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Typical versus averaged overlap distribution in spin glasses: Evidence for droplet scaling theory
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We consider the statistical properties over disordered samples (J ) of the overlap distribution PJ (q) which
plays the role of an order parameter in spin glasses. We show that near zero temperature (i) the typical overlap
distribution is exponentially small in the central region of −1 < q < 1: P typ(q) = eln PJ (q) ∼ e−βNθ φ(q), where θ

is the droplet exponent defined here with respect to the total number N of spins (in order to consider also fully
connected models in which the notion of length does not exist); (ii) the rescaled variable v = −[ln PJ (q)]/Nθ

remains an O(1) random positive variable describing sample-to-sample fluctuations; (iii) the averaged distribution
PJ (q) is nontypical and dominated by rare anomalous samples. Similar statements hold for the cumulative overlap
distribution IJ (q0) ≡ ∫ q0

0 dq PJ (q). These results are derived explicitly for the spherical mean-field model with
θ = 1/3, φ(q) = 1 − q2, and the random variable v corresponds to the rescaled difference between the two
largest eigenvalues of Gaussian orthogonal ensemble random matrices. Then we compare numerically the typical
and averaged overlap distributions for the long-ranged one-dimensional Ising spin glass with random couplings
decaying as J (r) ∝ r−σ for various values of the exponent σ , corresponding to various droplet exponents θ (σ ),
and for the mean-field Sherrington-Kirkpatrick model (corresponding formally to the σ = 0 limit of the previous
model). Our conclusion is that future studies on spin glasses should measure the typical values of the overlap
distribution P typ(q) or of the cumulative overlap distribution I typ(q0) = eln IJ (q0) to obtain clearer conclusions on
the nature of the spin-glass phase.
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I. INTRODUCTION

In the statistical physics of quenched disordered systems,
where each disordered sample (J ) is characterized by its
partition function

ZJ =
∑
C

e−βEJ (C) = e−βFJ (β), (1)

it has been realized from the very beginning1 that the quenched
free-energy

ln ZJ = −βFJ (2)

is typical, i.e., is representative of the physics in almost all
samples (J ), whereas the averaged partition function ZJ can
be nontypical, especially at low temperature, because it can be
dominated by very rare disordered samples (J ). Correlation
functions are, from this point of view, very similar to partition
functions: the averaged correlation can be very different from
the typical correlation. It is very clear in one-dimensional spin
systems,2,3 where correlation functions can be written as a
product of random numbers, but it is also true for higher-
dimensional models.4–8 More generally, for each observable,
it is very important to be aware of the possible differences
between typical and averaged values, and to have a clear idea
of the distribution over samples.

In the field of classical spin glasses (see, for instance,
Refs. 9–11), there has been an ongoing debate on the nature of
the spin-glass phase between the droplet scaling theory,12–14

which is based on real-space renormalization ideas (explicit
real-space renormalization for spin glasses has been studied in
detail within the Migdal-Kadanoff approximation15), and the
alternative replica-symmetry-breaking scenario16 based on the
mean-field fully connected Sherrington-Kirkpatrick model.17

The questions under debate include the presence of the number
of ground states (two or many),18–20 the properties of the

overlap,21–29 the statistics of excitations,30,31 the structure of
state space,32 the absence or presence of an Almeida-Thouless
line in the presence of a magnetic field,33–38 etc. In particular,
one of the standard observables to discriminate between the
droplet and the replica theories has been the averaged overlap
distribution PJ (q). In the present paper, we show that this
averaged overlap distribution PJ (q) is actually nontypical and
is governed by rare disordered samples, whereas the typical
overlap distribution

P typ(q) ≡ eln PJ (q) (3)

is in full agreement with the droplet scaling theory. Our
conclusion is that it does not seem to be a good idea to
use a nontypical observable such as the averaged overlap
distribution PJ (q) to elucidate the physics of spin glasses,
and that future studies should focus on the typical overlap
distribution to obtain clear conclusions. Note that two recent
studies have also proposed to study other statistical properties
of the overlap distribution PJ (q) than the averaged value,
namely the statistics of peaks39 or the median over samples of
cumulative overlap distribution.40 We hope that the numerical
measure of the typical overlap distribution, which is a much
simpler observable, will give even clearer evidence for the
droplet scaling theory.

The paper is organized as follows. In Sec. II, we discuss the
general properties of the overlap distribution. In Sec. III, we
derive explicit results for the spherical mean-field model. In
Sec. IV, we present numerical results for the one-dimensional
long-ranged spin glass with random couplings decaying as
J (r) ∝ r−σ for various values of the exponent σ . In Sec. V,
we show numerical results for the mean-field Sherrington-
Kirkpatrick (SK) model (corresponding formally to the σ = 0
limit of the previous model). Our conclusions are summarized
in Sec. VI. Appendix A contains a brief reminder on the
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physical meanings of the droplet exponent θ , whereas
Appendix B briefly recalls the replica prediction for the
distribution of the cumulative overlap distribution.

