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Solute drag by vacancies in body-centered cubic alloys
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Transport coefficients, the elements of the so-called Onsager matrix, are essential quantities for modeling
solid-state kinetics controlled by diffusion. Focusing on diffusion in binary alloys with a body-centered cubic
crystal structure, we investigate the drag of solute atoms by vacancies, an effect induced by kinetic correlations.
To accomplish this, an analytic method—the self-consistent mean field method—is extended to take into account
interactions between the solute atom and a vacancy up to the third nearest neighbor sites. We identify kinetic
effects involving one or more frequencies. Analytic results are compared with select atomic kinetic Monte Carlo
simulations. We show that (1) solute drag is a more general phenomena than previously assumed, (2) it can
induced by association and dissociation exchanges, and (3) we identify the mechanisms involved.
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I. INTRODUCTION

Atomic transport plays a ubiquitous role during the fab-
rication and processing of materials as a route to develop
microstructures that optimize properties. In particular, atomic
diffusion in crystalline alloys controls the chemical homog-
enization of castings,1,2 the rate of precipitation of second
phases during heat treatments,3,4 or the buildup of solute
segregation at microstructural elements such as dislocations,
grain boundaries, and surfaces.5–7 In addition, atomic transport
can limit the stability of a microstructure at finite temperature.
When a material is irradiated, point defects are created
homogeneously in the material and migrate toward sinks
like dislocations or grain boundaries. When defect fluxes are
coupled to atomic fluxes, they can lead to phenomena like
radiation-induced segregation, as observed in austenitic steels
where chromium depletion appears at grain boundary under
irradiation.7–10 In iron-copper alloys, vacancies and copper
atoms are strongly bound and vacancies drag along the copper
atoms which can facilitate the copper precipitation in the
vicinity of vacancy sinks.11 Flux coupling can even lead to the
nucleation of thermodynamically unstable phases like Ni3Si
in undersaturated Ni(Si) alloys under irradiation.6,12

In a near equilibrium system, the atomic flux J α of a
chemical species α per unit area is linearly related to the
gradients of chemical potential ∇μβ of all species β by the
Onsager matrix Lαβ :

�J α = −
∑

β

Lαβ
�∇

(
μβ

kBT

)
, (1)

where kB stands for the Boltzmann constant and T for
the temperature. The Onsager matrix thus describes the
flux coupling at work in radiation-induced segregation. The
Onsager matrix is also required for accurate mesoscopic
kinetic simulations such as the phase field approach.13,14

However, in most cases only simplified models are used for the
description of kinetic properties; e.g., DICTRA only includes the
diagonal terms.15 These approximations limit the possibilities
for these models to make quantitative predictions, as they
ignore effects induced by correlation terms in the Onsager
matrix such as solute drag by vacancies. In particular, in the

presence of a gradient of chemical potential of vacancies,
solute atoms can diffuse even if the chemical potential for
the solute is spatially uniform under the influence of the
nonzero off-diagonal terms in the Onsager matrix that are
due to kinetic correlations. This phenomenon is observed
experimentally on quenched dilute alloys.16–18 If a sufficiently
stable solute-vacancy complex is formed, the vacancy will drag
the solute during its displacement.19 If the complex dissociates
after only a few jumps, site conservation results in the solute
atoms moving in the opposite direction of the vacancy flux.

The crystal structure plays a significant role in the onset
of solute drag. Consider a dilute alloy, with a face-centered
cubic (fcc) lattice. A vacancy may move around the solute
from one first nearest neighbor (NN) site to another—in
energetically equivalent configurations—without breaking the
solute-vacancy complex as there are NN sites of the vacancy
that are also NNs of the solute. If the rate for the vacancy
to move from a first nearest neighbor site to another is large
compared to the rate of dissociation of the solute-vacancy
complex, the vacancy will stay on an orbit of first nearest
neighbor sites (which we will refer to as “1” orbit) long enough
to allow drag to take place. In contrast, in the body-centered
cubic (bcc) lattice, first nearest neighbor sites are not mutual
neighbors. Hence, a vacancy on a first nearest neighbor site
of a solute atom can either exchange position with the solute
or leave the first nearest neighbor sites of the solute after
one jump. Finally, in a dilute binary alloy on a bcc lattice,
the displacements of a vacancy can be described using four
frequencies if solute-vacancy interactions are limited to first
nearest neighbor sites.20

First-principles thermodynamics have been very successful
in predicting the equilibrium structure and properties of
materials and a growing effort is being made to obtain
similarly kinetic properties of alloys by computing the jump
frequencies.2,4,11,21–28 Density functional theory (DFT) results
can then be coupled with analytic models22–24,27 or atomic
kinetic Monte Carlo simulations11,21,28,29 to compute the On-
sager matrix. Analytic methods are extremely computationally
efficient, since only a single matrix inversion is required to
obtain the Onsager matrix.30 However, analytic methods are
usually limited to the four frequency model,31 and in the
most advanced case, second nearest neighbor interactions
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have been only partially taken into account.32,33 Moreover,
a truncation of the kinetic correlations is required. Using one
such model, it has been concluded that no drag effect should
be expected when solute-vacancy interactions are limited to
first nearest neighbor sites.11,28,31 In contrast, atomic kinetic
Monte Carlo (AKMC) simulations are not limited by the
number of frequencies considered (cf. Ref. 30, and references
therein). However, when complex atomic interactions or highly
correlated kinetics are involved—as in the case of solute
drag—the computational cost of AKMC simulations can make
their use impractical. This limitation is important as the
accuracy of the results provided by DFT calculations comes
at the cost of ever more complex interatomic interactions, and
for which analytic methods have not yet been developed.

The aim of this work is to understand the origin of
vacancy-induced drag effect in bcc alloys. For that purpose,
numerous calculations of the Onsager matrix are required for
highly correlated systems. In order to overcome the limitations
discussed in the previous paragraph, and in order to gain
a physical insight, we rely on the self-consistent mean field
(SCMF) method34,35 to efficiently and systematically compute
the Onsager matrix and we extend this method to take into
account complex interactions. We calculate all the coefficients
(Lij ) of the Onsager matrix and we identify solute drag via
the ratio LBV /LBB , for solute B and vacancy V , similarly to
Anthony.36 This ratio is positive when the solute atoms are
dragged by the vacancies, and negative otherwise. The sign
is determined by LBV , which measures the correlation in the
displacement of solute atoms and vacancies, as LBB is always
positive.

We first describe the extension of the SCMF method
to better take into account kinetic correlations and atomic
interactions up to third nearest neighbor sites in bcc alloys and
introduce a general nomenclature for vacancy-atom exchange
in the dilute limit. Next, the occurrence of solute drag in bcc
alloys with interactions up to the third NN sites is studied
using SCMF calculations and AKMC simulations on some
selected cases. The effect of each atomic frequency is studied
independently in the case of an ideal solid solution, and some
collective effects are explored to identify the phenomena at
the origin of solute drag by the vacancy. Finally, the SCMF
calculations are applied to (1) a model alloy with interactions
up to the third nearest neighbor, and (2) for a Fe(Cu) alloy.

II. ANALYTIC CALCULATIONS OF THE ONSAGER
MATRIX BY THE SCMF METHOD

The SCMF method was developed initially for vacancy-
controlled diffusion in regular solid solutions (corresponding
to a mean field Bragg-Williams approximation of alloys)34 and
later improved to take into consideration pair correlations,35

leading to numerically exact solutions for binary dilute alloys.
Calculations based on this method were, however, limited for
the fcc structure to the five frequency model and kinetic cor-
relations were considered up to the first nearest neighbor sites
only (usually called first shell approximation, here denoted
1NN), or to the first nearest neighbor sites of the first nearest
neighbor sites of the solute (second shell approximation, here
denoted 1NN1NN).35 These results agreed with other analytic
methods.30 In order to quantitatively describe solute drag in

complex bcc alloy models, we extend the SCMF method to
take into account vacancy-solute interactions up to the third
nearest neighbor sites and kinetic correlations integrated up to
the third nearest neighbor sites of these third nearest neighbor
sites (denoted 3NN3NN) in bcc structures. First, we briefly
review the SCMF approach to calculate the Onsager matrix and
extend it to the case of anisotropic structures. The application
to the dilute limit is then presented, and a general nomenclature
of vacancy-mediated diffusion events is introduced. Some of
the details required to perform the numerical computation in
the 3NN3NN approximation are provided in Appendix A.

