fewer
variables. Assuming that a local equilibrium is established
in every cell, a coarse-grained free-energy functional of the
Ginzburg-Landau type is obtained that can be used as the
force driving the evolution of the system.24,25 Following that
path, a method has been proposed to produce quantitative
phase field simulations of diffusional phase transformation.26

This method provides a Ginzburg-Landau functional able
to reproduce most thermodynamic properties, like phase
separation. This method differs from earlier coarse-grained
Monte Carlo simulations19,21,22 both from a thermodynamic
and from a kinetic point of view. From a thermodynamic
point of view, the introduction of an interaction term between
cells in Refs. 26 and 27 allows the simulation of phase
transition, which is impossible with the energy functional
used in Refs. 19,21, and 22. From a kinetic point of view,
a simplified description of the diffusion mechanism by means
of direct exchanges between atoms without vacancies is chosen
in Ref. 26, while vacancy-mediated diffusion is used in
Refs. 19,21, and 22. The choice in Ref. 26 of direct exchanges
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between atoms does not allow addressing the flux couplings
in alloys. However, the averages performed in coarse-grained
Monte Carlo simulations neglect the nondiagonal terms of the
Onsager matrix.20,21 As a consequence, both methods prevent
the study of RIS. Moreover, even in the case of thermal phase
transformations, AKMC simulation studies have shown the
importance of introducing a detailed description of the vacancy
diffusion mechanism and the kinetic couplings.2,4,9

Focusing on kinetic correlations and flux couplings, we
propose in the present work a method to obtain coarse-grained
simulations consistent both from a kinetic and from a ther-
modynamic point of view with the atomic-scale simulations.
Using Ref. 27 for the thermodynamic aspects, the present
work is dedicated to the kinetic aspects, with a focus on the
reproduction of kinetic correlations. In Sec. II, the transition
from atomic-scale kinetic Monte Carlo (AKMC) simulations
to coarse-grained kinetic Monte Carlo simulations (CKMC) is
presented. The atomic-scale master equation is coarse-grained,
which allows relating the coarse-grained transition events to
the Onsager matrix and to ensure a proper reproduction of
kinetic correlations. In Sec. III, the consistency of CKMC sim-
ulations with AKMC simulations is first shown on three model
body centered cubic (bcc) systems: an ideal solid solution,
a model alloy with first nearest neighbor (n.n.) interactions,
and a model of the Fe-Cu alloy previously developed.9 The
ability of the method to accurately reproduce the Onsager
matrix, the free energy of a system and the relaxation
time of a sinusoidal excitation is demonstrated. Comparisons
between AKMC and CKMC simulations are then performed
to demonstrate the ability of CKMC simulations to provide
results in quantitative agreement with AKMC simulations and
to explore the possibilities and limits of the CKMC method.

II. PRINCIPLES OF COARSE-GRAINED KINETIC
MONTE CARLO SIMULATIONS

Atomic kinetic Monte Carlo (AKMC) simulations have
proved their reliability and will serve as a reference throughout
this work. After introducing briefly that method, the master
equation, on which AKMC simulations rely, is used to build
a coarse-grained master equation. The kinetic parameters
appearing in the coarse-grained master equation are then
related to the Onsager matrix and the conditions required
to describe flux couplings are defined. On that basis, the
coarse-grained kinetic Monte Carlo (CKMC) method is then
described.

A. From the atomic to the coarse-grained description

1. Atomic master equation and AKMC simulations

AKMC simulations rely upon a description of an alloy at
the atomic scale. In these simulations, each vertex i of a rigid
lattice corresponds to an atomic site of the crystal lattice, to
which is associated an occupancy vector n = (nα

i ), where nα
i

is either equal to 1 if the site i is occupied by the species α, or
null otherwise. Let P (n,t) be the probability to find the system
in a configuration n at time t , the evolution of the system is

controlled by the atomic-scale master equation

dP (n,t)

dt
=

∑
ṅ

w(ṅ → n,dt)P (ṅ,t)

−
∑

ṅ

w(n → ṅ,dt)P (n,t), (2)

where w(n → ṅ,dt) is the probability of a system initially in
the configuration n to be in the configuration ṅ after a time dt .
In all generality, this jump probability depends on the time t

of the event. However, as the time scale at which atoms jumps
from site to site is much larger than the time scale of vibration
of the lattice in a given configuration, atomic diffusion events
can be considered as independent from the past history of the
system and the evolution of the system at that scale to be a
Markov process. This last property is required to simulate the
evolution of the system by means of a Monte Carlo algorithm.

For that purpose, the values of the jump probabilities must
be defined. Each of the local clusters of atomic sites (pairs,
tetrahedra, etc.) can be associated with an atomic interaction
according to their occupancies. In the following, we restrain
our discussion to a binary alloy AB with vacancies. Atoms of
species A and B interact with each other or with the vacancies
V through pair interactions only. The energy of the system
in any given configuration can thus be expressed using the
following Hamiltonian:

H(n) = 1

2

∑
l

∑
(i,j )

∑
{(α,β)∈{A,B,V }2}

γ l
ijV

αβ

l nα
i n

β

j , (3)

where V
αβ

l is the interaction energy between the two species
α and β at a distance l, γ l

ij is the adjacency matrix, which is
equal to 1 if sites i and j are lth nearest-neighbor (n.n.) sites,
and where the sum over i,j is performed over each pair of sites
of the system. According to the transition state theory,28,29 the
jump probability per unit time w(n → ṅ) can be written as

w(n → ṅ) = ν0
n→ṅ exp

[−(kBT )−1
(
Es

n→ṅ − H(n)
)]

, (4)

where ν0
n→ṅ is the attempt frequency, Es

n→ṅ is the energy
of the system in the saddle point position between the two
configurations, and H(n) is the energy of the system in
the initial configuration. In a vacancy-mediated diffusion
mechanism, to which we restrain ourselves in the present work,
the list of configurations at reach at each step corresponds to
all the configurations obtained by exchanging the position of
a vacancy with one of its nearest-neighbor atoms.

2. Coarse-grained master equation

The equation driving the evolution of the system at a larger
scale can be obtained by coarse-graining the atomic-scale
master equation (2). Each site n of the coarse-grained lattice
is called a cell and corresponds to a group of Ntot atomic sites;
its state is described using an occupancy vector N = (Nα

n ),
where Nα

n is the number of atoms of type α in the cell n,
with

∑
α Nα

n = Ntot. As a consequence, all spatial information
within a cell is lost, and only the spatial information at the
coarse-grained scale remains. The probability P (N,t) to find
the system in a given coarse-grained configuration N can
be deduced from the atomic-scale probabilities: P (N,t) =∑

{n/N} P (n,t). Similarly, the atomic master equation (2) can
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be summed over the atomic configurations corresponding to a
single coarse-grained configuration:

dP (N,t)

dt
=

∑
{n/N}

∑
ṅ

w(ṅ → n,dt)P (ṅ,t)

−
∑

ṅ

w(n → ṅ,dt)P (n,t). (5)

The terms are then reorganized using the transition rate
W (N → Ṅ,t,dt) to go from one coarse-grained configuration
to another and the conditional probability P (ṅ/Ṅ,t) to find the
system in a configuration ṅ at time t knowing that the whole
system is in a coarse-grained configuration Ṅ:

dP (N,t)

dt
=

∑
Ṅ

∑
{n/N}

∑
{ṅ/Ṅ}

w(ṅ → n,dt)P (ṅ,t)

−w(n → ṅ,dt)P (n,t)

=
∑

Ṅ

P (Ṅ,t)

⎛
⎝∑

{ṅ/Ṅ}
P (ṅ/Ṅ,t)

∑
{n/N}

w(ṅ → n,dt)

−P (N,t)
∑
{n/N}

P (n/N,t)
∑
{ṅ/Ṅ}

w(n → ṅ,dt)

⎞
⎠

=
∑

Ṅ

(P (Ṅ,t)W (Ṅ → N,t,dt)

−P (N,t)W (N → Ṅ,t,dt)). (6)