II. OVERLAP DISTRIBUTION IN A GIVEN
DISORDERED SAMPLE

A. Notations

Let us consider a general spin-glass model containing N

spins Si = ±1 and random couplings J ≡ {Jij },
HJ = −

∑
JijSiSj . (4)

The partition function associated with the disordered sample
J ≡ {Jij } reads

Z
single
J (β) =

∑
{Si=±1}

eβ
∑

Jij SiSj . (5)

We use here the notation “single” to stress that this partition
function contains a single “copy” of spins, in contrast to
partition functions concerning “two copies” of spins that we
will introduce below. To characterize the spin-glass “order”,
one introduces the overlap

Q =
N∑

i=1

S
(1)
i S

(2)
i (6)

between two independent copies of spins (S(1)
i = ±1,S

(2)
i =

±1) in the same disordered sample J ≡ {Jij }. The parameter
Q of Eq. (6) can take the (N + 1) discrete values −N, − N +
2, . . . ,N − 2,N , so that for a large system it is convenient to
consider the rescaled overlap

q ≡ Q

N
, (7)

which remains in the interval −1 � q � 1.

B. Overlap distribution as a ratio of partition functions

The probability distribution of the overlap introduced in
Eq. (6) can be written as the ratio of two partition functions
concerning the two copies,

PJ (Q) = ZJ (β; Q)

ZJ (β)
. (8)

The numerator of Eq. (8) represents the partition function of
two copies in the same disorder constrained to a given overlap
Q [Eq. (6)],

ZJ (β; Q) ≡
∑

{S(1)
i =±1}

∑
{S(2)

i =±1}
eβ

∑
Jij (S(1)

i S
(1)
j +S

(2)
i S

(2)
j )

× δ
Q,

∑N
i=1 S

(1)
i S

(2)
i

. (9)

The denominator is the full partition function of the two copies
in the same disorder, with no constraint on the overlap, so
that it factorizes into the product of two partition functions
concerning a single copy [Eq. (5)],

ZJ (β) ≡
∑

{S(1)
i =±1}

∑
{S(2)

i =±1}
eβ

∑
Jij (S(1)

i S
(1)
j +S

(2)
i S

(2)
j )

= [
Z

single
J (β)

]2
. (10)

The fact that the overlap distributionPJ (Q) is a ratio of two
partition functions [Eq. (8)] yields that its logarithm lnPJ (Q)
corresponds to a difference of two free energies,

lnPJ (Q) = lnZJ (β; Q) − lnZJ (β). (11)

Since averaged free energies are known to be typical [see the
Introduction around Eq. (2)], the typical overlap distribution
defined as

ln P typ(Q) ≡ lnPJ (Q) = lnZJ (β; Q) − lnZJ (β) (12)

will be representative of most samples, whereas the averaged
value P av(Q) obtained by averaging directly the ratio of
partition functions of Eq. (8),

P av(Q) ≡ PJ (Q) =
(ZJ (β; Q)

ZJ (β)

)
, (13)

can be dominated by nontypical disordered samples, especially
at very low temperature, as we now discuss.

C. Behavior near zero temperature

Exactly at zero temperature, the single-copy partition
function of Eq. (5) will be dominated by the ground-state
energy E

(GS)
J corresponding to the two ground states related

by a global flip of all the spins ({S(GS)
i } and {−S

(GS)
i }),

Z
single
J (β) �

T →0
2e−βE

(GS)
J . (14)

The two-copies partition function of Eq. (9) will also be
dominated by the cases in which each of the two copies is
in either of the two ground states, so that it reads

ZJ (β; Q) �
T →0

e−2βE
(GS)
J (2δQ,N + 2δQ,−N ). (15)

The overlap distribution of Eq. (8) has thus the following
expected zero-temperature limit in each sample:

PT =0
J (Q) = 1

2 (δQ,N + δQ,−N ). (16)

To obtain the dominant contribution near zero temperature
at a given overlap value Q �= ±N , we may consider that one
of the two copies (say S

(1)
i ) is in one of the ground states [say

(S(GS)
i )] in Eq. (9): then to obtain a given overlap Q, the second

copy S
(2)
i must have

n ≡ N − Q

2
(17)

spins different from the first copy (S(2)
i = −S

(1)
i ) and N − n =

(N + Q)/2 spins identical to the first copy (S(2)
i = S

(1)
i ),

ZJ (β; Q = N − 2n) � 4
∑

1�i1<i2<···<in�N

e−βEJ (i1,...,in)

EJ (i1, . . . ,in) ≡ −
∑
ij

Jij S
(2)
i S

(2)
j

(
n∏

k=1

δ
S

(2)
ik

,−SGS
ik

)

×
∏

i �=(i1,...,in)

δ
S

(2)
ik

,SGS
ik

. (18)
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The ratio of Eq. (8) for Q �= ±N will thus have for the leading
contribution

PJ (Q = N − 2n) �
∑

1�i1<i2<···<in�N

e−β[EJ (i1,...,in)−EGS
J ],

(19)

which represents the partition function of excitations of a given
size n. Near zero temperature, one further expects that in each
given sample, the overlap distribution will be dominated by
the biggest of these contributions,

PJ (Q = N − 2n) � e−βEmin
J (n), (20)

where

Emin
J (n) ≡ min

1�i1<i2<···<in�N
[EJ (i1, . . . ,in) − EGS

J ] (21)

represents the minimal energy cost [EJ (i1, . . . ,in) − EGS]
among all excitations involving the flipping of exactly n =
N−Q

2 spins with respect to the ground state.
So we expect that the typical overlap has the following

leading behavior near zero temperature:

lnP typ(Q) ≡ lnPJ (Q) � −βEmin
J

(
n = N − Q

2

)
. (22)