A. Self-consistent mean field formalism

1. Out-of-equilibrium formalism

An alloy can be represented by a system of interacting
atoms and vacancies distributed on a rigid lattice. A state
of the alloy is then defined by a vector n, the components
of which are the occupation numbers of all species on all
sites {nA

1 ,nB
1 , . . . ,nν

1; nA
2 ,nB

2 , . . . ,nν
2; . . .} such that nX

i = 1 if
the site i is occupied by the species X ∈ {ν,A,B . . .} and
zero otherwise. Let wn→m be the transition rate probability
between two configurations n and m through a single event.
We consider a system where consecutive events are considered
to be independent random events mediated by a vacancy, with
stationary probability.

Let P0(n) be the equilibrium probability to find the system
in a state n, at a temperature T . This probability can be used
as a reference and the out-of-equilibrium probability P (n,t) to
find the system in the state n at time t can be written as

P̂ (t) = P̂0 exp

[
(kBT )−1

(
δ�(t) +

∑
i

∑
α

δμα
i nα

i − ĥ(t)

)]
,

(2)

where the “hat” superscript “ ˆ” denotes a configuration-
dependent quantity, e.g., P̂0 ≡ P0(n), δ�(t) is the normaliza-
tion constant of the out-of-equilibrium part of the probability,
kB is the Boltzmann constant, δμα

i stands for the out-of-
equilibrium part of the chemical potential of the chemical
species α relative to vacancy on site i, and ĥ is an effective
Hamiltonian. The effective Hamiltonian ĥ can be written as
a cluster expansion,37 limited to pairs in the case of a dilute
binary alloy,

ĥ(t) = 1

2!

∑
α,β,i �=j

ν
α,β

i,j (t)nα
i n

β

i , (3)

where ν
α,β

i,j are two-body effective interactions. The deviation

from equilibrium is captured with δμα
i and ĥ. The SCMF

method focuses on the calculation of the effective interactions
necessary to describe a steady state solution imposed in
the presence of uniform gradient of chemical potential. For
the steady-states probability, SCMF finds fluxes that are
proportional to the gradients of chemical potential to determine
the Onsager matrix.

2. The moments equations

Under a uniform gradient of chemical potential, a steady
state solution contains the correlations in the movement of
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the species that leads to the Onsager matrix. Using detailed
balance, we find relations between the moment equations of
the master equation. For any function Â of the configuration n
we define the equilibrium and out-of-equilibrium averages:∑

{n} A(n)P0(n) = 〈Â〉 and
∑

{n} A(n)P (t,n) = 〈Â〉oe. The
SCMF method is based on the master equation

dP (n)

dt
=

∑
ṅ

wṅ→nP (ṅ) − wn→ṅP (n), (4)

where wṅ→n is the rate of transition from configuration ṅ
to configuration n. Considering transitions involving only an
exchange between a vacancy ν on a site s and an atom α

on a site i, the transition can be written wṅ→n = ŵαν
is . The

time derivative of the moments 〈nα
i 〉oe,〈nα

i n
β

j 〉oe of the master
equation are computed. These derivatives are approximated by
considering the first order term of the Taylor expansion with
respect to (kBT )−1ĥ(t). Then, the time derivative of the first
moment is

d
〈
nα

i

〉oe

dt
= −

∑
s

J α
i→s , (5)

where

kBT J α
i→s = − {〈

nα
i nν

s ŵ
αν
is

[(
δμα

s − δμα
i

) − (
ĥα

s − ĥα
i

)]〉}
,

(6)

and ĥα
s is the derivative of the effective Hamiltonian with

respect to the variable nα
s . The elements J α

i→s are the the atomic
fluxes of species α from site i to site s and are usually nonzero
only if i is a NN of s. The second moment derivative provides
another equation:

kBT
d
〈
nα

i n
β

j

〉oe

dt

=
∑

s �=i �=j

〈
n

β

j

{
nα

i nν
s ŵ

αν
is

[(
δμα

s − δμα
i

) − (
ĥα

s − ĥα
i

)]}〉
+

∑
s �=i �=j

〈
nα

i

{
n

β

j nν
s ŵ

βν

js

[(
δμβ

s − δμ
β

j

) − (
ĥβ

s − ĥ
β

j

)]}〉
.

(7)

In a steady state, all time derivatives are zero, and Eqs. (6)
and (7) can be used to compute the effective interactions.
In a dilute alloy, only pair correlations are relevant and it
is unnecessary to consider higher moments as all higher
moments can be written as products of first and second
order moments. Finally, symmetry can be used to reduce the

number of relevant variables. Considering a Bravais lattice
under a uniform gradient of chemical potential along the unit
vector �u, the chemical potential can be defined at any point
X from the chemical potential at a reference point O as
μ(X) = μ(O) + O�X · �∇( μ

kbT
), where �∇( μ

kbT
) = ‖�∇( μ

kb
)‖ · �u.

Two pairs of sites or “bonds” ij and i ′j ′ that are identical
under a point group operation of the crystal which leave
�u unchanged can be considered equivalent: ij ≡ i ′j ′. They
are grouped in an equivalence class {ij} and we use the
notation ij for a representative member of the class. The
number of relevant classes can be reduced by considering that
the effective interactions are antisymmetric with respect to the
bond variable ν

αβ

ij
= −ν

αβ

ji
and the species ν

αβ

ij
= −ν

βα

ij
. The

classes of bonds normal to �u cancel out, and only classes of
strictly positive projection on �u are required. Defining the set
of relevant equivalence classes E(�u), and {ij} a set of their
representatives, we need to only solve for two-body effective
interactions ν

αβ

ij
; the number of unknown variables is thus

reduced to one for each of these classes. In the following we
use �eis to designate the vector linking sites i and s and for any
class we choose a representative ij . Using the antisymmetry
of the effective interactions, we write γmj,ik = sign( �eik · �u) if
mj ≡ ik and is null otherwise.

A calculation taking into account all classes provides an
exact evaluation of the Onsager matrix in the case of a dilute
binary alloy. However, this infinite set has to be truncated in
practice. In the 1NN approximation, a single class is kept,
corresponding to the bonds between first nearest neighbor
sites. In the 1NN1NN approximation, the first nearest neighbor
sites of the first nearest neighbor sites are kept, leading to
five distinct classes. Finally, in the 3NN3NN approximation
developed for this work, the bonds linking sites up to the third
nearest neighbors of third nearest neighbors are considered,
for a total of 14 distinct classes.

Equation (7) can be solved. For that purpose we define the
vectors �M by �Mαβ,σ

ij
= �0 unless σ = α or σ = β and then

�Mαβ,α

ij
≡

∑
s �=i �=j

〈
n

β

j nα
i nν

s ŵ
αν
is

〉�eis,

(8)�Mαβ,β

ij
≡ −

∑
s �=i �=j

〈
nα

j n
β

i nν
s ŵ

βν

is

〉�eis .