The transition rates depend then upon the time t , due to
the dependency of the conditional probability on this same
variable. As a consequence, without extra approximation,
the coarse-graining of the master equation leads to a loss of the
Markov property. A local equilibrium approximation can be
performed to retrieve this property; if no exchange takes place
at the coarse-grained scale, the probability P (n/N,t) to find
a microscopic configuration given a coarse-grained one will
converge towards its equilibrium P (n/N) value after a time τ .
If this equilibration time τ is shorter than the time increment
dt of the coarse-grained master equation, the Markov property
is thus restored, as the transient regime is integrated within
the coarse-grained jump frequencies W (N → Ṅ,dt). As long
as the inequality τ < dt holds, a Markovian coarse-grained
master equation is thus obtained:

dP (N,t)

dt
=

∑
Ṅ

W (Ṅ → N,dt)P (Ṅ,t)

−
∑

Ṅ

W (N → Ṅ,dt)P (N,t). (7)

Detailed balance at the coarse-grained scale is a direct
consequence of the detailed balance at the atomic scale. The
transitions between two configurations N and Ṅ can thus be
written without loss of generality as

W (N → Ṅ) = W 0
N,Ṅ

e− β

2 [Heff (Ṅ)−Heff (N)], (8)

where the reduced exchange rate W 0
N,Ṅ

is a symmetric function

of both configurations and Heff is an effective Hamiltonian at
the coarse-grained scale.

B. Coarse-grained jump frequencies

The coarse-grained transition frequencies involved in the
coarse-grained master equation can be directly related to the
Onsager matrix. The difference between kinetic correlations
at the atomic scale and at the coarse-grained scale is first
introduced. The coarse-grained transition frequencies are then
related to the Onsager matrix.

1. Kinetic correlations

Vacancy-atom exchange frequencies that are involved in
the atomic master equation do not depend on the previous
jumps. However, they depend on the local surrounding of
the exchanging pair. As the local surrounding results from
the previous jump, kinetic correlations may occur. A typical
example is the drag effect in dilute alloys, where large negative
values of the off-diagonal coefficients of the Onsager matrix
lead the solute atom to follow the vacancy flux. In AKMC
simulations, kinetic correlations are correctly reproduced
provided all the vacancy-atom exchanges are taken into
account. Based on the displacement of the barycenter of atoms
of species α with respect to the barycenter of atoms of species
β, the terms of the Onsager matrix describe the flux coupling
between the two species α and β. Let V be the atomic volume,
τ the integration time, rn the displacement of the atom n, the
Kubo-Green equation expresses the terms Lαβ of the Onsager
matrix on the basis of the atomic-scale displacement in a
system at equilibrium:

Lαβ = (
∑

n∈{α} �rn)(
∑

m∈{β} �rm)

6V τ
, (9)

where the sums are performed over all atoms of a given species.
Kinetic correlations are enhanced by discrepancies between
the different jump frequencies.5 Moreover, the highest jump
frequency controls the time increment at each step of the
Monte Carlo algorithm while the lowest frequency usually
controls the time scale of the whole simulation. Thus, the
greater the difference between the highest jump frequency
and the lowest jump frequency, the lesser the efficiency of
the AKMC simulation will be. Hence in strongly correlated
systems such as the Fe-Cu alloys, long-stage kinetics will
hardly be addressed by AKMC simulations.

The coarse-grained master equation can be integrated
using a Monte Carlo algorithm (cf. Appendix A) and a time
increment dt at each step. In Refs. 19 and 30, a time increment
dt > τ is used and the local equilibrium approximation is
considered between two steps. A different choice was made
in Refs. 26 and 31, where only the peripheral sites of a cell
participate to diffusion during a step. This case corresponds
to a time step lower than the time to equilibrate any given
cell. We choose in the current work an approach similar
to the one used in Refs. 19 and 30 as the size of the
integration step is directly related to the numerical efficiency
of the method. A consequence is that the time scale allows
multiple atomic displacements between each time step. These
multiple displacements involve that between t and t + dt more
than two atoms might have moved, or exchanges between
non-neighboring cells might have taken place.

A consequence of the local equilibrium approximation is
that the knowledge of the environment of the vacancy at the
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atomic scale is lost between two steps. The kinetic correlations
are thus expected to be reduced, as after a jump of the vacancy,
if the vacancy jumps back, it can exchange with any atom of the
original cell. Therefore we assume that there is no correlation
induced by the displacement at the coarse-grained scale.
Considering all the coarse-grained transitions would lead to
a very poor computational efficiency of the coarse-grained
simulations. Therefore the number of events is reduced in
a controlled way to achieve realistic kinetics, but as kinetic
correlations are assumed to be negligible at the coarse-grained
scale, this truncation should not affect the Onsager matrix.
All kinetic correlations have to be embedded directly in the
exchange frequencies and retrieved in the Onsager matrix
measured at the coarse-grained scale.

2. Coarse-grained fluxes

The coarse-grained master equation describes the evolution
of the probabilities of the coarse-grained configurations. From
a given coarse-grained configuration N, the system evolves
towards a configuration Ṅ at the transition rate W (N → Ṅ).
We consider the transition between N and Ṅ resulting in an
exchange of a group γ (Ṅ) of k atoms and vacancies through
the interface between n and m. These atoms that move together
or independently across the interface are described using the
signed number nα

γ of unit of the species α in the group of atoms
γ that moves from cell m to cell n, with nα

γ > 0 when more
atoms α moved from m to n than from n to m, and nα

γ � 0
otherwise. For example, if γ describes the exchange of an atom
of type α in cell m with a vacancy in cell n, then n

γ
α = 1 and

n
γ
v = −1. The flux Jα of a species α per unit time through the

interface between two cells n and m is given by

Jα =
m→n∑

Ṅ

nα
γ WN→Ṅ. (10)

Using Eq. (8) to develop the exchange frequency, we then
obtain

Jα =
m→n∑

Ṅ

nα
γ W 0

N,Ṅ
e− β

2 [Heff (Ṅ)−Heff (N)]. (11)

In this last equation, the difference of effective Hamiltonian
is the difference of energy of the system before and after the
exchange of the atoms of the group γ between the cells n

and m. This is the definition of the difference of chemical
potential between the two cells μ

γ
n (N) − μ

γ
m(N) for the group

γ in the configuration N. For the sake of simplicity, this
N-dependency is not displayed in the following equations.
Performing a Taylor expansion at first order in β(μγ

n − μ
γ
m),

the last equation becomes

Jα =
m→n∑

Ṅ

nα
γ W 0

N,Ṅ

(
−β

2

)(
μγ

n − μγ
m

)

+
n→m∑

Ṅ

nα
γ W 0

N,Ṅ

(
−β

2

)(
μγ

m − μγ
n

)

= −
m→n∑

Ṅ

nα
γ W 0

N,Ṅ
β
(
μγ

n − μγ
m

)
. (12)

If it is assumed that the chemical potential is a linear function of
the number of atoms involved in the group γ (as it is the case for
a system of cells of infinite size), we can write μ

γ
n = ∑

σ nσ
γ μσ

n ,
where the sum is performed over all the species σ (including
the vacancies). The flux equation thus becomes

Jα =
m→n∑

Ṅ

nα
γ W 0

N,Ṅ

∑
σ

nσ
γ β

(
μσ

n − μσ
m

)
. (13)

Defining the distance d between two cells and the surface S

that separates them, we introduce a matrix (Lασ ) defined over
the different species:32

Lασ (N) = d

S

m→n∑
Ṅ

nα
γ W 0

N,Ṅ
nσ

γ . (14)

The flux equation then takes the form

Jα = −S
∑

σ

Lασ (N)∇(βμσ ), (15)

where ∇(βμσ ) = β
μσ

m−μσ
n

d
. The W 0

N,Ṅ
frequencies are in

general functions of the whole configuration before and after
the exchange. However, we can assume that the coarse-grained
jump frequencies depend only on the local concentrations
Nn,Nm,Ṅn,Ṅm of cells n and m in configurations N and
Ṅ. This assumption is relevant for a system that displays
neither long-range thermodynamic correlations nor long-range
kinetic correlations (i.e., in practice for a noncritical and
nonpercolating system). This dependency can be expressed
in terms of averages and differences as follows:

W 0
N,Ṅ

= W 0(Nn,Nm,Ṅn,Ṅm)

= W̃ 0

(
Nn + Nm

2
,
Ṅn + Ṅm

2
,
Nn − Nm

2
,
Ṅn − Ṅm

2

)
.