D. Relation with the droplet scaling theory

The probability distribution PJ (q) of the rescaled variable
q = Q/N of Eq. (7) reads near zero temperature [Eq. (20)]

PJ (q) = NPJ (Q) � e−βEmin
J (n=N

(1−q)
2 ). (23)

In the central region −1 < q < 1, the number n = N
(1−q)

2
of spins is extensive in the total number N of spins of
the disordered sample. According to the droplet scaling
theory,12–14 the droplet exponent θ describes the scaling of
the energy “optimized excitations” with respect to their size
(see Appendix A), so that we expect the scaling

ln PJ (q) � −βEmin
J

(
n = N

(1 − q)

2

)
� −βNθv, (24)

where v is a positive random variable of order O(1). In
particular, the corresponding typical value is exponentially
small,

lnP typ(q) ≡ lnPJ (q) � −βNθ, (25)

whereas the averaged value will be governed by the rare
samples having an anomalous small variable v � T/Nθ . This
analysis leads to a power-law decay with respect to the size N ,

P av(q) ≡ PJ (q) ∝ N−x, (26)

where the exponent x depends on the behavior of the probabil-
ity distribution of the variable v near the origin P (v → 0), as
well as on possible prefactors in front of the exponential factor
of Eq. (23). For short-ranged spin-glass models, the standard
droplet scaling theory12–14 predicts a finite weight at the origin
P (v = 0) > 0 for the variable v, and no size prefactors, so
that the exponent x takes the simple value given by the droplet
exponent,

xsimple = θ. (27)

However, it is clear that these are two additional properties with
respect to the analysis of the typical behavior. For instance, in
the quantum random transverse-field Ising chain,7 equivalent
to the two dimensional classical McCoy-Wu model,6 the
typical correlation function decays as Ctyp(r) = eln C(r) ∼
e−rθ u with the simple droplet exponent θ = 1/2, whereas the
averaged correlation decays as the power law C(r) ∝ r−x

with the nontrivial exponent x = (3 − √
5)/2.7 In summary,

we feel that the exponential typical decay of Eq. (25) is a
very robust conclusion of the droplet scaling theory, whereas
the power-law decay with xsimple = θ of the averaged value
is based on additional hypotheses that are less general (see,
for instance, Sec. III concerning the spherical model where
the variable v does not have a finite weight near the origin
[Eq. (59)]).

E. Cumulative overlap distribution in each sample

It is convenient to consider also the cumulative overlap
distribution

IJ (q0) ≡
∫ q0

0
dq PJ (q) =

Nq0∑
Q=0

PJ (Q). (28)

Near zero temperature, the leading contribution of Eq. (19)
yields

IJ (q0) �
N
2∑

n= N(1−q0)
2

∑
1�i1<i2<···<in�N

e−β[EJ (i1,...,in)−EGS
J ], (29)

which represents the partition function over excitations con-
taining n flipped spins with respect to the ground state, where
n is in the interval N(1−q0)

2 � n � N
2 . The important point is

that the minimal value N(1−q0)
2 is also system-sized. So from

the point of view of the droplet scaling theory, the minimal
energy cost of these system-size excitations in each sample
will lead to the same scaling as Eq. (24),

ln IJ (q0) � −βEmin
J

(
N

(1 − q0)

2
� n � N

2

)
� −βNθv, (30)

where v is a positive random variable of order O(1). As a
consequence, the typical value I typ(q0) will be exponentially
small,

ln I typ(q0) ≡ ln IJ (q0) � −βNθ . (31)

On the contrary, within the replica theory,16 the typical value
remains finite for N = +∞ [see Eq. (B6) of Appendix B],
i.e., roughly speaking, this corresponds to a vanishing droplet
exponent θ = 0.

Again, Eq. (30) yields that the averaged value I av(q0) of the
cumulative distribution will be governed by the rare samples
having an anomalous small variable v and will decay as a
power law as Eq. (26).
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III. FULLY CONNECTED SPHERICAL
SPIN-GLASS MODEL

In this section, we consider the fully connected spherical
spin-glass model introduced in Ref. 41 defined by the
Hamiltonian

HJ = −
∑

1�i<j�N

Ji,j SiSj = −1

2

∑
i �=j

Ji,j SiSj , (32)

where the random couplings Ji,j = Jj,i are drawn with the
Gaussian distribution,

P (Jij ) =
√

N

2π
e− NJ2

ij

2 , (33)

and where the spins are not Ising variables Si = ±1 but are
instead continuous variables Si ∈] − ∞, + ∞[ submitted to
the global constraint

N∑
i=1

S2
i = N (34)

so that the partition function for a given sample reads

Z
single
J (β) =

(
N∏

i=1

∫ +∞

−∞
dSi

)
e

β

2

∑
i �=j Ji,j SiSj δ

(
N −

N∑
i=1

S2
i

)
.

(35)

A. Ground-state energy in each sample

The random couplings Jij form a random Gaussian sym-
metric matrix J̃ of size N . Let us introduce its N eigenvalues
in the order

λ1 > λ2 > · · · > λN (36)

and the corresponding basis of eigenvectors |λp〉 to have the
spectral decomposition

J̃ =
N∑

p=1

λp|λp〉〈λp|. (37)

Writing the spin vector in this new basis,

|S〉 =
N∑

i=1

Si |i〉 =
N∑

p=1

Sλp
|λp〉, (38)

the partition function of Eq. (35) becomes

Z
single
J (β) =

(
N∏

p=1

∫ +∞

−∞
dSλp

)
e

β

2

∑N
p=1 λpS2

λp δ

(
N −

N∑
p=1

S2
λp

)
.