For atomic species α,β,γ,ζ and classes ij and pq, we define
the matrix T

T
αβ,ηζ

ij,pq
≡ δα,η

∑
s

(∑
k

〈
n

ζ

kn
β

j nα
i nν

s ŵ
αν
is γik,pq

〉 − ∑
k

〈
n

ζ

kn
β

j nα
i nν

s ŵ
αν
is γsk,pq

〉)

− δβ,ζ

∑
s

(∑
k

〈
n

η

kn
β

j nα
i nν

s ŵ
βν

js γjk,pq

〉 − ∑
k

〈
n

η

kn
β

j nα
i nν

s ŵ
βν

js γsk,pq

〉)
. (9)

These notations allow one to write Eq. (7) for a steady state more simply:

∑
σ

�Mαβ,σ

ij
· �∇

(
μσ

kBT

)
= T

αβ,ηζ

ij,pq
ν

ηζ

pq . (10)
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Thus the inversion of the T matrix provides the effective interactions. To obtain the Onsager matrix, we define a bare
mobility for each class represented by is,

l
αβ,(0)
is

≡ δαβ

〈
nα

i nν
s ŵ

αν
is

〉
, (11)

where δ is the Kronecker symbol; and for each pair of classes represented by is and mj ,

�
α,αγ

is,mj
≡

∑
k

〈
γmj,ikn

α
i nν

s n
γ

k ŵαν
is

〉
. (12)

Finally using Eqs. (11), (12), and (6) a new flux equation is obtained

J α
i→s = −

∑
β

l
αβ

is,(0)
�eis · �∇

(
μα

kBT

)
+ 2

∑
mj,γ

�
α,αγ

is,mj
ν

αγ

mj
. (13)

Using Eq. (10) this equation then becomes

J α
i→s =

∑
β

⎛
⎝−l

αβ

is,(0)
�eis + 2

∑
mj,pq,γ,β,σ,ζ

�
α,αγ

is,mj
(T −1)αγ,σζ

mj,pq
�Mσζ,β

pq

⎞
⎠ · �∇

(
μβ

kBT

)
, (14)

where the first term on the right-hand side is the mobility in the absence of kinetic correlations and the second is the correlation
term. Thus, the total flux can be obtained by summing over all the volume V tot of the crystal the flux through each pair i,s of sites

J α
�u = 1

2V tot

∑
is

J α
i→s �eis . (15)

From this equation can be deduced the Onsager matrix

L
αβ

�v,�u = 1

2V tot

∑
is

⎛
⎝

⎡
⎣l

αβ

is,(0)
�eis − 2

∑
mj,pq,γ,σ,ζ

�
α,αγ

is,mj
(T −1)αγ,σζ

mj,pq
�Mσζ,β

pq

⎤
⎦ · �u

⎞
⎠ �eis · �v, (16)

where L
αβ

�v,�u has the unit of atoms per second and per meter
for a flux expressed as atoms per second and per area. The
cubic symmetry of the bcc lattice induces an isotropy of the
diffusion properties, and the Onsager matrix can be written as
the scalar Lαβ .

B. Application to the dilute limit

1. General nomenclature of vacancy-mediated kinetic events

In the case of a binary dilute alloy, where we consider
vacancy-mediated kinetic events only, each transition from
one state to another is due to the jump of an atom from an
atomic site into the vacancy. A systematic and convenient
nomenclature of these events can be defined. As illustrated
in Fig. 1, three specific site occupancies are involved at most
during a jump in the dilute case: the jumping atom site, the
vacancy site, and the site where the nearest solute atom is
located. Thus, a three index naming system can be chosen,
with each index defining the relationship between two of these
atoms. Let a be the distance (in nearest neighbor distance) from
the site of the jumping atom to the vacancy site, b the distance
from the site of the jumping atom to the solute site, and c the
distance from the site of the solute to the vacancy site. As a
consequence, b designates the vacancy-solute distance after
the jump, while c is the distance before the jump. Moreover,
for any distance beyond the solute-vacancy interaction range,
the value ∞ is assigned to the index, as the numerical value is
no longer relevant. The type of jump is identified with an index
ζ corresponding to the five frequency notation illustrated in

Fig. 2: ζ = 2 for a jump of the solute atom, ζ = 0 for a jump
of a matrix atom without any solute in the interaction area,
ζ = 1 for a jump between two sites interacting with the solute,
ζ = 3 for a dissociative jump leading outside the interaction
area, and ζ = 4 for an associative jump leading toward the
interaction area. The transition frequency from configuration
n to m can hence be written

wn→m = w
(ζ )
abc. (17)

FIG. 1. Schematic of a vacancy jump in a dilute alloy in the initial
configuration n (top) and final configuration m (bottom). The filled
circles represent the solute atom, the open circle a matrix atom, and
the squares a vacancy, while a,b,c are the distances between two
species, obtained by counting the NN shells. The frequency wn→m is
w

(ζ )
abc; the frequency starts from a shell c from the solute and finishes

in a shell b. a indicates the jump distance and ζ the “type” of jump.
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FIG. 2. Vacancy jump frequencies in a dilute bcc binary alloy
with first nearest neighbor interactions. Arrows indicate the direction
of the jumps for a vacancy at a site. The solute atom is represented by
a filled circle, and the numbers on lattice sites indicate the distance
from the solute atom site, while an ∞ indicates sites beyond the range
of the interactions.

The ζ index is partly redundant with the three others:
when ζ = 0 or ζ = 2 the indices b and c are no longer
relevant and can be omitted, leading to a more compact
notation. In a dilute binary bcc alloy, when jumps of the
vacancy are limited to first nearest neighbor sites and solute-
vacancy interactions are limited to first nearest neighbor sites,
only four frequencies are necessary to describe diffusion:
w

(0)
1 ,w

(2)
1 ,w

(3)
1∞1,w

(4)
11∞. The four frequency model20,38 is thus

retrieved and is illustrated in Fig. 2. Similarly, for a dilute
binary bcc alloy with third nearest neighbor interactions that
will be investigated in this work, all kinetic events can be
described through 12 different frequencies, which are sim-
ilarly represented in Fig. 3: w

(0)
1 ,w

(2)
1 ,w

(1)
121,w

(1)
112,w

(1)
131,w

(1)
113,

w
(3)
1∞1,w

(3)
1∞2,w

(3)
1∞3,w

(4)
11∞,w

(4)
12∞,w

(4)
13∞. Note that for bcc struc-

FIG. 3. Vacancy jump frequencies in a dilute bcc binary alloy with
third nearest neighbor interactions. Arrows indicate the direction of
the jumps for a vacancy at a site. The solute atom is represented by
a filled circle, and the numbers on lattice sites indicate the distance
from the solute atom site, while an ∞ indicates sites beyond the range
of the interactions. Names of the return jumps have been omitted for
the sake of clarity.

ture, only jumps where a = 1 are permitted. However, this
index can take different values under stress or in different
structures when several jump distances exist and is kept here
for that purpose.39,40

2. Averages in the dilute limit

In a dilute binary alloy A(B) with a single vacancy, a single
solute atom at most can be found in a finite region of space and
the probability to find a configuration n depends only on the
distance d between the vacancy and the nearest solute atom B.
The probability PB(d) to find a B atom on a site at a distance d

from a given vacancy is PB(d) = cBe−(kBT )−1F (d) = cByBν
d at

the first order in cB , where F (d) is the solute vacancy binding
energy at a distance d. Similarly, the probability PA(d) to
find on that site a matrix atom A is PA(d) = 1 − cByBν

d . The
thermodynamic average of a quantity is obtained using this
distribution probability, multiplied by the probability cν to
find a vacancy on a site.

For the sake of simplicity, we group in a single notation
the three point averages W

(ζ )
abc = 〈nα

i n
β

j nν
s w

ζ

abc〉, where a is the
distance between sites i and s, b is the distance between sites
i and j , and c is the distance between j and s, and the indices
ζ,a,b,c refer to the four index systematic nomenclature defined
in Sec. II B.