(16)

Moreover, the conservation of the atomic species involves
that Nn+Nm

2 = Ṅn+Ṅm

2 . The sum performed in Eq. (14) over
all configurations Ṅ then corresponds to a sum over all
concentration gradients. Hence the quantity Lασ (N) does not
depend on the concentration gradient Ṅn−Ṅm

2 , nor on the
concentration gradient Nn−Nm

2 due to the detailed balance:
Lασ (N) only depends on the local concentration c = Nn+Nm

2 .
However, this is not the case for W̃ 0. In the continuum limit,
the concentration gradients can be neglected, but in the case
of finite size cells these gradients have to be considered. This
technical point is discussed in Appendix B.

The flux equation can then be written:

Jα = −S
∑

σ

L̃ασ (c)∇(βμσ ). (17)

An identical flux equation is obtained from out of equilibrium
thermodynamics33 for infinite size cells. As the local mobility
L̃ασ (c) does not depend on the cell size, it can be identified
to the Onsager matrix Lασ (c) used in out of equilibrium
thermodynamics, which describes the correlation between
displacement of atoms of types α and σ in an environment
of mean solute concentration c:

Lασ (c) = z∗L̃ασ (c), (18)
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where z∗ is the number of nearest neighbor cells in a given
Cartesian direction. Equation (14) establishes the relationship
between the Onsager matrix and the kinetic events at the
coarse-grained scale. The Onsager matrix can be obtained
by performing AKMC simulations34,35 or using analytical
methods.5,36 Using Eq. (9) to compute the Onsager matrix
from AKMC simulation will thus allow parameterizing the
coarse-grained transition frequencies.

3. Kinetic events

In order to make coarse-grained simulations computation-
ally efficient, the ensemble of kinetic events has to be truncated.
We choose to truncate it by defining a maximum size k for the
groups of atoms being exchanged during a single Monte Carlo
step. Hence the speed at which a larger group of atoms diffuses
is the average of the diffusion speeds of its subelements. k can
then be determined in order to reproduce the Onsager matrix
while keeping the number of transition minimum.

For a binary alloy with vacancies on a rigid lattice, the
Onsager matrix is a 3 × 3 matrix. However, due to site
conservation, only three terms are actually independent. Using
Eq. (14) that relates the Onsager matrix to the coarse-grained
kinetic events, we determine the minimum group size k re-
quired to reproduce the Onsager matrix. For vacancy-mediated
diffusion, an exchange involves at least a species on each side
and any exchange has to involve a vacancy. For k = 1, there
are only two different possible exchanges involving a vacancy,

V ↔ A (V A), V ↔ B (V B). (19)

This set provides only two degrees of freedom for the kinetic
properties, associated with the frequency of both exchanges.
As a consequence, it cannot reproduce the variety of behavior
that can be displayed by the Onsager matrix with its three
degrees of freedom. For k = 2, using all the exchanges
involving up to two atoms in each cell and at least a vacancy,
a set of events can be built that fulfill this objective:

V ↔ A (V A), V ↔ B (V B),

V A ↔ V B (V AV B), V B ↔ V A (V BV A),

V A ↔ BB (V ABB), V B ↔ AA (V BAA), (20)

V V ↔ AB (V V AB), V A ↔ AA (V AAA),

V B ↔ BB (V BBB).

An event like the exchange (V AAA) of a V A pair from one cell
against a AA pair from another one is identical to the (V A)
event due to the local equilibrium approximation, and as a
consequence will not be further discussed. The (V AV B) event
is equivalent to a direct A-B exchange, but emphasizes the need
of a vacancy in one of the involved cells as the direct exchange
is impossible at the atomic scale. Detailed balance—which
applies to this event as well as to any other—requires that its
reduced exchange rate is equal to the one of the inverse jump
(V BV A).

Using Eq. (14), their probability can be related to the
Onsager matrix. For example, for the V ABB exchange,
we have nV

V ABB = 1,nA
V ABB = 1,nB

V ABB = −2, and thus a
contribution to LBB(c) of (−2)(−2)W̃ 0

V ABB(c), or to LAB(c)

of (−2)(1)W̃ 0
V ABB(c). We thus obtain

LAA(c) = d

S
z∗(W̃ 0

AV (c) + W̃ 0
V ABB(c) + 4W̃ 0

BV AA(c)

+ W̃ 0
V V AB(c) + 2W̃ 0

V AV B(c)
)
,

LBB(c) = d

S
z∗(W̃ 0

BV (c) + 4W̃ 0
AV BB(c) + W̃ 0

BV AA(c)

+ W̃ 0
V V AB(c) + 2W̃ 0

V AV B(c)
)
,

LAB(c) = d

S
z∗(−2W̃ 0

V AV B(c) − 2W̃ 0
AV BB(c)

− 2W̃ 0
BV AA(c) + W̃ 0

V V AB(c)
)
, (21)

LAV (c) = d

S
z∗(−W̃ 0

AV (c) + W̃ 0
AV BB(c)

− 2W̃ 0
BV AA(c) − 2W̃ 0

V V AB(c)
)
,

LBV (c) = d

S
z∗(−W̃ 0

BV (c) − 2W̃ 0
AV BB(c)

+ W̃ 0
BV AA(c) − 2W̃ 0

V V AB(c)
)
,

LV V (c) = d

S
z∗(W̃ 0

AV (c) + W̃ 0
BV (c) + W̃ 0

AV BB(c)

+ W̃ 0
BV AA(c) + 4W̃ 0

V V AB(c)
)
,

where the surface S = d2/4 in the case of a bcc lattice.
The direct exchange event (V AV B) introduces a correlation
in the displacement of A and B atoms. However, as the
reduced exchange rate of each event is necessarily positive,
this correlation is necessarily negative. The two-atom events
((V ABB), (V BAA), (V V AB)) are thus required to obtain
all types of Onsager matrices: the (V V AB) event allows
positive A-B correlations, while the (V ABB) [respectively,
(V BAA)] is required to obtain positive V -A [respectively,
V -B] correlations, which are involved in the solute drag
phenomenon.5,37 Finally, the single atom exchanges (V A)
and (V B) cannot be avoided, as their presence is required
in some cases to ensure the positivity of the Onsager matrix:
LiiLjj � L2

ij . Therefore any Onsager matrix of a binary alloy
can be obtained by exchanges involving one and two species.
A subset of four or three exchange frequencies is actually
sufficient to reproduce a specific Onsager matrix.

The Onsager matrix is unfortunately insufficient with its
three free parameters to determine completely the values of
all the different frequencies required at the coarse-grained
scale. However, if these frequencies are required to cover
all the cases of Onsager matrices, only a subset of them
is necessary in any given situation. According to the sign
of the different correlation terms of the Onsager matrix, a
subset of three frequencies only can be chosen to describe the
kinetic properties of the system. Their values are then entirely
determined by the Onsager matrix terms. This phenomeno-
logical choice ensures both a maximum numeric efficiency
by reducing the number of frequencies computed at each step
and the reproduction of the averaged kinetic correlations as
expressed by the Onsager matrix. As the ensemble of the events
at the coarse-grained scale has been truncated, an accurate
description of the fluctuations of the kinetic correlations should
not be expected.