(39)

The ground state is now obvious: to maximize the argument of
the exponential, one needs to put the maximal possible weight
in the first possible maximal eigenvalue λ1 [Eq. (36)] and zero
weight in all other eigenvalues λp with p = 2,3, . . . ,N ,

SGS
λp �=λ1

= 0,
(40)

SGS
λ1

= ±
√√√√N −

N∑
p=2

(
SGS

λp

)2 = ±
√

N.

So Eq. (39) has for the leading exponential term

Z
single
J (β) ∝ e

β

2 λ1(SGS
λp

)2 = eβ
Nλ1

2 (41)

and the ground-state energy is simply determined by the first
eigenvalue λ1,

EGS
J (N ) � ln Z

single
J (β)

(−β)
= −N

λ1

2
. (42)

The statistics of the largest eigenvalue λ1 of random Gaussian
symmetric matrices (Gaussian orthogonal ensemble) is known
to be given by

λ1 = 2

(
1 + u

2N2/3

)
, (43)

where the value 2 corresponds to the boundary of the semicircle
law that emerges in the thermodynamic limit N → +∞, and
where u is a random variable of order O(1) distributed with
the Tracy-Widom distribution.42 The ground-state energy thus
reads

EGS
J (N ) = −N

λ1

2
= −N − N1/3 u

2
. (44)

In summary, the extensive term is nonrandom, and the next
subleading term is of order N1/3 and random, distributed with
the Tracy-Widom distribution, as already mentioned in Ref. 43.
Within the general analysis of the statistics of the ground-state
energy recalled in the Appendix [Eqs. (A6) and (A7)], this
means that the spherical model has for a droplet exponent and
for a fluctuation exponent the same simple value,

θ sph = 1
3 , μsph = 1

3 . (45)

B. Overlap distribution in each sample

To analyze the overlap distribution in a given sample, we
analyze similarly the two-copies partition function [Eq. (9)],

ZJ (β; Q) =
(

N∏
i=1

∫ +∞

−∞
dS

(1)
i

∫ +∞

−∞
dS

(2)
i

)

× e
β

2

∑
i �=j Ji,j (S(1)

i S
(1)
j +S

(2)
i S

(2)
j )

× δ

(
N −

N∑
i=1

(S(1)
i )2

)
δ

(
N −

N∑
i=1

(S(2)
i )2

)

× δ

(
Q −

N∑
i=1

S
(1)
i S

(2)
i

)
. (46)

Using the basis of eigenvectors of the matrix J̃ of the couplings
[Eq. (37)], Eq. (46) becomes

ZJ (β; Q) =
(

N∏
p=1

∫ +∞

−∞
dS

(1)
λp

∫ +∞

−∞
dS

(2)
λp

)

× e
β

2

∑N
p=1 λp[(S(1)

λp
)2+(S(2)

λp
)2]

× δ

(
N −

N∑
p=1

(S(1)
λp

)2

)
δ

(
N −

N∑
p=1

(S(2)
λp

)2

)

× δ

(
Q −

N∑
p=1

S
(1)
λp

S
(2)
λp

)
. (47)
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To obtain the leading behavior near zero temperature, we may
consider that one of the copy (say S(1)) is in one of the two
ground states [Eq. (40)],

S
(1)
λp �=λ1

= SGS
λp �=λ1

= 0, S
(1)
λ1

= SGS
λ1

=
√

N. (48)

Then the component S
(2)
λ1

of the second copy on the first
eigenvector is completely fixed by the overlap Q,

S
(2)
λ1

= Q√
N

. (49)

The best that we can do for the second copy is thus to put
all the remaining weight on the second eigenvalue, and zero
weight on higher eigenvalues p = 3,4, . . . ,N ,

S
(2)
λp<λ2

= 0,
(50)

S
(2)
λ2

=
√

N − (
S

(2)
λ1

)2 =
√

N − Q2

N
.

Then the leading exponential term of Eq. (47) reads

ZJ (β; Q) ∝ e
β

2 {λ1[(S(1)
λ1

)2+(S(2)
λ1

)2]+λ2(S(2)
λ2

)2}

= e
β

2 [λ1(N+ Q2

N
)+λ2(N− Q2

N
)]. (51)

The leading behavior of the denominator of Eq. (10) reads
using Eq. (41)

ZJ (β) = [
Z

single
J (β)

]2 ∝ eβNλ1 (52)

so the overlap distribution of Eq. (8) reads near zero tempera-
ture

PJ (Q) ∝ ZJ (β; Q)

[ZJ (β)]2
∝ e

− β

2 N(λ1−λ2)(1− Q2

N2 )
, (53)

i.e., in the rescaled variable q = Q/N ,

PJ (q) = NPJ (Q = Nq) ∝ e− β

2 N(λ1−λ2)(1−q2). (54)

The difference between the two largest eigenvalues reads44,45

λ1 − λ2 = v

N2/3
, (55)

where v is a positive random variable of order O(1), whose
distribution can be obtained from the joint distribution of
(λ1,λ2)44 [here we need the Gaussian orthogonal ensemble
(GOE) case, but see Ref. 45 for the neighboring case
of Gaussian unitary ensemble (GUE) matrices]. Plugging
Eq. (55) yields the final result