As in the dilute limit, w
ζ

abc depends only on the position of
the nearest solute atom and vacancy, and it is independent
from the configuration once nα

i and n
β

j are known. Thus

W
(ζ )
abc is the product of the jump frequency w

(ζ )
abc by its related

thermodynamic prefactor due to the three-point average and

W
(ζ )
abc = cνcByBν

a w
(ζ )
abc if ζ = 2

= cνcByBν
c w

(ζ )
abc otherwise. (18)

Similarly, we group in a single notation the two point
averages X

(ζ )
abc = 〈nα

i nν
s w

ζ

abc〉. These two-point averages can
be expressed as sums of three-point averages. For ζ �= 0,
X

(ζ )
abc = ∑

j,β〈nα
i n

β

j nν
s w

ζ

abc〉, and results identical at the first
order in cB to the three-point averages are obtained. The case
ζ = 0 is specific as it corresponds to the probability not to
have any solute atom in the neighborhood of the vacancy.
Using results from Eq. (18), we obtain at the first order in cB

for ζ = 0:

X(0)
a = cν

(
1 − cB

(
13 + 8yBν

1 + 6yBν
2 + 12yBν

3

))
w

(ζ )
abc,

while for ζ �= 0,

X(ζ )
a = W

(ζ )
abc otherwise. (19)

We note that in Ref. 35 and previously in Ref. 30 the effect of
the binding energies in the expression of X0

a has been missed,
which corresponds to considering yBν

1 = yBν
2 = yBν

3 = 1 for
that specific term. However, at finite temperature, the binding
energies have to be taken into account to accurately predict
LAA.41

For example of an SCMF average, in a dilute A(B)
binary alloy, for first NN sites i and j , if the vacancy-solute
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interactions are restricted to first nearest neighbor sites,∑
s

〈
nν

s n
B
j nA

i wAν
is

〉 = NS1W
(1)
111 + NS4W

(4)
11∞

= NS1y
BV
1 cBcνw

(1)
111 + NS4cBcνw

(4)
11∞,

(20)

where NS1 is the number of first NN sites of i which are also
first NN sites of j , and NS4 is the number of NN sites of i which
are not first NN sites of j nor j itself. As a consequence, for a
crystal structure with z first NN sites, NS4 + NS1 + 1 = z. In
a bcc structure NS1 = 0 and NS4 = 7, while in a fcc structure
NS1 = 4 and NS4 = 7. Detailed balance also relates the ratios
of jump frequencies. For example, in the case of a bcc crystal
with first nearest neighbor interactions described by the four

frequency model, yBν
1 = w

(4)
1∞1

w
(3)
11∞

. In the dilute case, the exact

Onsager matrix can then be expressed as a function of the
jump frequencies and concentrations only.

III. ONSET OF DRAG EFFECT WITHIN THE FOUR
FREQUENCY MODEL

The four frequency model serves as a reference for
describing diffusion by vacancies in bcc alloys with solute-
vacancy binding energy limited to first nearest neighbor sites.
According to Refs. 28,31, and 42, no solute drag by the
vacancy should happen within this model due to the absence
of sites being both nearest neighbor of the solute and of
one of its nearest neighbor sites. The question of solute
drag in the four frequency model was investigated using
SCMF calculations and assessed on select cases using AKMC
simulations. For that purpose a dilute binary alloy on a bcc
lattice is chosen, with an unmixing tendency. Vacancy-solute
interactions are described using a broken bond model (see
Appendix C) and with a vacancy-solute binding interaction Eb

1
limited to first nearest neighbor sites, resulting in exchange
frequencies w(i) = ν(i)eβEb

i , where Eb
i is the energy in the

initial configuration and ν(2) = ν(0) = 1, ν(3) = ν(4). Simula-
tions were performed above the critical temperature Tc, at
a temperature kBT = 4.74Eb

1 ≈ 1.5kBTc. Figure 4 presents
the ratio LBV /LBB obtained by SCMF calculations with

FIG. 4. (Color online) LBV /LBB ratio in a dilute bcc binary alloy
described by the four frequency model as a function of the ratio
w(4)/w(0). Circles represent the results of AKMC simulations, while
the solid (3NN3NN), dotted (1NN), and dashed (1NN1NN) lines
represent SCMF calculations in the different approximations.

different kinetic approximations as a function of w(4)/w(0). In
calculations made in the 1NN approximation, no drag effect is
predicted in bcc alloys: In this case, LBV is always negative, in
agreement with Ref. 31. However, for a large enough w(4)/w(0)

ratio, a drag effect appears according to SCMF calculations in
the 1NN1NN approximation, in contradiction with the results
obtained in the 1NN approximation. We note that the 1NN1NN
approximation had been already developed in the past with
different methods,32,33,43 even if its results had not been applied
specifically to the study of solute drag. The SCMF result in
the 3NN3NN approximation confirms the results obtained in
the 1NN1NN approximation.

In order to validate the SCMF results and the choice
of effective interaction cutoff, atomic kinetic Monte Carlo
simulations are performed to compute Onsager matrices using
atomic jump frequencies identical to the ones used in SCMF
calculations (see Appendix B). AKMC simulations were
performed using a 2 × 163 site simulation box containing a
single solute atom and a vacancy. The initial configuration is
obtained by choosing random locations for the vacancy and the
solute atom, and equilibrating the system for one Monte Carlo
step (MCS), i.e., 2 × 163 vacancy jumps. Displacements of the
atoms are recorded during 100 MCS and the values averaged
over 105 simulations. The Onsager matrix is obtained using
the Kubo-Green formula:43

Lαβ =
〈
RαRβ

6V τ

〉
, (21)

where V is the atomic volume and Rα is the total displacement
of all atoms of type α during the integration time τ . As can
be seen in Fig. 4, the AKMC simulations confirm the SCMF
predictions, as solute drag by the vacancies does appear, in
quantitative agreement with the SCMF results in the 3NN3NN
approximation, which predict a drag effect for w(4)/w(0) >

6. In contrast, the 1NN1NN approximation provides only a
qualitatively correct prediction.

Predicting drag requires taking into account long-range
correlations: It is completely missed by calculations in the
1NN approximation. The calculations in the 1NN1NN ap-
proximation, however, predict drag, which indicates that drag
involves the sites surrounding the first nearest neighbor sites.
As can be seen in Fig. 2, while first nearest neighbor sites
are not connected by other first nearest neighbor sites on a
bcc lattice, they are, however, connected by second or third
nearest neighbor sites. The exchange frequencies toward and
from these sites are the frequencies w(4) and w(3). If w(4)/w(0)

is large enough, the vacancy can thus turn around the solute
many times, alternating between first nearest neighbor sites
and more distant ones on a path that we define as the “1 + ”
orbit. As this orbit is beyond the range considered in the 1NN
approximation, that approximation misses its influence, and
solute drag is not predicted. The underlying idea that the
solute-vacancy pair has to remain bound is valid, but from a
kinetic point of view, which involves not only the equilibrium
position but also the saddle-point energies, and not from a
thermodynamic point of view. This behavior illustrates the
key mechanism behind drag, which is directly related to the
ability of the vacancy to jump around the solute faster than to
jump away from it.
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To conclude, the example presented attests to the ability of
the 3NN3NN SCMF calculations to take into account highly
correlated kinetics and provide values of the Onsager matrix in
quantitative agreement with AKMC simulations. This example
also shows that solute drag by vacancies in dilute binary alloys
on bcc lattices can happen in even the most simple systems, in
particular, at low temperature where the effect of a difference
between the migration enthalpies is enhanced. An accurate
description of the kinetic event and a careful calculation of the
kinetic properties are thus required to predict the behavior of
these systems.

IV. DRAG EFFECT MECHANISM IN THE 12
FREQUENCY MODEL

The 3NN3NN approximation of the SCMF model allows
us to evaluate the impact on the Onsager matrix of the 12
frequencies required to describe an alloy with solute-vacancy
interactions up to the third nearest neighbor sites. However,
considering the high number of frequencies, a complete
parametric study with respect to all the frequencies is out
of reach. Thus, to identify the main trends, the impact of each
frequency on the drag effect is first evaluated independently
for an ideal solid solution. In this case, the absence of solute-
vacancy interactions reduces the number of free parameters to
six, allowing one to more easily study the effect of each of
them. Collective effects involving several frequencies are then
discussed.

A. Independent effect of each frequency

The drag effect is not only determined by the vacancy-solute
binding energy, but also by the ability of a vacancy to remain
in the vicinity of the solute atom for a sufficient number of
consecutive jumps. Such kinetic effects can be studied on an
ideal solid solution, which corresponds to the high temperature
limit of any alloy, and where vacancy-solute binding energy
is negligible. If all frequencies were equal, no solute drag
would take place. The 1NN1NN approximation in Ref. 33
provides then the ratio LBV /LBB = −1.3546, while the
calculations in the 3NN3NN approximation give LBV /LBB =
−1.3651, in slightly better agreement with Manning’s refer-
ence calculation45 that yields the value LBV /LBB = −1.388
for the noninteracting alloy. We study the effect of each
frequency by varying one frequency while all others remain
constant. As detailed balance requires wd

1XY = wd
1YX for each

XY pair, only six frequency ratios are explored so that the
solute-vacancy binding energy is zero.