The discrete description of the vacancy concentration
field affects the implementation of the events described. The
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FIG. 1. (Color online) Representation of the atoms involved in
a (V V AB) jump, in the original configuration N (top) and the final
configuration Ṅ (bottom). The vacancy is represented by a square,
while the A and B atoms are represented by a dark and a light disks.

vacancy concentration is usually very small, impairing the
ability to perform the (V V AB) event as the probability to find
a configuration with two vacancies in a same cell vanishes.
This event can be replaced by another one inducing the same
kinetic correlations. For this reason, we have chosen to remove
the two-vacancy event from the list and to replace it by a new
event involving a single vacancy and three cells, where a single
vacancy jumps twice in a given direction, while an atom A

and an atom B each jumps once in the return direction. To
ensure detailed balance, two cases have to be considered, in
which either an atom A or an atom B jump first, as illustrated
in Fig. 1.

III. CKMC SIMULATIONS

The capacity of the CKMC method to simulate diffusion
in alloys has been studied on bcc alloys by performing a
systematic comparison with AKMC results. The principle
of the parametrization procedure is first exposed. Then, to
assess the ability of the CKMC method to simulate diffusion
kinetics of alloys, basic properties have been measured on
three different alloys of increasing complexity: an ideal solid
solution, where interatomic interactions are null, then a bcc
alloy with first nearest neighbor interactions and a demixing
tendency, and finally a model of the Fe-Cu alloy with first and
second nearest neighbor interactions. Once the consistency of
AKMC and CKMC simulations is established, the limitations
and advantages of the CKMC simulations are explored.

A. Coarse-grained kinetic Monte Carlo simulation method

The coarse-grained kinetic Monte Carlo method developed
in this work relies on a coarse-grained description of diffusion.
Like in AKMC simulations, the alloy is described using a
rigid lattice. A configuration is defined by a coarse-grained
occupation vector defined over all species α and sites n at the
coarse-grained scale: N = (Nα

n ). All the degrees of freedom
corresponding to the position of atoms within a cell are lost.
However, the occupation numbers remain discrete quantities.
Thermodynamic properties of an alloy in a CKMC simulation
are determined by an effective Hamiltonian at the coarse-
grained scale Heff(N), while the kinetic properties rely on
the set of reduced frequencies W̃ 0(c). Once all these quantities
are determined, the evolution of the coarse-grained system
is obtained from the coarse-grained master equation (7). A
trajectory in the phase space of a given system is obtained

FIG. 2. (Color online) Representation of the atoms belonging to
an eight atomic site cell (dark sphere) in bcc structure.

using a Monte Carlo algorithm, e.g., the Metropolis38 or the
residence time39 algorithms. In the present work, the latter is
used in both AKMC and CKMC simulations.

In order to numerically assess the method, a bcc lattice
has been chosen where sites at the atomic scale are separated
by a distance a

√
3. The atomic sites of a bcc structure can

be grouped into cells themselves organized into a bcc lattice
where each cell, containing d3 atomic sites, is separated from
its nearest neighbor by a distance da

√
(3), with d taking any

positive integer value. An eight-atom cell can be built by
considering a cell identical to a Wigner-Seitz cell, but of twice
its size in each dimension. The atomic sites forming such kind
of cell are shown in Fig. 2 from which larger cells can be
built by homotheticity. This allows using an identical lattice
at every scale with z∗ = 4 for a bcc lattice, without disturbing
the symmetries of the crystal.

The parametrization of the effective Hamiltonian is dis-
cussed extensively in Ref. 27. It is shown that the effective
Hamiltonian can take the form

Heff(N) =
∑

n

Ed
(
NB

n ,Nv
n

)

+ 1

2

∑
l

∑
(n,m)

∑
β∈{B,V }

γ l
ij κ

β

({Nσ
n +Nσ

m})
(
Nβ

n − Nβ
m

)2
,

(22)

where the local energy Ed is the free energy of an isolated
single cell and κ

β

({Nσ
n +Nσ

m}) is the stiffness coefficient that
controls interactions between neighboring cells.

The parametrization method proposed in Ref. 27 leads to
a quantitative reproduction of the equilibrium properties of
an alloy like the phase diagram, the equilibrium fluctuations
of the concentration field, or the interface profile. It can be
directly applied to the current cell geometry. The extension to
a binary alloy including vacancies is also straightforward. It
is performed by considering a local energy Ed (NB,NV ) that
depends both on the solute and the vacancy concentration. This
local energy term is computed in a similar way to the local
energy of the binary alloy. Similarly, the local free energy
is computed using the Widom scheme in a simulation box
containing a single vacancy. The consideration of a ternary
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FIG. 3. (Color online) Free-energy density as a function of the
concentration for the first n.n. interaction alloy at a temperature
T = 0.8Tc (top) and the Fe-Cu alloy at T = 1100 K (bottom), with
and without vacancy in the system. For the sake of clarity, the
reference energy is the system without B (respectively, Cu) atom.
Similarly, in the Fe-Cu case, the quantity F (c) = c × 0.74 eV has
been subtracted from the free energy. The reference energies for the
FNNI alloy with and without vacancies are, respectively, −0.108 eV
and 0, and −4.64 and −4.28 eV in the case of the Fe-Cu alloy.

system increases considerably the CPU requirement of this
operation. As an example, results for the local energy term of
64 atomic site systems are shown in Fig. 3 for the first nearest
neighbor interacting alloy and the Fe-Cu alloy described
in detail in the next section. The influence of the vacancy
concentration gradient on the interaction term has, however,
been neglected, allowing a parametrization procedure of the
interaction term identical to the one performed in Ref. 27.

Equation (21) relates the coarse-grained average jump fre-
quencies W̃ 0

XY (c) to the Onsager matrix and can be used for the
kinetic parametrization of CKMC simulations. The Onsager
matrix of an alloy is computed using Eq. (9) by applying the
following procedure during an AKMC simulation: let a time τ

be sufficient for the vacancy to perform 243 jumps, a 243 site
system at a given concentration is equilibrated during 500τ

before the Onsager matrix being measured using Eq. (9) over
a time τ . The results obtained are then averaged over 50 000
iterations of the procedure.

B. Basic properties

Three different properties have first been studied on three
different model alloys using both CKMC and AKMC methods
to assess the consistency of the CKMC method on three model
alloys of increasing complexity. For each of these alloys, the
free energy is first shown to illustrate the accuracy of the
thermodynamic parametrization and its ability to take into
account thermodynamic finite size effects. AKMC and CKMC
evaluations are performed using the Widom scheme and its
coarse-grained counterpart.27 The free energy per atomic site
is represented for three different simulation boxes, a 64 atomic
site system, a 4096 atomic site system composed of 4096
atomic sites within an AKMC simulation and finally a system
of 4096 atomic sites divided into 64 cells of 64 atomic sites
within a CKMC simulation. In order to confirm the validity
of the kinetic parametrization, the Onsager matrix of each
alloy is also computed using CKMC simulations for cells
of d3 = 27, 64, and 512 atomic sites each and compared
with AKMC measurements. A procedure identical to the one
described in the previous section is applied to the CKMC
method to compute the Onsager matrix. The same total system
size is conserved to allow an easier comparison of the results.
In the following, the Onsager matrix is always represented
on the figures normalized by the vacancy concentration and
the lattice parameter. Finally, the decay of a sinusoidal
excitation is measured to prove the ability of the method to
predict out of equilibrium kinetics. These simulations involve
both the driving force and the kinetic prefactor. For that
purpose, in a 384 × 48 × 48 site simulation box filled with
a random solution, the decay of a sinusoidal excitation of the
concentration field is observed. From an initial configuration
of the concentration field c = c0 + A sin(2πx/λ), where x is
the position on the x axis and λ = 24a, the system evolves
towards an homogeneous solution within AKMC simulations
and CKMC simulations for cells of d3 = 27, 64, and 512
atomic sites. The amplitude of the excitation is extracted and
displayed as a function of time. In all kinetic simulations, a
single vacancy is present in the simulation box.

1. Ideal solid solution on a bcc lattice

An ideal solid solution represents the simplest system in
which diffusion properties can be studied. In this system, atoms
do not interact with each other. As a consequence, the free
energy has a purely entropic origin, and the interaction term in
the effective Hamiltonian is null. The local free energy displays
then a single-well profile with a minimum at a concentration
c = 1/2, as shown in Fig. 4. A finite-size effect appears, which
is perfectly taken into account by the parametrization method
as can be seen by the agreement on the 4096 site system
between the AKMC and the CKMC evaluation.