PJ (q) ∝ e− β

2 N1/3(1−q2)v. (56)

In particular, the typical value decays exponentially in Nθ =
N1/3 in the whole central region −1 < q < 1,

ln P typ(q) ≡ ln PJ (q) ∝ −β

2
N1/3(1 − q2)v, (57)

and the appropriate rescaled variable is

v =
(

− ln PJ (q)
β

2 N1/3(1 − q2)

)
, (58)

which is the O(1) positive random variable of Eq. (55) for
GOE matrices. In the Gaussian random matrix ensembles, it is
well known that there exists a level repulsion between nearest-
neighbor eigenvalues as a consequence of the delocalized

character of eigenstates, with the following power law for the
distribution P (v) of the variable v of Eq. (55) near the origin
v → 0:

P (v) ∝
v→0

va, (59)

where a = 1 for GOE (a = 2 for GUE). This is different from
the finite weight P (v = 0) > 0 expected in short-ranged spin-
glass models. As a consequence, the power-law decay of the
averaged value in the spherical model,

P av(q) ≡ PJ (q) ∝ N−xsph , (60)

will be different from the simple value of Eq. (27), and should
be instead

xsph = (1 + a)θ = 2
3 . (61)

C. Cumulative overlap distribution in each sample

In each sample J , the cumulative overlap distribution will
inherit from Eq. (54) the same exponential decay with respect
to the size,

IJ (q0) ≡
∫ q0

0
dq PJ (q) ∝ e− β

2 N(λ1−λ2)(1−q2
0 )

= e− β

2 N1/3(1−q2
0 )v, (62)

where v is the positive random variable of order O(1) of
Eq. (55).

IV. ONE-DIMENSIONAL LONG-RANGED
ISING SPIN GLASS

A. Model

The one-dimensional long-ranged Ising spin glass46 is
defined by the Hamiltonian

HJ = −
∑

1�i<j�N

JijSiSj , (63)

where the N spins Si = ± lie equidistantly on a ring, so that
the distance between the two spins Si and Sj reads

rij = N

π
sin

(
|j − i| π

N

)
. (64)

The couplings are chosen to decay with some power law of
this distance,

Jij = cN (σ )
εij

rσ
ij

, (65)

where εij are random Gaussian variables of zero mean ε = 0
and unit variance ε2 = 1. The constant cN (σ ) is defined by the
condition

1 =
∑
j �=1

J 2
1j = c2

N (σ )
∑
j �=1

1

r2σ
1j

. (66)

It is important to distinguish the two regimes:
(i) For 0 � σ < 1/2, there is an explicit size rescaling of

the couplings,

cN (σ ) ∝ Nσ− 1
2 , (67)
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as in the Sherrington-Kirkpatrick mean-field model that
corresponds to the case σ = 0.

(ii) For σ > 1/2, there is no size rescaling of the couplings,

cN (σ ) = O(1). (68)

The limit σ = +∞ corresponds to the short-ranged one-
dimensional model. There exists a spin-glass phase at low
temperature for σ < 1.46 The critical point is mean-field-like
for σ < 2/3, and non-mean-field-like for 2/3 < σ < 1.46

In summary, this model allows us to interpolate con-
tinuously between the one-dimensional short-ranged model
(σ = +∞) and the Sherrington-Kirkpatrick mean-field model
(σ = 0), and is much simpler to study numerically than
hypercubic lattices as a function of the dimension d. This
is why this model has attracted a lot of interest recently47–55

(there also exists a diluted version of the model56).

B. Measure of the droplet exponent θ (σ )

Since we wished to evaluate minimal excitation energies
such as Eq. (21), we have chosen to work, in each disordered
sample, by exact enumeration of the 2N spin configurations
for small sizes 6 � N � 24. The statistics over samples has
been obtained, for instance, with the following numbers ns(N )
of disordered samples:

ns(L � 12) = 2 × 108; . . . ;

ns(L = 16) = 107;

. . . ns(L = 22) = 105;

ns(L = 24) = 2 × 104. (69)

1. The droplet exponent as a stiffness exponent

The droplet exponent θ (σ ) as a function of σ has been
measured via Monte Carlo simulations on sizes L � 256 in
Ref. 47 from the difference of the ground-state energy between

periodic and antiperiodic boundary conditions in each sample
[see the Appendix around Eq. (A4) for more explanations],

E
GS(P)
J − E

GS(AP)
J = Nθu, (70)

where u is an O(1) random variable of zero mean (with
a probability distribution symmetric in u → −u). In this
context, “antiperiodic” means the following prescription:47

for each disordered sample (Jij ) considered as “periodic”, the
“antiperiodic” consists in changing the sign Jij → −Jij for all
pairs (i,j ) where the shortest path on the circle goes through
the bond (L,1). We have followed exactly the same procedure,
and our results via exact enumeration on much smaller sizes
6 � L � 24 for the three values of σ we have considered are
actually close to the values given in Ref. 47,

θ (σ = 0.1) � 0.3,

θ (σ = 0.62) � 0.24, (71)

θ (σ = 0.75) � 0.17.