In Fig. 5, the ratio LBV /LBB is represented for an ideal
solid solution with all attempt frequencies equal but one,
as a function of the ratio of attempt frequencies. As the
vacancy-solute exchange does not change the position of the
barycenter of the vacancy-solute pair, it does not affect the
LBV /LBB ratio. In contrast, the w

(1)
112 and w

(1)
113 frequencies

allow the vacancy to move around the solute by respectively
alternating between first nearest neighbor and second nearest
neighbor sites, or first nearest neighbor sites and third nearest
neighbor site, which we refer to as a “1-2” orbit and a
“1-3” orbit, respectively. In the four frequency model, these
jumps were grouped together with w

(4)
11∞ in a single w

(4)
11∞

FIG. 5. (Color online) Parametric study of LBV /LBB in a dilute
bcc binary alloy within the 12 frequency model. All drag ratios are
computed using the SCMF method in the 3NN3NN approximation.
For each curve, all frequencies but the designated one are equal.

frequency. The w
(4)
11∞ frequency was shown to be responsible

for solute drag in bcc dilute alloys with first nearest neighbor
interactions on the 1 + orbit, and similarly increasing w

(1)
112

and w
(1)
113 induces drag effect, as was the case in the four

frequency model. The w
(4)
11∞ has the opposite effect through

its dissociative counterpart w
(3)
1∞1 = w

(4)
11∞ as it allows the

escape of the vacancy from the neighborhood of the solute
toward a fifth nearest neighbor site from which the vacancy
cannot directly jump back to a first, second, or third nearest
neighbor site, forbidding it a quick return. This reduces the
drag, and indeed the ratio LBV /LBB increases with w

(4)
11∞.

These pathways of the vacancy are represented in Fig. 6.
Within the 12 frequency model, jumps that do not involve

first nearest neighbor sites can also induce drag, as can be
seen in Fig. 5 with the effect of the w

(4)
13∞ frequency. As in

the four frequency model where solute drag can be induced
by successive w

(4)
11∞ and w

(3)
11∞ jumps, in the 12 frequency

model the vacancy can turn around the solute by alternating

FIG. 6. Schematic pathways of the vacancy around the solute
atom in a bcc alloy involving first nearest neighbor sites. The black
atom represents the solute, and the arrows the possible vacancy-atom
exchanges, with a different style of line for each type of bond.
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FIG. 7. In a bcc alloy, schematic pathways of the vacancy around
the solute atom that do not involve first nearest neighbor sites. The
black atom represents the solute, and the arrows the possible vacancy-
atom exchanges, with a different style of line for each type of jump.

w
(4)
13∞ and w

(3)
1∞3 jumps on a “3 + ” orbit. Finally, the w

(4)
12∞

frequency which controls the jumps from second to fourth
nearest neighbor sites has a limited impact; vacancies on fourth
nearest neighbor sites can return to second or third nearest
neighbor sites, but no orbit around the solute is possible by
alternating w

(4)
12∞ and w

(3)
1∞2 jumps only. Figure 7 illustrates

these behaviors by showing the paths of the vacancy around
the solute that do not involve first nearest neighbors. A path
exists that involves the w

(4)
12∞ frequency, through the complex

sequence of sites 2-4-3-4-, etc. This orbit is controlled by
both w

(4)
12∞ and w

(4)
13∞, and increasing the first frequency is not

sufficient for that orbit to induce solute drag according to the
results in Fig. 5.

Finally, it should be noted that from case to case, drag
appears for very different values of the frequency ratios: It
appears for a ratio of w

(1)
112/w

(0)
1 = 5 on the 1-2 orbit, but a ratio

of 20 is required on the 1-3 orbit and 30 on the “3-4” orbit.
Such large ratios are unlikely to be present in real alloys solely
based on the attempt frequencies, but can easily be expected
at finite temperature for suitable migration enthalpies. In such
cases, the solute-vacancy binding energy will have to be taken
into account, and it is unlikely that only one frequency will
depart from the others.

B. Collective effects

The terms of the Onsager matrix, and especially the
drag ratio LBV /LBB , are highly nonlinear functions of the
jump frequencies. Thus the kinetic behavior cannot be fully
predicted on the basis of the previous analysis, as collective
effects involving several jump frequencies can appear. In the
previous section, it has been seen that the vacancy could turn
around the solute by passing through the sequence of sites
2-4-3-4, depending on both w

(4)
12∞ and w

(4)
13∞. In order to study

the importance of this orbit, the drag ratio LBV /LBB has been
computed as a function of these frequencies (while all others
were taken equal to 1) using the SCMF method in the 3NN3NN

FIG. 8. (Color online) Contour map of LBV /LBB as a function
of the w

(4)
12∞ and w

(4)
13∞ frequencies. The black continuous line signals

the onset of solute drag.

approximation. The result is shown in Fig. 8. It can be seen
that for w

(4)
13∞/w

(0)
1 � 30 solute drag takes place, without

the w
(4)
13∞/w

(0)
1 � 30 frequency having much influence. This

seems to indicate that the threshold for the 2-4-3-4 orbit to
allow solute drag is the same or higher than for the 3-4 orbit.
No qualitatively new collective behavior appears in this case.

Surprisingly, as shown in Fig. 8, the w
(4)
12∞ frequency seems

to have a greater influence for low w
(4)
13∞. This behavior has

been further investigated by computing the drag ratio in the
(w(4)

11∞,w
(4)
13∞) plane for different values of the w

(4)
12∞ frequency.

In Fig. 9 these results are shown for w
(4)
12∞/w

(0)
1 ∈ [1/10,10].

For w
(4)
13∞ � 30, a drag effect is reported for any values as could

be expected from the single frequency study. However, a less
trivial behavior appears as solute drag takes place when the
three associative frequencies are low enough simultaneously,
while in all other cases solute drag appears when incoming
frequencies become large enough. This phenomenon occurs
for moderate values of the frequencies such as w

(4)
11∞ =

w
(4)
12∞ = w

(4)
13∞ = 0.1w

(0)
1 , which makes it more likely to be

of practical significance. As these three frequencies control
the escape rate of the vacancy, simultaneously reducing the
three of them results in isolating from the matrix a volume
corresponding to the solute and its first, second, and third
nearest neighbors. The crystal can then be divided into three
different volumes, a trap that corresponds to these first, second,
and third nearest neighbor sites, a transition shell, and the bulk.
When all jumps in the transition shell are significantly slower
than the jumps both in the bulk and within the trap, the vacancy
is kinetically trapped: If a vacancy goes inside the trap, many
jumps will take place before the vacancy escapes. The vacancy
will thus be able to drag the solute before escaping. In this case,
and to the opposite of the other mechanisms described in this
work, solute drag appears even if the jump frequencies within
the trap are lower than the frequencies in the bulk, as long as
they remain considerably higher than the frequencies in the
transition area.
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FIG. 9. (Color online) Contour map of the LBV /LBB ratio as a function of the w
(4)
13∞ and w

(4)
11∞ frequencies. (a) for w

(4)
12∞ = 10w0, (b) for

w
(4)
12∞ = w0, (c) for w

(4)
12∞ = 0.5w0, and (d) for w

(4)
12∞ = 0.1w0. The black continuous line signals the onset of solute drag. The dashed line, used

for clarity, corresponds to LBV = −LBB .

V. DRAG EFFECT IN ALLOYS WITH FIRST, SECOND,
AND THIRD NEAREST NEIGHBOR INTERACTIONS

The calculations for the ideal solid solution provide a good
basis to interpret the different effects leading to drag. However,
solute-vacancy binding energy usually cannot be neglected. It
leads to a splitting of frequencies that were identical in the ideal
solid solution case, like w

(1)
112 and w

(1)
121. This does not affect,

however, the number of variables, as these split frequencies
remain related through detailed balance. During the transition
from an initial configuration i toward a final configuration f ,
the migration enthalpy that controls the transition rate can be
written as

Emig = ES
i,f − Ei, (22)

where Ei is the energy in the initial configuration and ES
i,f

is the saddle-point energy of the transition. Different models
exist to describe this migration energy. Using the 3NN3NN
approximation, a parametric study of two different models
for the migration energy are presented, first with an alloy
obeying the kinetically resolved activation barrier (KRA)
approximation, and later in the case of an alloy where

frequencies are described by the broken bond model. The case
of a real alloy, the Fe(Cu) alloy, is finally treated.