Given the absence of atomic interactions, the temperature
does not affect the kinetic properties and correlations are small,
even if some still exist due to geometrical effects induced by
the lattice.36 AKMC calculations of the Onsager matrix of this
alloy are displayed in Fig. 5. The ideal solid solution presents
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FIG. 4. (Color online) Free energy density as a function of the
concentration for the ideal solid solution on a bcc lattice at T = 550 K.
The dark line corresponds to a single AKMC system of 4096 atoms,
the circles to a single AKMC system of 64 sites, the dots to a CKMC
system of 64 cells of 64 atoms.

positive LAB correlations at all concentration. As a conse-
quence, only the subset {(AV ),(BV ),(V V AB),(V V BA)} of
coarse-grained events is necessary to describe the system at
the coarse-grained scale. The average frequencies then take
the values

W̃ 0
AV (c) = S

dz∗ [LAA(c) − LAB(c)],

W̃ 0
BV (c) = S

dz∗ [LBB(c) − LAB(c)],
(23)

W̃ 0
V V AB(c) = 1

2

S

dz∗ [LAB(c)],

W̃ 0
V V BA(c) = 1

2

S

dz∗ [LAB(c)],

where z∗ = 4 and the 1
2 factor is due to the split of the (VVAB)

event into two cases where either the A or the B atom jump first.
A polynomial fit of the terms of the Onsager matrix computed
using AKMC simulation is used to determine the CKMC
jump frequencies. This parametrization leads to a perfect

FIG. 5. Normalized Onsager matrix of an ideal solid solution
on a bcc lattice as a function of the concentration. The dark line
corresponds to AKMC simulations, while the symbols correspond to
CKMC simulations.

FIG. 6. (Color online) Amplitude of a sinusoidal excitation
of wavelength λ = 24a as a function of time of a solution of
concentration C = 0.1 of an ideal solid solution on a bcc lattice.
The black continuous line corresponds to AKMC simulation, while
the red dashed (respectively, blue dotted and green dash and dotted)
one to 27 (respectively, 64 and 512) at. cells CKMC simulations.

reproduction of the Onsager matrix by CKMC simulations
as can be seen in Fig. 5, with a maximum error below 3% of
the AKMC values. The agreement obtained validates in the
case of the ideal solid solution the hypothesis that correlations
could be neglected at the mesoscopic scale.

The simulation of the decay of a sinusoidal excitation of
amplitude 5% and of wavelength λ = 24a in a solution of
concentration c = 0.1 in atom B is displayed on Fig. 6. It
shows that in the absence of interactions, the exponential decay
is recovered by CKMC simulations, and that the decay of the
excitation in AKMC simulations is quantitatively reproduced
by CKMC simulations for every cell size. This shows (1) that
the driving force, of purely entropic origin in the present case,
is correctly described and (2) that the parametrization of the
Onsager matrix leads to the correct interdiffusion coefficient,
as it is the kinetic quantity involved in the current simulations.

2. First nearest neighbor interaction alloy on a bcc lattice

In order to demonstrate the ability of CKMC simulations
to correctly reproduce the effect of temperature, an alloy with
atomic interaction is required. A binary alloy A-B with first
n.n. interactions is chosen for that purpose, with a simple set
of interactions leading to an unmixing tendency: only one
nonzero interaction is considered, between A and B atoms
V AB

1 = 0.01 eV at their equilibrium first n.n. position. No
effect of the solute on the saddle point is introduced. As only
pair interactions are considered, thermodynamic properties are
invariant through the c → 1 − c transformation. As shown
in Table I, different attempt frequencies for A and B atoms
were chosen, to introduce a difference between the kinetic

TABLE I. Atomic jump attempt frequencies for the ideal solid
solution (IDS) and the first nearest neighbor interaction alloy (FNNI)
in terahertz.

IDS FNNI

V −A 1000 1000
V −B 750 750
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FIG. 7. (Color online) Phase diagram of the first n.n. alloy. The
temperatures are normalized by the AKMC critical temperature Tc.
The dark line corresponds to an AKMC system of 483 site system,
the symbols to CKMC system with the same number of atomic sites,
divided in 27 (full squares), 64 (empty circles) and 512 (plus symbols)
at. cells.

properties of A and B atoms. As shown in Fig. 7, the phase
diagram obtained by semi-grand-canonical simulation of a
483 site system displays a miscibility gap up to a critical
temperature Tc where a second-order phase transition takes
place. CKMC simulations accurately reproduce the solubility
limit away from the direct vicinity of the critical temperature,
and two specific temperatures, T = 0.8Tc and 1.5Tc, were
chosen to exemplify the situation above and below the critical
temperature.

As in the case of the ideal solid solution, the ability of the
CKMC simulations to reproduce the free energy of an AKMC
system of 4096 atomic sites is tested for this model alloy. As
can be observed in Fig. 8 at T = 1.5Tc, a perfect reproduction
of the free energy is obtained. The case of T = 0.8Tc displayed
in Fig. 9 shows, however, that inside the miscibility gap,
a lesser accuracy is achieved, even if an excellent overall
agreement is obtained. The AKMC profile appears slightly
flatter in the middle of the miscibility gap. This difference
might originate from the relaxation of the interfaces inside the
gap. Within the miscibility gap, the system tends to separate.

FIG. 8. (Color online) Free energy density as a function of the
concentration for the first n.n. interaction alloy at a temperature
T = 1.5Tc. The dark line corresponds to a single AKMC system
of 4096 atoms, the circles to a single AKMC system of 64 sites, the
dots to a CKMC system of 64 cells of 64 atoms.

FIG. 9. (Color online) Free-energy density as a function of the
concentration for the first n.n. interaction alloy at a temperature
T = 0.8Tc. The dark line corresponds to a single AKMC system
of 4096 atoms, the circles to a single AKMC of 64 sites, the dots to
a CKMC system of 64 cells of 64 atoms.

The finite size of the system constrains the system that might
not be able to separate in this small space, while it would
have given two different phases in an infinite system. The
thermodynamic parametrization takes into account relaxation
within the cell, but relaxation at the larger scales is only
imperfectly described by the coarse-grained description.27

The study of the Onsager matrix by AKMC simulation is
performed at every concentration at T = 1.5Tc and limited to
concentrations below the solubility limit at T = 0.8Tc. The
results are displayed in Figs. 10 and 11. In both cases, positive
LAB correlations can be noticed at every concentration. As a
consequence, a set of events similar to the one used in the case
of the ideal solid solution is used. Figures 10 and 11 show
that CKMC simulations thus parameterized quantitatively
reproduce the Onsager matrix obtained by AKMC simulations
with a relative error below 3%.

Simulations of sinusoidal excitation decay were performed
in the case of the first n.n. interaction alloy, as exemplified for

FIG. 10. Normalized Onsager matrix of the first n.n. interaction
alloy as a function of the concentration at a temperature T = 1.5Tc.
The dark line corresponds to AKMC simulations, while the symbols
corresponds to CKMC simulations.
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FIG. 11. Normalized Onsager matrix of the first n.n. interaction
alloy as a function of the concentration for the model bcc Ising alloy
at a temperature T = 0.8Tc. The dark line corresponds to AKMC
simulations, while the symbols corresponds to CKMC simulations.

a concentration of 2% in Fig. 12 at T = 1.5Tc and in Fig. 13
at T = 0.8Tc. The CKMC kinetics performed at different cell
sizes perfectly agree with the AKMC reference simulations.
These simulations show that the CKMC method is able to
produce quantitative simulation of diffusion processes without
being impeded by the presence of interactions.