We refer the reader to Ref. 47 for other values of σ .

2. Statistics over samples of the ground-state energy

We have also studied the statistics of the ground-state
energy over samples [see the Appendix around Eqs. (A6) and
(A7) for more explanations]. We find that the correction to
extensivity of the averaged ground-state energy [see Eq. (A6)],

EGS
J (N ) � Ne0 + Nθshifte1 + · · · , (72)

is governed by the droplet exponent measured in Eq. (71) from
Eq. (70),

θshift(σ ) = θ (σ ), (73)

as expected in general within the droplet scaling theory
[Eq. (A8)].
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FIG. 1. (Color online) Statistics of the minimal excitation energy involving n spins [Eq. (75)] in the one-dimensional long-ranged model of
power σ = 0.1: (a) Average over samples Emin

N (n) ≡ Emin
J (n) as a function of n for sizes N = 8, 12, 16, 20, and 24. (b) Data collapse obtained

by testing the scaling form of Eq. (77): ln[N−θEmin
N (n)] as a function of ln n

N
with θ � 0.3.
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FIG. 2. (Color online) Statistics of the minimal excitation energy involving n spins [Eq. (75)] in the one-dimensional long-ranged model of
power σ = 0.62: (a) Average over samples Emin

N (n) ≡ Emin
J (n) as a function of n for sizes N = 8, 12, 16, 20, and 24. (b) Data collapse obtained

by testing the scaling form of Eq. (77): ln[N−θEmin
N (n)] as a function of ln n

N
with θ � 0.24.

We have also measured the fluctuation exponent μ of
Eq. (A7),

μ(σ = 0.1) � 0.3,

μ(σ = 0.62) � 0.35, (74)

μ(σ = 0.75) � 0.4.

The last two values are in agreement with Ref. 47, whereas
the first value is larger than the value μ(σ = 0.1) � 0.25 of
Ref. 47. We refer the reader to Ref. 47 for other values of σ .

3. Minimal energy of fixed-size excitations in a given sample

We have measured in each sample J the minimal energy
cost [EJ (i1, . . . ,in) − EGS] among all excitations involving
the flipping of exactly n spins with respect to the ground state
[Eq. (21)],

Emin
J (n) ≡ min

1�i1<i2<···<in�N

[
EJ (i1, . . . ,in) − EGS

J
]
. (75)

We show in Figs. 1, 2, and 3 that our data for the averaged
value over the samples J of size N ,

Emin
N (n) ≡ Emin

J (n), (76)
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FIG. 3. (Color online) Statistics of the minimal excitation energy involving n spins [Eq. (75)] in the one-dimensional long-ranged model of
power σ = 0.75: (a) Average over samples Emin

N (n) ≡ Emin
J (n) as a function of n for sizes N = 8, 12, 16, 20, and 24. (b) Data collapse obtained

by testing the scaling form of Eq. (77): ln[N−θEmin
N (n)] as a function of ln n

N
with θ � 0.17.
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FIG. 4. (Color online) Typical vs averaged overlap distribution for the one-dimensional long-ranged model of power law σ = 0.1 at
temperature T = 0.1: (a) ln P

typ
N (q) as a function of q for the sizes N = 6, 8, 10, 12, and 14. (b) ln P av

N (q) as a function of q for the sizes N = 6,
8, 10, 12, and 14.

can be rescaled in the following form:

Emin
N (n) � Nθ(σ )g

(
n

N

)
, (77)

where θ (σ ) is the droplet exponent measured previously in
Eq. (71).

Since we expect that this averaged value governs the low-
temperature behavior of the typical overlap [Eq. (22)], the
scaling form of Eq. (77) corresponds to the expectation of
Eq. (24).

C. Typical versus averaged overlap distributions

We have also computed directly the overlap distribution
PJ (q) via exact enumeration of the 4N configurations of the
two copies of spins for the sizes 6 � N � 15 at the temperature
T = 0.1 with the following statistics for the number nS(L) of
samples:

ns(L = 6) = 2 × 108;

ns(L = 8) = 2 × 107;

ns(L = 10) = 106;

ns(L = 12) = 5 × 104;

ns(L = 14) = 1750. (78)

In Figs. 4, 5, and 6, we compare the typical and the averaged
overlap distribution for three values of the power σ : in all cases,
we find that they are completely different in order of magnitude
(see the differences in log scales) and in dependence with the
system size N : whereas the averaged value does not change
rapidly with N (as found also on bigger sizes47), the typical
overlap distribution decays with N in the central region around
q = 0. This effect should be even clearer with the large system
sizes used in Ref. 47.

V. FULLY CONNECTED
SHERRINGTON-KIRKPATRICK MODEL

The fully connected Sherrington-Kirkpatrick Ising spin-
glass model17

HJ = −
∑

1�i<j�N

JijSiSj , (79)

where the couplings Jij are random quenched variables of
zero mean J = 0 and of variance J 2 = 1/N , can be seen as
the limit σ = 0 of the one-dimensional long-ranged modem
described in the preceding section.

A. Statistics of the ground state

The statistics over samples of the ground-state energy has
been much studied in the SK model.26,43,50,57–63 There seems to
be a consensus on the shift exponent governing the correction
to extensively of the averaged value [Eq. (A6)],

θshift � 0.33, (80)

which is thus close to the value of the long-ranged one-
dimensional model for σ = 0.1 discussed above. With our
exact enumeration on small sizes 6 � N � 24, we see the
compatible value

θ � 0.31. (81)

On the contrary, the “fluctuation exponent” μ is controver-
sial, with the two main proposals μ = 1/4 and 1/6 (see the
discussions in Refs. 43 and 26,50,57–63).