A. Kinetically resolved activation barrier approximation

In the KRA approximation, used for example under differ-
ent names by Senhaji et al.46 and later by Van der Ven et al.47

or Vincent et al.,48 the migration barriers are approximated
by considering them as linearly dependent on the energy of
the initial and final states. In a dilute bcc or a fcc alloy the
migration barrier is defined as

ES
i,f = E0 + 1

2

(
Eb

f + Eb
i

)
, (23)

where Eb
f and Eb

i are the binding energies in the final and initial
configurations and E0 is the migration barrier for a jump at
infinite distance from any solute atom. As a consequence, the
saddle-point energy and thus the migration energy depend on
both the initial and final configuration energies, but not on other
parameters, and the frequencies automatically obey detailed
balance. With interactions up to the third nearest neighbor
sites, the kinetic behavior of an alloy thus depends only upon
the three binding energies between the solute and a vacancy
on a first, second, or third nearest neighbor site, that we will
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FIG. 10. (Color online) Contour map of the LBV /LBB ratio as a
function of the interactions normalized by the inverse temperature
(kBT )−1 in the KRA approximation. (a) for Eb

1 = 0, (b) for Eb
2 = 0,

and (c) for Eb
3 = 0. The black continuous line signals the onset of

solute drag. The dashed line used for clarity corresponds to LBV =
−LBB .

write Eb
1 ,Eb

2 ,Eb
3 , with Eb

d < 0 for an attractive solute vacancy
interaction.

We investigate a model alloy obeying the KRA approxima-
tion and for which all attempt frequencies are considered equal.
This model illustrates the case of an alloy with limited kinetic
effects. Calculations of the Onsager matrix by the SCMF
method within the 3NN3NN approximation were performed
for this alloy. Figure 10 shows the drag ratio LBV /LBB in this
approximation as a function of the interactions normalized by
the thermodynamic temperature kBT . As expected, a strong

vacancy-solute binding energy leads to solute drag. Figure 10
(bottom) demonstrates also that in a bcc alloy with a ratio
ν4/ν0 = 1 and without second and third nearest neighbor
interactions, solute drag in an alloy is still possible at low
temperatures if solute-vacancy attractive interactions at a first
nearest neighbor distance exceed 4kBT , as these interactions
reduce the migration barriers for the dissociative frequency
w

(3)
1∞1 and increase the associative frequency w

(4)
11∞. This

confirms, in a more realistic case, the results from the first
section according to which solute drag can take place in
a bcc alloy with only first nearest neighbor solute-vacancy
interaction. The KRA approximation describes the behavior of
a simple model alloy, and cannot describe in all generality the
kinetic behavior of alloys. It appears in good agreement with
DFT calculations in some cases.39 However, it is insufficient
to accurately describe the migration barriers computed in most
bcc dilute alloys such as the Fe(Cu) alloy11,29 or the Fe(Ni) and
Fe(Cr) alloys.26,49 The interested reader is referred to Ref. 50
for a comprehensive evaluation of this approximation.

B. Broken bond model

In the parametrization of AKMC simulations for the Fe(Cu)
alloy in Ref. 51 and in the line of several earlier works,52,53

a more complex model is chosen, referred to as the broken
bond (BB) model.49,54 In this model, a species X interacts at a
distance d with another species Y that can be either a vacancy
or another atomic species, through pair interactions written
εXY
d at equilibrium positions and ηXY

d at saddle-point positions.
The energy in the initial and saddle-point configurations during
an exchange between a vacancy and an atom of species A are
written, respectively, Ei = ∑

Y,j ενY
d (j ) + ∑

Y,j εAY
d (j ) and

ES
i,f = ∑

Y,j ηAY
d (j ) where the sums are performed over all

the sites j .
In the dilute limit, the effect of the pair interactions

εAν
d between the vacancy and the atoms on the equilibrium

probability yYν
d and on the jump frequencies cancel each

other. The Onsager matrix then depends only on the difference
of interaction energies εd = εAB

d − εAA
d and ηd = ηAB

d − ηAA
d

for d = 1,2,3, and on the attempt frequencies,55 but not on
the solute vacancy interactions (cf. Appendix C). Through
the saddle-point interactions, the BB model thus introduces
some degrees of freedom that are absent from the KRA
approximation. However, even in the absence of saddle-point
interactions, the two models are not equivalent even if they
show some likeness. Figure 11 shows the results of SCMF
calculations for the broken bond model when the saddle-point
interactions are neglected. A large domain appears where
solute drag takes place.

The occurrence of drag is, however, modified by the saddle-
point interactions. The 12 frequency model also allows taking
into account three different ranges of saddle-point interactions.
For a bcc lattice of parameter a, they correspond to saddle
points at distances

√
11/16a,

√
19/16a, and

√
27/16a, and

to exchanges between first and second nearest neighbor sites,
first and third nearest neighbor sites, and to both first to fifth
nearest neighbor sites and second to fourth nearest neighbor
sites. Taking all of them into account introduces too many
parameters for a convenient representation. However, the onset
of drag can be represented at least for the simplest cases as
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FIG. 11. (Color online) Contour map of the LBV /LBB ratio as a
function of the interactions normalized by the inverse temperature
(kBT )−1 in the broken bound model. (a) for ε1 = 0, (b) for ε2 = 0,
(c) for ε3 = 0. The black continuous line signals the onset of solute
drag. The dashed line, used for clarity, corresponds to LBV = −LBB .

illustrated in Fig. 12 for an alloy with interactions between
first or second nearest neighbor sites at equilibrium positions
and first saddle-point distances. The interaction differences
ε1 and ε2 are represented along the horizontal and vertical
axes normalized by the temperature. A given alloy can thus
be represented by a line on this figure. The onset of drag,
which corresponds to LBV = 0, is represented using level lines
according to the value of the ratio of the reduced first saddle-
point interaction (kBT )−1η1 by the reduced interaction energy
difference (kBT )−1ε1. The onset of drag for a given alloy is
thus obtained at the intersection between the line describing
the equilibrium interactions and the level line corresponding

FIG. 12. (Color online) Map of the solute drag as a function
of the difference of atomic interactions and for several differences
of saddle-point interactions, normalized by the inverse temperature
(kBT )−1. The × represents the temperature below which Cu atoms
are dragged by the vacancies in the Fe(Cu) dilute alloy.

to the saddle-point interaction (kBT )−1η. Hence this figure
provides a way to determine the qualitative behavior of an
alloy without performing any additional calculations.

The first saddle-point interaction controls the 1-2 orbit, and
when the saddle-point interaction increases the saddle-point
energy (i.e., when η > 0), the field where the solute is dragged
by the vacancies is reduced. We also note that the saddle-point
interaction can even induce drag in alloys when both ε1 and ε2

are negative when saddle-point interactions are very low.

1. Drag effect in Fe(Cu)

Precipitation of copper in iron has attracted attention due
to its possible role in the hardening and embrittlement in
some reactor pressure vessel steels. From a theoretical point
of view, precipitation kinetics in Fe(Cu) has been studied
using various approaches (cf. Ref. 29, and references therein).
First-principle calculations have been used to parametrize
AKMC simulations11,29 that produced results concerning
precipitation in very good agreement with experiments. These
AKMC simulations also showed solute drag effect at low
temperature using solute vacancy interactions up to second
nearest neighbor sites. These simulations are characterized by
a strong vacancy-copper binding energy on first and second
nearest neighbor sites.

In Ref. 29, with second nearest neighbor interactions,
eight different frequencies are required to describe diffusion,
and the Onsager matrix could not be analytically obtained
using the methods previously available.32,33 Figure 12 allows
immediate identification of the qualitative behavior of this
alloy. The dash-dotted line represents the equation βε2 =
0.346βε1 − 0.041 which describes the equilibrium properties
of the Fe(Cu) dilute alloy. The value of the saddle-point
interaction βη = −0.24βε1 + 0.0027 provides then the point
at which drag starts, for βε1 ≈ 2.1, i.e., T ≈ 700 K.

