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Stress-induced anisotropic diffusion in alloys: Complex Si solute flow near a dislocation core in Ni
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Stress introduces anisotropy in the transport coefficients in materials, affecting diffusion. Using first-principles
quantum-mechanical methods for activation barriers of atomic jumps, combined with the extended self-consistent
mean-field theory to compute transport coefficients with strain-reduced symmetry, we predict significant stress-
induced anisotropy for Si impurity diffusion in nickel. This causes complex spatial- and temperature-dependent
fluxes; as an example, the heterogenous strain field of a dislocation creates unusual flow patterns that affect
mechanical and segregation behavior.
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I. INTRODUCTION

Stress effects on atomic diffusion are ubiquitous, often
modifying the evolution of microstructures and properties of
materials. Externally applied stresses delay the coarsening
kinetics of precipitates in superalloys;1 epitaxial stresses in
semiconductor thin films cause anisotropic dopant diffusion,
impacting device characteristics;2–4 internal stress fields near a
dislocation modify transport and segregation of C solute atoms
in Fe,5,6 and control creep in pure metals;7,8 and stresses pro-
duce anisotropy in electromigration,9 and surface diffusion.10

Stress affects the driving force for diffusion—the gradient
of chemical potentials—as well as transport coefficients—the
so-called Onsager, or phenomenological coefficients. Previous
work on stress effects on diffusion has mainly focused on
the former effect,11 although the latter can significantly affect
transport kinetics. Nonhydrostatic stress can lower the crystal
symmetry, leading to anisotropic diffusion even in materials
that are cubic without stress. Atomic simulations reveal that
anisotropy can change sign with the crystal orientation: In face-
centered cubic (FCC) Cu and Pt under compressive biaxial
stress, dumbbell interstitial atoms diffuse faster out-of-plane
than in-plane for a (111) plane, but surprisingly the opposite is
true for a (100) plane.12 One determining factor of anisotropy
is the symmetry of the saddle-point configurations for the point
defects responsible for atomic transport.7,13

Despite these important results, little attention has been paid
to stress-induced anisotropic transport in alloys with coupled
point-defect and solute diffusion. With recent advances of
atomistic techniques, defect and atom jump frequencies are
calculable from first principles.14,15 The main challenge
remains determining macroscopic transport coefficients gen-
erated by stress-modified jump frequencies. We overcome
this difficulty by extending the self-consistent mean-field
theory.16–18 We demonstrate the potential of this combined
approach by considering the effect of stress on vacancy-
mediated transport of Si atoms, and solute flux near a
dislocation core in Ni. This approach predicts remarkable
solute flow patterns around dislocation cores, with complex
temperature dependence from the anisotropic kinetic coupling
between vacancies and Si atoms.

In a multicomponent system, like Si in Ni, fluxes and
chemical potential gradients are related by the transport

coefficients. For vacancy-mediated diffusion, there are three
independent transport coefficients LSiSi, LVV, and LSiV,

jSi = −LSiSi∇μSi − LSiV∇μV,
(1)

jV = −LVV∇μV − LSiV∇μSi.

Each LAB is a second-rank tensor; cubic symmetry results
in isotropy (equal diagonal components, zero off-diagonal
components). The chemical potential for vacancies and solutes
has the usual form, with the addition of (small) volumetric
strain εv times a proportionality constant α

μV = αVεv + kBT ln
(
γVcV

/
c0

V

)
(2)

μSi = αSiεv + kBT ln
(
γSicSi

/
c0

Si

)
,

where c0
V and c0

Si are equilibrium concentrations without strain
or other defects, and γV and γSi are activity coefficients.
The attractive Si-vacancy binding energy (–0.1 eV for first
neighbor) forms Si-vacancy complexes and so LSiV can be
positive at low temperature as vacancies drag solute along
with their flow, but becomes negative at higher temperatures
as entropy destabilizes these complexes.