B. Minimal energy of fixed-size excitations in a given sample

We show in Fig. 7 that our data for the averaged value
over the samples J of size N of the minimal energy cost
[EJ (i1, . . . ,in) − EGS] among all excitations involving the
flipping of exactly n spins with respect to the ground state
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FIG. 5. (Color online) Typical vs averaged overlap distribution for the one-dimensional long-ranged model of power law σ = 0.62 at
temperature T = 0.1: (a) ln P

typ
N (q) as a function of q for the sizes N = 6, 8, 10, 12, and 14. (b) ln P av

N (q) as a function of q for the sizes N = 6,
8, 10, 12, and 14.

[Eq. (21)],

Emin
N (n) ≡ Emin

J (n), (82)

can be rescaled in the following form:

Emin
N (n) � Nθg

(
n

N

)
, (83)

where θ � 0.31 is the droplet exponent measured previously
in Eq. (81).

Since we expect that this averaged value governs the low-
temperature behavior of the typical overlap [Eq. (22)], the

scaling form of Eq. (77) corresponds to the expectation of
Eq. (24).

C. Typical versus averaged overlap distribution

We have also computed the overlap distribution PJ (q)
via exact enumeration of the 4N configurations of the two
copies of spins for the sizes 6 � N � 14 at the temperature
T = 0.1, with the same statistics as in Eq. (78). As shown in
Fig. 8, we find again that the typical and the averaged overlap
distribution are completely different in order of magnitude
(see the differences in log scales) and in dependence with the
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FIG. 6. (Color online) Typical vs averaged overlap distribution for the one-dimensional long-ranged model of power law σ = 0.75 at
temperature T = 0.1: (a) ln P

typ
N (q) as a function of q for the sizes N = 6, 8, 10, 12, and 14. (b) ln P av

N (q) as a function of q for the sizes N = 6,
8, 10, 12, and 14.
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FIG. 7. (Color online) Statistics of the minimal excitation energy involving n spins [Eq. (76)] in the mean-field SK model: (a) Average
over samples Emin

N (n) ≡ Emin
J (n) as a function of n for sizes N = 8, 12, 16, 20, and 24. (b) Data collapse obtained by testing the scaling form

of Eq. (77): ln[N−θEmin
N (n)] as a function of ln n

N
with θ � 0.31.

system size N : whereas the averaged value does not change
much with N , the typical overlap distribution clearly decays
with N in the central region around q = 0.

VI. CONCLUSION

In this paper, we have studied the statistical properties
over disordered samples (J ) of the overlap distribution PJ (q)
which plays the role of an order parameter in spin glasses. We
have obtained that near zero temperature, the following holds
true:

(i) The typical overlap distribution is exponentially small
in the central region of −1 < q < 1:

ln P typ(q) ≡ ln PJ (q) ∼ −βNθφ(q), (84)

where θ is the droplet exponent defined here with respect
to the total number N of spins (in order to consider also fully
connected models in which the notion of length does not exist).

(ii) The appropriate rescaled variable to describe sample-to
sample fluctuations is

v = − ln PJ (q)

βNθ
, (85)

which remains an O(1) random positive variable.
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FIG. 8. (Color online) Typical vs averaged overlap distribution for the SK model at temperature T = 0.1: (a) ln P
typ
N (q) as a function of q

for the sizes N = 6, 8, 10, 12, and 14. (b) ln P av
N (q) as a function of q for the sizes N = 6, 8, 10, 12, and 14.
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(iii) The averaged distribution PJ (q) is nontypical, dom-
inated by rare anomalous samples, and it can thus be very
misleading.

We first derived these results for the spherical mean-field
model with θ = 1/3, φ(q) = 1 − q2, and the random variable
v corresponds to the rescaled difference between the two
largest eigenvalues of GOE random matrices.

We then presented numerical results for the long-ranged
one-dimensional spin glass with random couplings decaying
as J (r) ∝ r−σ for various values of the exponent σ , and for the
SK-mean-field model (corresponding formally to the σ = 0
limit of the previous model). In all cases, we have obtained that
the typical and averaged overlap distributions are completely
different, in order of magnitude and in scaling. We have also
found that in each case, the same droplet exponent governs the
four properties we have measured:

(a) The change in the ground-state energy between different
boundary conditions in a given sample.

(b) The correction to extensivity of the averaged ground-
state energy.

(c) The minimal energy of excitations of a fixed extensive
size n ∝ N .

(d) The decay of the typical overlap distribution.
Our results are thus in full agreement with the droplet

scaling theory.
We hope that future studies on spin glasses will also

measure the typical values of the overlap distribution,
P typ(q) = eln PJ (q), or of the cumulative overlap distribution,
I typ(q0) = eln IJ (q0), instead of the nontypical averaged overlap
distribution, in order obtain clearer conclusions on the nature
of the spin-glass phase.

APPENDIX A: BRIEF REMINDER ON SOME PROPERTIES
OF THE DROPLET EXPONENT θ

In the droplet scaling theory,12–14 the most important
notion is the droplet exponent θ , with the following physical
meanings.