The quantitative behavior can be obtained by performing
SCMF calculations in the 3NN3NN approximation for the
Fe(Cu) alloy. In Fig. 13, the ratio LBV /LBB obtained by
Soisson et al.56 using AKMC simulations is plotted as a
function of temperature, and compared with calculations in the
3NN3NN approximation using the same jump frequencies. A
remarkable agreement is obtained on the whole temperature
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FIG. 13. (Color online) Drag ratio LBV /LBB as a function of
the temperature in a dilute Fe(Cu) alloy described by the 12
frequency model. This alloy is described by a broken bond model
using the interactions ε1 = 0.127 − 7.83 × 10−6T eV, ε2 = 0.044 −
3.92 × 10−6T eV, and η1 = 0.17 eV (Ref. 56). Open circles represent
the results of AKMC simulations from Ref. 56, while the continuous
line represents 3NN3NN SCMF calculations.

range explored, with the copper atoms being dragged by the
vacancies below 700 K.

VI. CONCLUSION

The goal of this study was to identify cases where solute
drag by vacancies could take place in bcc alloys. To that end,
calculations of the Onsager matrix in dilute bcc alloys have
been performed using an analytic method. The SCMF method
has been extended for that purpose, to account for solute-
vacancy interactions at a distance up to third nearest neighbor
and increased kinetic correlations in bcc alloys. One of the first
results of this paper is the derivation of analytic expressions
for the Onsager coefficients in this case.

The extension of the SCMF method makes it possible to
analytically calculate the Onsager matrix of ideal solutions
which is used here to study the mechanisms responsible for
solute drag. Several paths were identified for the vacancy to
orbit around the solute atoms. Collective effects, involving
different types of jumps, showed that low escape frequencies
could also trigger solute drag if they were able to create
an orbit around a solute. Finally, calculations applied to a
typical alloy with interactions up to third nearest neighbor
sites were performed to help identifying cases where solute
drag could take place. SCMF results proved that solute drag
occurs under a broader set of conditions than predicted by
previous calculations.

It is well accepted that for solute drag to take place, a
vacancy should be able to orbit around a solute atom while
interacting with the impurity during several successive jumps.
This study shows, however, that these orbits should be defined
from a kinetic point of view, and controlled by the jump
frequencies and not by the range of the solute-vacancy binding
energy. In a bcc alloy where the solute-vacancy binding energy
is limited to first nearest neighbor sites and if the impurity
does not affect jump rates toward these first nearest neighbor
sites (w(4) = w(0)) no solute drag occurs. However, solute drag
may occur when jumps toward these sites are affected by the
impurity. It should be noticed that this is the case when using

approximations such as the KRA approximation or the broken
bond model with only first nearest neighbor interactions, where
the saddle point of jumps leading toward the first nearest
neighbors is also affected by the presence of an impurity.
As a consequence traditional analytic calculations in the first
shell approximation are insufficient as they fail to capture
qualitative aspects of solute drag in many cases. More accurate
mean field calculations like the one performed in the 3NN3NN
approximation, however, overcome these limitations. AKMC
simulations were used to confirm this prediction as well as
to assess the ability of SCMF calculations to quantitatively
provide the Onsager matrix for model alloys and for the
model of a Fe(Cu) alloy studied in Ref. 29. The SCMF is
a promising general method for the computation of Onsager
coefficients. The present method can be extended to arbitrary
crystal structures, to compute the kinetic properties of alloys.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR 3NN3NN
SCMF COMPUTATIONS IN bcc ALLOYS

We provide the analytic elements required to obtain the
Onsager matrix in the 3NN3NN approximation for a bcc
dilute alloy. All this elements are available in a symbolic form
in the Supplemental Materials with a routine that compute
the Onsager matrix from a set of twelve frequencies.57 The
notations of Sec. II B are used. For a binary alloy, only the
effective interactions associated to the pair of species A-B
needs to be considered. As a consequence, T is a C by C

matrix where C is the number of symmetry classes considered.
A vector belonging to each of the symmetry classes can
be used to represent them. These vectors are provided in
Table I and Fig. 14 shows these vectors on a bcc lattice.
The indices of the symmetry classes in Table I and Fig. 14
correspond also to the order in which they are being used in
the following symbolic expressions. Additionally, we use the

TABLE I. Cartesian coordinates of a representive of each of the
bond classes, for diffusion in the (100) direction. The indices in this
table are identical to the row or column numbers used in the symbolic
quantities expressions.

Index Vector Index Vector

1 a

2 [111] 8 a

2 [133]
2 a[100] 9 a

2 [331]
3 a[110] 10 a[120]
4 a

2 [131] 11 a[210]
5 a

2 [311] 12 a[121]
6 a[111] 13 a[211]
7 a[200] 14 a[221]
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notation T = R + Diag(D).

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W
(1)
121 −2W

(1)
131 0 0 −W

(3)
1∞1 0 0 0 0 0 0 0 0

−4W
(1)
112 0 0 0 −4W

(3)
1∞2 0 0 0 0 0 0 0 0 0

−2W
(1)
113 0 0 −2W

(3)
1∞3 −2W

(3)
1∞3 0 0 0 −2W

(3)
1∞3 0 0 0 0 0

0 0 −W
(4)
13∞ 0 0 −W

(0)
1 0 0 0 −W

(0)
1 0 −W

(0)
1 0 0

0 −W
(4)
12∞ −2W

(4)
13∞ 0 0 −W

(0)
1 −W

(0)
1 0 0 0 −2W

(0)
1 0 −W

(0)
1 0

−W
(4)
11∞ 0 0 −2W

(0)
1 −W

(0)
1 0 −W

(0)
1 −2W

(0)
1 0 0 0 0 0

0 0 0 0 −4W
(0)
1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −W
(0)
1 0 0 0 0 0 −2W

(0)
1 0 0

0 0 −W
(4)
13∞ 0 0 −W

(0)
1 0 0 0 −W

(0)
1 −W

(0)
1 −W

(0)
1 −W

(0)
1 −W

(0)
1

0 0 0 −2W
(0)
1 0 0 0 0 −2W

(0)
1 0 0 0 0 0

0 0 0 0 −2W
(0)
1 0 0 0 −2W

(0)
1 0 0 0 0 0

0 0 0 −W
(0)
1 0 0 0 −W

(0)
1 −W

(0)
1 0 0 0 0 0

0 0 0 0 −W
(0)
1 0 0 0 −2W

(0)
1 0 0 0 0 0

0 0 0 0 0 0 0 0 −2W
(0)
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3W
(1)
121 + 3W

(1)
131 + 2W

(2)
1 + W

(3)
1∞1

4W
(1)
112 + 4W

(3)
1∞2

2W
(1)
113 + 6W

(3)
1∞3

5W
(0)
1 + W

(3)
12∞ + 2W

(3)
13∞

5W
(0)
1 + W

(3)
12∞ + 2W

(3)
13∞

7W
(0)
1 + W

(3)
11∞

8W
(0)
1

7W
(0)
1 + W

(3)
13∞

7W
(0)
1 + W

(3)
13∞

8W
(0)
1

8W
(0)
1

8W
(0)
1

8W
(0)
1

8W
(0)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

FIG. 14. Schematic representation of the classes of bonds associ-
ated to the different rows and columns of the T matrix. The number
on an atomic site is the class represented by the vector linking the
black site to this site. The arrow represents the direction of diffusion.