3. CKMC simulation of the Fe-Cu alloy

Finally, a set of interactions describing the Fe-Cu alloy is
used to demonstrate the ability of the CKMC method to tackle
with the more complex interaction models required to describe
real alloys. The Fe-Cu alloy adopts in the Fe-rich domain
a bcc structure up to a temperature of 850 ◦C, above which
an allotropic phase transformation takes place. A miscibility
gap limits the solubility of copper in the iron matrix to a
maximum of 1.8 at.% at 850 ◦C. The copper precipitates
adopt a bcc structure up to a radius of 2 nm, beyond which
faulted structure and finally the fcc structure of pure copper
is preferred. A parametrization of AKMC simulations for
this alloy in the bcc structure has been established from

FIG. 12. (Color online) Amplitude of a sinusoidal excitation
of wavelength λ = 24a as a function of time of a solution of
concentration C = 0.02 of the first n.n. interaction alloy at T = 1.5Tc.
The black continuous line corresponds to AKMC simulations, the red
dashed (respectively, blue dotted and green dash and dotted) one to
27 (respectively, 64 and 512) at. cells CKMC simulations.

FIG. 13. (Color online) Amplitude of a sinusoidal excitation
of wavelength λ = 24a as a function of time of a solution of
concentration C = 0.02 of the first n.n. interaction alloy at T = 0.8Tc.
The black continuous line corresponds to AKMC simulation, the red
dashed (respectively, blue dotted and green dash and dotted) one to
27 (respectively, 64 and 512) at. cells CKMC simulations.

density functional theory calculations by Soisson and Fu in
Ref. 9. Using these parameters, detailed in Tables II and III,
the thermodynamic properties of the alloys are accurately
reproduced below the Curie temperature and to a lesser degree
at higher temperatures. The AKMC simulations based on
these interactions provide an interesting insight of the kinetic
properties of this alloy, showing the high mobility of the
copper clusters due to the high vacancy concentration on sites
neighboring copper atoms. The ability of the CKMC method
to reproduce its phase diagram or interface profile has already
been demonstrated in Ref. 27. In the present work, CKMC
simulations were performed at T = 1100 K in order to benefit
from a high solubility, while keeping the bcc structure.

First, the free-energy functional of the Fe-Cu alloy has
been computed at 1100 K as shown in Fig. 14. Comparing
the AKMC and CKMC results for 4096 atomic site systems,
the free energy appears to be overestimated in the miscibility
gap by the CKMC calculation. Despite being lower than the
energy density of a single 64 atomic site system, the CKMC
systems seems to be unable to relax enough to reach the energy
density of the AKMC system of identical size. As the free-
energy density remains very accurately reproduced in the solid
solution, it should not hinder diffusion simulations like the
excitation decay, while it will not lead CKMC simulations to
produce reliable results concerning precipitate nucleation. As
can be seen in the bottom part of Fig. 14, AKMC and CKMC

TABLE II. Binding energies at first and second nearest neighbor
distances in the Fe-Cu alloy from Ref. 40.

first n.n. (eV) second n.n. (eV)

FeFe −0.7782 −0.3891
CuCu −0.6436 −0.3218
FeCu −0.6506−7.83 × 10−6T −0.3450−3.92 × 10−6T

FeV −0.191 −0.095
CuV −0.190 −0.190
V V −0.000 0.000
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TABLE III. Kinetic parameters of the Fe-Cu alloy: binding
energies at saddle point position and attempt frequencies, from Ref. 9.

Saddle point interactions (eV)

FeFe −1.53
CuCu −1.41
FeCu −1.50
CuFe −1.36

Attempt frequencies (THz)

Fe 5000
Cu 2000

free-energy densities split at a concentration c ≈ 0.045 where
the AKMC free-energy derivative, the chemical potential,
drops, indicating nucleation. This drop does not appear on the
CKMC free-energy curve, which seems unable to relax enough
for nucleation to happen. This is a sign of the limits of the
thermodynamic parametrization procedure used. A solution
to this problem might be to introduce in the future a forth
order term in the gradient of concentration in the effective
Hamiltonian.

The Onsager matrix of the Fe-Cu alloy has been computed
in the solid solution using AKMC simulations. As shown
in Fig. 15, negative LAB correlations take place. These

FIG. 14. (Color online) Free-energy density as a function of the
concentration for the Fe-Cu alloy at T = 1100 K (top), with a focus
on the solute solution area (bottom). For the sake of clarity the quantity
F (c) = c × 0.74 eV has been deduced from the free energy.

FIG. 15. Normalized Onsager matrix as a function of the concen-
tration for the Fe-Cu alloy at a temperature T = 1100 K. The dark line
corresponds to AKMC simulations, while the symbols correspond to
CKMC simulations at different cell sizes.

correlations are however low enough not to induce solute drag
by the vacancy. As a consequence, the {(AV ),(BV ),(V AV B)}
subset of events is used for simulations at the coarse-grained
scale, with the frequencies

W̃ 0
AV (c) = S

dz∗ (LAA + LAB),

W̃ 0
BV (c) = S

dz∗ (LBB + LAB),
(24)

W̃ 0
V AV B(c) = S

dz∗
1

2
(−LAB),

W̃ 0
V BV A(c) = S

dz∗
1

2
(−LAB).

The CKMC frequencies are then parameterized on a linear fit
of the AKMC measurements of the Onsager matrix. As can be
observed in Fig. 15, an accurate reproduction of the different
terms of the Onsager matrix is achieved. The accuracy obtained
despite the important kinetic correlations that take place in this
system at the atomic scale, indicates that the hypothesis that
correlations can be neglected at the cellular scale is robust.

The simulation of the decay of a sinusoidal excitation of
amplitude A = 0.005 in a solution of concentration c = 0.005
in Cu atoms is displayed on Fig. 16. A semiquantitative agree-
ment is obtained between AKMC and CKMC simulations,
with a systematic underestimation of the decay time with 27
atomic site cells and an overestimation with the 512 atomic site
cells. However, the quantitative disagreement remains below
25% of the AKMC decay time. This discrepancy could also
come from the thermodynamic parametrization of the cellular
interaction. This interaction affects the driving force out of
equilibrium and thus the decay.

C. Reliability and efficiency of CKMC simulations

The limitations and advantages of the CKMC method have
been further investigated to define its field of application. The
effect of the solute concentration and of the wavelength on
the excitation decay simulations is investigated on the bcc
alloys with first nearest neighbor interactions presented earlier.
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FIG. 16. (Color online) Amplitude of a sinusoidal excitation
of wavelength λ = 24a as a function of time of a solution of
concentration C = 0.005 of the Fe Cu alloy. The black continuous line
corresponds to AKMC simulation, the red dashed (respectively, blue
dotted and green dash and dotted) one to 27 (respectively, 64 and 512)
at. cells CKMC simulations. The dark line corresponds to AKMC
simulations, while the symbols correspond to CKMC simulations.

The capabilities of CKMC simulations are then exemplified
on the kinetics of a precipitate dissolution. The gain of CPU
time obtained by using CKMC simulations instead of AKMC
simulations is then measured.

1. Systematic study of excitation decay

In order to measure the impact of the length scale of the
microstructure on the ability of the CKMC simulations to
reproduce the evolution of a system, a systematic study of
decay profiles both with respect to the average concentration
and the wavelength is performed. In Fig. 17, the decay
time τ is represented as a function of the concentration at
T = 1.5Tc. The decay time is obtained by an exponential fit
A = A0 exp(−t/τ ) of the decay of a sinusoidal excitation of
wavelength λ = 24a. The decay time seems approximately
linear between c = 0 and 0.5 according to AKMC simulations.
CKMC simulations provide results in quantitative agreement

FIG. 17. (Color online) Decay time as a function of the concen-
tration for the first n.n. interactions alloy at a temperature T = 1.5Tc.
The dark line corresponds to AKMC simulations, while the symbols
correspond to CKMC simulations.

FIG. 18. Ratio between the decay time obtained by CKMC and
AKMC simulation as a function of the wavelength in cell size unit
at a temperature T = 1.5Tc. The dark line is a guide to the eye
corresponding to a perfect agreement.

with AKMC simulations at all concentration, usually within
the fitting error bars. No systematic bias appears with concen-
tration, even if a higher dispersion of the results with respect
to the cell size can be observed in concentrated systems.