1. Scaling of renormalized couplings

The initial meaning of the droplet exponent θl is the scaling
of renormalized couplings J on a length scale L,12,13

JL � Lθlu, (A1)

where u is an O(1) random variable of zero mean (with a prob-
ability distribution symmetric in u → −u). This definition is
directly used in real-space renormalization studies based on the
Migdal-Kadanoff approximation.15 The definition of Eq. (A1)
means that there is no spin-glass phase when θl < 0, and that
there exists a spin-glass phase when θl > 0, which is then
governed by a zero-temperature fixed point.

2. Scaling of “optimized excitations” around a given point

The above definition can also be interpreted as the energy
scale of “optimized” excitations of linear size L around a given

point,14

Eexc
L � Lθl v, (A2)

where v is a positive random variable. So the energy scale is
Lθl with a probability O(1), but can also be O(1) with the
small probability P (v < L−θl ), so that these rare events will
lead to power laws in various observables.14

In the present paper, in order to compare with the fully
connected model where the notion of length does not exist, we
have chosen to define the droplet exponent with respect to the
number of spins N involved, so that Eq. (A2) becomes

Eexc
N � Nθv. (A3)

(For short-ranged models in dimension d, where N = Ld , the
correspondence reads θ = θl/d.)

3. Difference between different boundary conditions
in a given sample

The standard procedure to measure the droplet exponent is
to compute, in each given sample J , the difference between
the ground-state energies corresponding to different boundary
conditions,12–14 for instance periodic-antiperiodic,

E
GS(P)
J − E

GS(AP)
J = Nθu, (A4)

where u is an O(1) random variable of zero mean (with
a probability distribution symmetric in u → −u). Here the
droplet exponent has thus the meaning of a domain-wall
exponent, or a stiffness exponent. The link with Eq. (A1) is that
the energy difference between different boundary conditions
somewhat measures the renormalized coupling between the
boundaries. The link with Eq. (A3) is that the change of
boundary condition will select an optimized system-size
excitation given the new constraints.

For the short-ranged model on hypercubic lattices of
dimension d, the values measured for the stiffness exponent
θl (see Ref. 64 and references therein) read for the exponent
θ = θl/d defined with respect to the number N = Ld of spins

θ (d = 2) � −0.28

2
� −0.14,

θ (d = 3) � 0.24

3
� 0.08,

θ (d = 4) � 0.61

4
� 0.15, (A5)

θ (d = 5) � 0.88

5
� 0.176,

θ (d = 6) � 1.1

6
� 0.183.

4. Role of the droplet exponent in the statistics
of the ground-state energy

The statistics over samples of the ground-state energy in
spin glasses has been much studied recently (see Refs. 43
and 26,50,57–63 and references therein) with the following
conclusions:
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(i) The averaged value over samples of the ground-state
energy reads

EGS
J (N ) � Ne0 + Nθshifte1 + · · · . (A6)

The first term Ne0 is the extensive contribution, whereas
the second term Nθshifte1 represents the leading correction to
extensivity.

(ii) The fluctuations around this averaged value are gov-
erned by some fluctuation exponent μ,

EGS
J (N ) − EGS

J (N ) � Nμu + · · · , (A7)

where u is an O(1) random variable of zero mean u = 0 by
definition.

For spin glasses in finite dimension d, it has been
proven that μ = 1/2 and that the distribution of u is
simply Gaussian65 suggesting some central limit theorem
coming from the random couplings. But the shift exponent
of Eq. (A6) is nontrivial and coincides with the droplet
exponent,57

θshift = θ. (A8)

The link with Eq. (A3) is that the boundary conditions always
induce some system-size frustration, and thus some system-
size excitations. This contribution of order Nθ is distributed,
but the corresponding fluctuations are subleading with respect
to the bigger fluctuations corresponding to μ = 1/2.

Besides short-ranged models, the fluctuation exponent μ

and the scaling distribution of u have also been studied
for long-ranged models,47,49,50 and the fully connected SK
model.26,43,50,57–63

APPENDIX B: BRIEF REMINDER ON THE OVERLAP
WITHIN THE REPLICA THEORY

Within the replica theory,16 the probability distribution of
the cumulative overlap distribution

YJ (q0) ≡
∫

|q|�q0

dq PJ (q) (B1)

has a nontrivial limit in the thermodynamic limit N =
+∞:66,67 the translation for the cumulative overlap distribution
over the central region

IJ (q0) ≡
∫ q0

−q0

dq PJ (q) = 1 − YJ (q0) (B2)

yields that the probability distribution 
μ(I ) is indexed by the
parameter

μ = μ(β,q0) = 1 − YJ (q0) = IJ (q0). (B3)

Near the origin I → 0+, there is the power-law divergence,


μ(I ) ∝
I→0

I−(1−μ), (B4)

whereas near the other boundary I → 1−, there is an essential
singularity,


μ(I ) ∝
I→1

e
− 1

4z0(μ)(1−I ) , (B5)

where z0(μ) is given in Refs. 66 and 67. Other singularities
appear at (1 − I ) = 1/n, where n is an integer.68

From the point of view of the typical value I typ discussed
in the text, the important point is that it remains finite for
N = +∞,

ln I typ ≡ ln I =
∫ 1

0
dI (ln I )
μ(I ). (B6)
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