( �MAB,A) · �u = a

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
(1)
121 − W

(1)
131 − W

(3)
1∞1

4W
(1)
112 − 4W

(3)
1∞2

2W
(1)
113 − 2W

(3)
1∞3

W
(4)
12∞ − W

(0)
1

W
(4)
12∞ − 3W

(0)
1 + 2W

(4)
13∞

W
(4)
11∞ − W

(0)
1

0

W
(4)
13∞ − W

(0)
1

W
(4)
13∞ − W

(0)
1

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

( �MAB,B) · �u = a

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−W
(2)
1 /2
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)
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(�A,AB) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
(1)
131 − W

(1)
121 + W

(3)
1∞1

W
(3)
1∞2 − W

(1)
112

2W
(3)
1∞3 − 2W

(1)
113

2W
(0)
1 − 2W

(4)
12∞

3W
(0)
1 − W

(4)
12∞ − 2W

(4)
13∞

W
(0)
1 − W

(4)
11∞

0

W
(0)
1 − W

(4)
13∞

2W
(0)
1 − 2W

(4)
13∞

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

(�B,AB) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
(2)
1

0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

As jumps are limited to nearest neighbor sites only, there is
a single class of nonzero contribution to the bare mobility

lAA
(0) = X

(0)
1 + 3X

(1)
112 + 3X

(1)
121 + 3X

(1)
113 + 3X

(1)
131 + X

(3)
1∞1

+ 3X
(3)
1∞2 + 9X

(3)
1∞3 + X

(4)
11∞ + 3X

(4)
12∞ + 9X

(4)
13∞,

lBB
(0) = X

(2)
1 . (A7)

To each thermodynamic average can be substituted the
expression in terms of the concentration in vacancy solute
and binding energies:

W
(0)
1 = cvcBw

(0)
1 ,

W
(2)
1 = cvcByBν

1 w
(2)
1 ,

W
(1)
112 = cvcByBν

1 w
(2)
112,

W
(1)
121 = cvcByBν

1 w
(1)
121,

W
(1)
113 = cvcByBν

3 w
(1)
113,

W
(1)
131 = cvcByBν

1 w
(1)
131,

W
(3)
141 = cvcByBν

1 w
(3)
141,

W
(3)
142 = cvcByBν

2 w
(3)
142,

W
(3)
143 = cvcByBν

3 w
(3)
143,

W
(4)
114 = cvcBw

(4)
114,

W
(4)
124 = cvcBw

(4)
124,

W
(4)
134 = cvcBw

(4)
134, (A8)

X
(0)
1 = cvw

(0)
1

[
1 − cb

(
8yBν

1 + 6yBν
2 + 12yBν

3 + 13
)]

,

X
(2)
1 = cvcByBν

1 w
(2)
1 ,

X
(1)
112 = cvcByBν

2 w
(1)
112,

X
(1)
121 = cvcByBν

1 w
(1)
121,

X
(1)
113 = cvcByBν

3 w
(1)
113,

X
(1)
131 = cvcByBν

1 w
(1)
131,

(A9)
X

(3)
141 = cvcByBν

1 w
(3)
141,

X
(3)
142 = cvcByBν

2 w
(3)
142,

X
(3)
143 = cvcByBν

3 w
(3)
143,

X
(4)
114 = cvcBw

(4)
114,

X
(4)
124 = cvcBw

(4)
124,

X
(4)
134 = cvcBw

(4)
134.

As an example, considering explicitly the thermodynamic
prefactors for the bare mobility leads to the expressions:

lAA
(0) = cν

[
1 − cB

(
13 + 8yBν

1 + 6yBν
2 + 12yBν

3

)]
w

(0)
1

+ 6cνcByBν
2 w

(1)
112 + 6cνcByBν

3 w
(1)
113

+ 2cνcBw
(4)
11∞ + 6cνcBw

(4)
12∞ + 18cνcBw

(4)
13∞,

lBB
(0) = cνcByBν

1 w
(2)
1 . (A10)

APPENDIX B: AKMC SIMULATIONS

Atomic kinetic Monte Carlo simulation is a standard
method to describe the evolution of the microstructure of
alloys. A state of the alloy is defined by a vector n, the
components of which are the occupation numbers of all species
on all sites of a rigid lattice {nA

1 ,nB
1 , . . . ,nν

1; nA
2 ,nB

2 , . . . ,nν
2; . . .}

such that nX
i = 1 if the site i is occupied by the species

X ∈ {ν,A,B . . .} and zero otherwise. It is assumed that the
different species diffuse from lattice site to lattice site without
the lattice itself being affected. The evolution is controlled by
an algorithm like the residence time algorithm introduced by
Young et al.58 At each iteration the following operations are
performed:

(1) Updating the list {ṅ} of possible configurations con-
nected to the current configuration by a single step.

(2) Computing the transition rates W (n → ṅ) of each
transition.

(3) Selecting a pseudorandom number R of uniform
probability over [0,1).

(4) Choosing the event i for which∑i−1
nj ∈{ṅ} W (n → nj ) � R <

∑i
nj ∈{ṅ} W (n → nj ).

(5) Increasing the physical time of the simulation by the
inverse of the sum of the transition rates �t = 1∑

ṅ W (n→ṅ) .
(6) Updating n to the new state.
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In the case of a vacancy-mediated diffusion process, the
list of the transitions contains all possible vacancy-atom
exchanges. In the case of a bcc alloy, only first nearest neighbor
exchanges are considered.

In order to compute the Onsager matrix in the dilute
limit, a single vacancy and a single solute atom B are
randomly introduced in a simulation box filled with atoms
A, with periodic boundary conditions. The system is then
equilibrated to ensure that the solute-vacancy distance obeys a
Boltzmann distribution. The displacements of atoms are then
registered after each step of the residence time algorithm to
integrate the displacement of all species. For the simulations
performed in the current work, a simulation box of 2 × 163

atomic sites has been used, and the integration has been
performed over 100 MCS and averaged over 105 samples to
obtain the thermodynamic average. The vacancy and solute
concentrations are larger in AKMC simulations than in real
dilute systems. The time can be renormalized to take this fact
into account.59 However, in the present case the terms of the
Onsager matrix are linear with respect to the concentration
in vacancy and solutes. As a consequence, the drag ratio
LBV /LBB is independent of both concentrations.

APPENDIX C: INTERACTIONS IN THE BROKEN
BOND MODEL

The total probability to find a transition from an initial
configuration i to a final configuration f can be written as

Ptot = P (i)wi→f , (C1)

where the probability P (i) to find the system in the configura-
tion i can be written in the dilute limit using the binding energy

Eb
i as P (i) = e

−(kB T )−1Eb
i

Z
, where Z is the partition function, and

the transition probability wi→f as wi→f = νe−(kBT )−1(ES
i,f −Ei ),

with Ei the energy in the initial configuration and ES
i,f the

saddle-point energy. In the dilute limit the binding energy Eb
i

in a configuration i is the difference between the energy Ec

of the system in the configuration i where the solute and the
vacancy are at a finite distance c and the energy of a system

where solute and vacancies are at infinite distance E∞:

Eb
i = Ec − E∞. (C2)

In the BB model, they can be written as

E∞ = E0 +
∑

x

Zxε
BA
x + Zxε

AV
x ,

Ec = E0 − εAB
c + εBV

c − εAV
c + εAA

c

+
∑

x

Zxε
BA
x + Zxε

AV
x , (C3)

where the sums are performed over all distances x between the
solute and the vacancy, Zx is the number of neighboring sites
at a distance x, V is a vacancy, A is a matrix atom, and B is a
solute atom. The binding energy can finally be written as

Eb
i = (

εBV
c − εAV

c

) − (
εAB
c − εAA

c

)
. (C4)

The migration energy associated to a frequency w
(ζ )
abc as

computed in the BB model, corresponds to the following
difference of local energies:

E
mig
i,f = ES

i,f −
(∑

x

Zxε
AA
x +

∑
x

Zxε
AV
x

+ (
εBV
c − εAV

c

) + (
εAB
b − εAA

b

))
, (C5)

where b is the distance between the jumping atom and the
solute in the initial configuration and c is the distance between
the vacancy and the solute, as defined in the nomenclature
section. As a consequence, from Eqs. (C1), (C4), and (C5) the
total migration probability can be written as

Ptot = A exp
{+(kBT )−1[(εAB

c − εAA
c

) + (
εAB
b − εAA

b

)]}
,

(C6)

with A = Z−1exp{−(kBT )−1[ES
i,f − (

∑
x Zxε

AA
x +∑

x Zxε
AV
x )]}. As a consequence, the drag ratio LBV /

LBB depends only on the differences of interactions
εk = εAB

k − εAA
k and on the saddle-point interactions

difference ηk = ηAB
k − ηAA

k .
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