The linear behavior with respect to the concentration is
not a general feature of the decay time. In the current case,
its occurrence can be interpreted using Figs. 8 and 10. The
free energy appears at that temperature to be approximately a
parabolic function of the concentration, while the terms of the
Onsager matrix can be considered linear for c ∈ [0,0.5] as a
first approximation. These two approximations explain that a
decay time linear with respect to the average concentration is
found, as detailed in Appendix C.

The impact of the wavelength on the accuracy of CKMC
simulations is studied independently. In Fig. 18, the decay
time is plotted as a function of the wavelength, in cell size
unit. This figure shows that while a good agreement between
AKMC and CKMC simulation decay time is found at large
wavelength for all cell sizes, with an error bellow 10%, the
discrepancy increases suddenly at low wavelength. It is not
surprising that phenomena with a length scale close to the
resolution are poorly reproduced. Figure 17 allows defining
a threshold value of two cell sizes for the wavelength, below
which kinetic properties are not correctly reproduced. The
use of the (VVAB) exchange for CKMC simulations reduces
the kinetic resolution of the simulation, as for this event two
consecutive exchanges in a given direction are considered,
against one for the others. However, as the correlation term
LAB < LBB,LAA, the (VVAB) exchanges do not dominate
the diffusion and cannot explain the sharp increase of the
decay time ratio. A slightly lower kinetic resolution of CKMC
simulation can thus be expected for highly correlated systems.

2. Dissolution of a precipitate

Simulations of the dissolution of a solute precipitate have
been performed on the alloy with first n.n. interactions to
demonstrate the ability of the CKMC method to perform
simulations of microstructure evolutions. At T = 1.5Tc, in a
483 atomic site simulation box, simulations of the dissolution
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FIG. 19. Contour map of the concentration field along a cross-section during the dissolution of a precipitate simulated by the AKMC
method (top) and the CKMC method (bottom) with 27 atomic site cells, with from left to right the field in the initial configuration, and after
10−9 and 10−8 s. da is the size of the cellular unit cell. For the present contour map, the AKMC concentration field is averaged on cells of 27
atomic sites to mimic the resolution of the CKMC simulation.

of a spherical precipitate of concentration c = 0.9 and of
radius R = 12a in a matrix of concentration c = 0.1 have
been performed using both AKMC and CKMC methods.
Contour maps representing the concentration field in a two
dimensional cross-section of the system are shown in Figs. 19
and 20. The quantitative agreement is assessed using the radial
concentration profile from the center of the precipitate c(r).
These profiles, represented in Figs. 21 and 22 at two different
time scales, allow assessing quantitatively the ability of CKMC
simulations to reproduce the evolution of realistic microstruc-
tures. When cells are small enough, CKMC simulations can
accurately reproduce the concentration field, including the
precipitate. This is the case with 27 and 64 atomic site cells,
and in such a case the evolution of the profile obtained by
CKMC simulations agrees well with the profiles obtained by
AKMC simulations. However, when cells are large compared
to the precipitate size, as it is the case with 512 atomic site cells,
the poor resolution does not allow obtaining an accurate profile
within the precipitate. Despite this fact, CKMC simulations
quantitatively reproduce the AKMC concentration of cells
beyond the third nearest neighbor position from the center of
the precipitate and further away. Thus the poor description of
the precipitate seems not to impair predictions of the evolution
of the matrix, where concentration gradients are smaller. In
the present alloy, the solubility of vacancies is higher at the
interface between the precipitate and the matrix. The good
agreement obtained between AKMC and CKMC simulation
concerning the evolution of the shape of the interface with time
illustrates the ability of the CKMC simulation to reproduce the
increased atomic mobility at the interface due to this vacancy
concentration, resulting in an increase of the interdiffusion

coefficient at the matrix-precipitate interface. Moreover, these
simulations show that good driving forces were obtained
despite the large concentration gradient.

3. Acceleration coefficient

To evaluate the gain of computational time, an acceleration

coefficient A = τCPU
AKMC

τCPU
CKMC

corresponding to the ratio of CPU times

required by the AKMC and the CKMC method to reach a given
physical time is measured at equilibrium. These measurements
are displayed in Fig. 23. In the case of the first n.n. interaction
alloy, the acceleration coefficient appears to be fairly robust
with respect to the concentration or the temperature, with an
acceleration coefficient up to a 5 for 512 atomic site cells.
A gradient of concentration such as can be observed during
excitation decay measurements appeared to affect it by less
than 10%. In the case of the Fe-Cu alloy, an impressive
acceleration coefficient of nearly 2500 is obtained.

A transition from a configuration to another requires more
CPU time in a CKMC simulation than in an AKMC simulation,
as the high number of possible values of the concentration
field forbid storing all transition frequencies in memory, and
because several kinetic events are possible between two cells
in a CKMC simulation against only one between two atomic
sites in a AKMC simulation. However, each CKMC step is
more effective, as correlations are already integrated within an
event and as a longer distance is covered in each exchange. The
acceleration arising from the integration of the correlations is
mostly independent of the cell size, while the acceleration
due to the range of the kinetic events is a function of the
cell size d. From random walk theory, the number of steps
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FIG. 20. Contour map of the concentration field along a cross-section during the dissolution of a precipitate simulated by the AKMC
method (top) and the CKMC method (bottom) with 512 atomic site cells, with from left to right the field in the initial configuration, and after
10−9 and 10−8 s. da is the size of the cellular unit cell. For the present contour map, the AKMC concentration field is averaged on cells of 512
atomic sites to mimic the resolution of the CKMC simulation.

to reach any given state should scale with d−2 for a diffusive
behavior. A power law fit A = αdb of the CKMC acceleration
coefficient gave subdiffusive exponents b ∈ [1.6,1.9]. With
only three different cell sizes available, the accuracy of the
adjustment is however limited. The acceleration coefficient of
the Fe-Cu alloy is found to be of the order of 103 higher than
the acceleration coefficient of the first n.n. interaction alloy.
This can be explained by considering the effect of kinetic
correlations: when vacancies are strongly interacting with
solute atoms, most steps are used by the vacancy to escape
the volume of interaction with the solute. By considering

FIG. 21. (Color online) Radial concentration profile during the
dissolution of a precipitate after a time τ = 10−9 s. The black
continuous line corresponds to AKMC simulation, the red dashed
one (respectively, blue dotted and green dash and dotted) to 27
(respectively, 64 and 512) at. cell CKMC simulations. Simulation
points for the 512 at. cells are marked by plus symbols.

effective exchanges at a larger distance, a single step is
required in a CKMC simulation, sparing a lot of computational
time. This is typically the case of the Fe-Cu alloy. Several
different Monte Carlo algorithms can be used for AKMC
simulations as well as CKMC simulations. The residence
time algorithm used in all this work is more efficient when
there is a large difference between the frequencies of the
different kinetic events30 as it is the case for the AKMC
simulation of the Fe-Cu alloy. The gain observed can thus
not be noticeably reduced by a better choice of Monte Carlo
algorithm.

FIG. 22. (Color online) Radial concentration profile during the
dissolution of a precipitate after a time τ = 10−8 s. The black
continuous line corresponds to AKMC simulation, the red dashed
one (respectively, blue dotted and green dash and dotted) to 27
(respectively, 64 and 512) at. cell CKMC simulations.
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FIG. 23. (Color online) Acceleration coefficient as a function of
the cell size d for the first n.n interaction alloy and different solute
concentration C (top) and for the Fe-Cu alloy (bottom).

IV. CONCLUSION

To bridge the gap between atomic and macroscopic sim-
ulations, a coarse-grained master equation is built from the
atomic scale master equation, by using the local equilibrium
approximation. The constraints originating from the Onsager
matrix are used to define the transition frequencies at the
coarse-grained scale. We propose to perform a time integration
of the master equation thus obtained by using a Monte
Carlo algorithm that keeps the discrete aspect of atoms: the
coarse-grained kinetic Monte Carlo method.

The CKMC method is entirely parameterized using atomic
scale Monte Carlo simulations in a bottom up approach.
The kinetic parametrization introduced allows reproducing
complex kinetic phenomena like flux couplings. The Onsager
matrices obtained in CKMC simulations at all scales agree
with the measurement of the Onsager matrix in AKMC
simulations. This agreement confirms the validity of the
method in equilibrium situations. The study of the decay of a
sinusoidal excitation or the dissolution of a precipitate shows
the ability of the method to produce reliable simulations of
out of equilibrium systems. Simulations of the dissolution
of precipitates shows the ability of the method to provide
predictive simulations of microstructures in three dimensions.

Moreover, this method is shown to be very efficient on strongly
correlated systems like in the case of the Fe-Cu alloy, where a
speed up of the order of 103 is obtained.

While the present work focuses on the vacancy-mediated
diffusion mechanism which is the main mechanism con-
trolling thermal evolution, the interstitial-mediated diffusion
mechanism can be described as well by using the corre-
sponding atomic-scale simulation for the parametrization.
Most properties and techniques used in AKMC simulations
can be similarly transferred to CKMC simulations like the
time renormalization techniques serving to restore equilibrium
vacancy concentration used in recent AKMC simulations.41

As a consequence, the CKMC method appears as a ready to
use method for diffusion problems, able to provide reliable
predictions of the microstructure evolutions for a lower CPU
time than the one required by AKMC simulations.

A next step would be to apply the CKMC method to the
simulation of phase decomposition. The hypothesis of local
equilibrium at the root of this work is likely to cause problems
for the simulation of nucleation. An adaptive method, where
the mesh size would evolve with the microstructure could be
designed for that purpose, as the CKMC method is proved to be
consistent with both a fine and a coarse mesh. The beginning
of phase decomposition could be treated at the atomic scale.
Then, the mesh could be progressively coarsened during the
growth and coarsening regimes.
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APPENDIX A: RESIDENCE TIME ALGORITHM

In a Monte Carlo simulation of diffusion on a rigid lattice,
several algorithms can be used, like the Metropolis algorithm38

or the residence time algorithm.39 For kinetic simulations,
both algorithms present some advantages, that are discussed
in details in Ref. 30.

Concerning the residence time algorithm used in the
present work, at each iteration the following operations are
performed. (1) The list {ṅ} of the configurations at reach in
a single step from the current configuration is updated. (2)
The transition rates W (n → ṅ) of each transition is computed.
(3) A random number R of uniform probability over [0,1[ is
drawn. (4) The event i for which

∑i−1
nj ∈{ṅ} W (n → nj ) � R <∑i

nj ∈{ṅ} W (n → nj ) is then chosen. (5) The physical time of
the simulation is increased by the inverse of the sum of the
transition rates �t = 1∑

ṅ W (n→ṅ) . (6) The chosen transition is
applied.

APPENDIX B: THERMODYNAMIC AVERAGE OF
THE COARSE-GRAINED JUMP FREQUENCIES

The coarse-grained jump frequencies W 0
N,Ṅ

depend for-
mally on the local concentration c, but also on all the other
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FIG. 24. (Color online) LBB term of the normalized Onsager
matrix as a function of the concentration in the dilute limit of a bcc
alloy with first n.n interactions. The dark line corresponds to AKMC
simulations, while the symbols correspond to CKMC simulations.

degrees of freedom at the coarse-grained scale. In the contin-
uum limit, these configurations follow a Gaussian distribution
according to the Boltzmann law and the substitution of the
configuration-dependent quantity W 0

XY (N) with the average
value W̃ 0

XY (c) is consistent. The study of nonlinear kinetic
effects is beyond the scope of this work. However, for
small cells, the continuum limit is not valid and a Gaussian
distribution of states cannot always be assumed. In this case,
discretization induces kinetic finite size effects.

When an alloy is dilute in solute atoms, as the solute
concentration involved in the exchange frequency is the
average concentration of two cells, there is a nonvanishing
probability that one of the cells has no solute atom and the
second one contains c × Ntot solute atoms. Thus any exchange
involving the displacement of a solute atom from the first cell
has to be rejected. The effect of these rejections is negligible
as long as the Gaussian approximation holds. However, these
rejections have a significant impact on the kinetic properties
of a dilute alloy. Figure 24 shows the Onsager matrix of the
first n.n. interaction alloy, as computed by CKMC simulations,
with a focus on the dilute case. It can be seen on that figure
that for small cells of Ntot = 27 and 64 sites, the mobility of
the atoms is underestimated for concentrations c < c0 ≈ 1

Ntot
.

At this concentration, a significant number of cells devoid of
any solute atoms appears. This corresponds to a case where
the assumption that ∇c/c → 0 does not hold. The probability
to obtain a configuration where a given exchange is impossible
can, however, be evaluated. For example, in the case of (BV )
exchanges, the average W̃ 0

BV (c) of the rate of (BV ) exchanges
to take place in a system of two cells of overall population of
B atoms N is

W̃ 0
BV (N/2Ntot) =

N∑
i=0

P (i,N − i)W 0
BV (i,N − i), (B1)

where P (i,N − i) is the probability to find a concentration
i in the first of these two cells, and N − i in the other. By
keeping only the leading term in the gradient of concentration,
the exchange probability W 0

BV (i,N − i) is independent of i as
long as i > 0, and null otherwise. The last equation can then
be restated:

W 0
BV (i,N − i) = W 0

BV (N ) = W̃ 0
BV (N/2Ntot)

[1 − P (0,N )]
. (B2)

The exchanges used in CKMC simulations can therefore
be increased to compensate these rejected exchanges. P (0,N )
can easily be evaluated using a mean-field approximation.
We consider two cells of Ntot sites each, sharing a total of
N solute atoms and a single vacancy. Assuming that all the
configurations defined by the position of the solute atom have
a same probability, the probability for a cell to be empty can
be evaluated from a simple combinatorial calculation:

P (0,N ) = CN
Ntot−1

CN
2Ntot−1

−→
Ntot
1

(
1

2

)N

. (B3)

For a B-V exchange the event probability can thus be written
as

WBV (N ) = W̃ 0
BV (N/2Ntot)

1 − (
1
2

)N
, (B4)

while the probability for an A-V event is obtained by
substituting 2Ntot − N − 1 to N :

WAV (N ) = W̃ 0
AV (N/2Ntot)

1 − (
1
2

)2Ntot−N−1 . (B5)

Similar combinatoric calculations lead to corrections to the
probabilities of the other events:

WV AV B(N ) = W̃ 0
V AV B(N/2Ntot)[

1 − (
1
2

)2Ntot−N−1][
1 − (

1
2

)N ] ,

WV ABB(N ) = W̃ 0
V ABB(N/2Ntot)[

1 − (
1
2

)N − N
2Ntot

(
1
2

)N−1)[
1 − (

1
2

)2Ntot−N ] ,

WV V AB(N ) = W̃ 0
V V AB(N/2Ntot)[

1 − (
2
3

)N ][
1 − (

2
3

)3Ntot−N ] . (B6)

This “0-correction,” different for each type of jump, relies on a
crude approximation. In Fig. 24, the LBB of an alloy with first
n.n. interactions, detailed in Sec. III B2, computed with and
without the 0-correction, are represented. The 0-correction
leads to an accurate reproduction of the AKMC results by
CKMC simulations with cells of various sizes. It can be noticed
from these expressions that the 0-correction does not hinder
the detailed balance.

APPENDIX C: DIFFUSION EQUATION

The linear behavior of the decay time with respect to the
concentration can be understood by considering the diffusion
equation:

∂ci((x),t)

∂t
=

∑
k

Dik∇2ck(x,t), (C1)
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where the diffusivity matrix Dik can be built from the free
energy and the Onsager matrix:

Dik = β
∑

j

Lij

∂μj

∂ck

= β
∑

j

Lij

∂2F

∂ck∂cj

, (C2)

where β is the inverse thermodynamic temperature. As
a consequence, for a sinusoidal concentration field, a
parabolic free energy and a linear Onsager matrix lead
to a decay time linear with respect to the average
concentration.42
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