Even for “simple” cases, such as vacancy-mediated
solute diffusion in an FCC crystal with five distinct jump
frequencies,19,20 the derivation of LAB is not straightforward.
Closed-form solutions that include the effect of correlated
jumps are not straightforward due to kinetic correlations.
For example, if a solute exchanges back-and-forth with a
vacancy, there is no diffusion. When symmetry is broken by
strain, the number of distinct atomic jump types increases.
The self-consistent mean-field (SCMF) kinetic theory relates
atomic-scale mechanisms for diffusion to macroscopic trans-
port coefficients.16–18 SCMF kinetic theory finds a steady-state
solution to the master equation—based on atomic jumps
rates between states—in the presence of a small chemical
potential gradient. The equilibrium solution for state occu-
pancy probability is proportional to a Boltzmann factor for
a lattice Hamiltonian with interacting solute and vacancies;
the steady-state solution includes an additional effective
Hamiltonian to capture kinetic correlations, and is dependent
on the driving force type. In the dilute limit, there are only pair
interactions and the mean-field solution is exact. The chemical
potential gradient produces a “bare” flux combined with a
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TABLE I. Activation energies (eV) for different jumps of a vacancy in stress-free Ni with a Si atom.
The Si-vacancy binding energies are −0.100 eV, 0.011 eV, and 0.045 eV for first ( 1

2 〈110〉), second (〈100〉),
and third ( 1

2 〈211〉) neighbors, and less than 10 meV for fourth neighbors (〈110〉) and beyond. We use the

nomenclature of Ref. 18. For �E
(1)
1·· , �E

(3)
1·· , and �E

(4)
1·· , there are multiple barriers between different vacancy-Si

configurations; in all cases, a vacancy makes a jump along nearest neighbor 1
2 〈110〉 directions (giving the

initial 1 subscript), and the parentheses indicate the final and initial positions of the vacancy (e.g., a vacancy
jump from first to second neighbor of Si is 21, with barrier �E

(1)
121).

�E
(0)
1 vacancy jump 1.074

�E
(1)
1·· vacancy-solute rotation (11, 21, 12) 1.003, 1.213, 1.101

vacancy-solute rotation (32, 23, 33) 1.091, 1.058, 1.089
vacancy-solute rotation (31, 13) 1.153, 1.008

�E
(2)
1 vacancy-solute exchange 0.891

�E
(3)
1·· vacancy-solute dissociation (41, 42, 43) 1.128, 1.066, 1.068

�E
(4)
1·· vacancy-solute association (14, 24, 34) 1.028, 1.077, 1.112

correction from the effective Hamiltonian, thus providing
transport coefficients in terms of the atomic scale jumps. We
developed a systematic numerical method that goes beyond the
small number of distinct frequencies previously considered in
analytic solutions, which allows us to account for anisotropic
transport coefficients in systems under strain.21

II. METHODOLOGY

We use first-principles methods to compute energy barriers
and their derivatives with strain for atomic jumps. The calcu-
lations are performed with VASP,22,23 a plane-wave density-
functional theory (DFT) code. Ni and Si are treated with
ultrasoft Vanderbilt type pseudopotentials24,25 using Ar and
Ne cores, respectively, and the local density approximation26

as parameterized by Perdew and Zunger.27 We use a single
vacancy in a 107-atom (3 × 3 × 3 along cube axes) nickel
supercell with a substitutional silicon atom, and a 8 × 8 × 8
k-point mesh. A 420 eV plane-wave cutoff is converged to
1 meV/atom, and the k-point mesh with Methfessel-Paxton
smearing of 0.1 eV is converged to 1 meV/atom. To compute
energy barriers, we use the climbing-image nudged elastic
band28,29 method with one intermediate image and constant
cell shape to find transition pathways. Along the path, the
force is negated, while components perpendicular to the path
are unchanged; the image relaxes to an extremum with forces
less than 5 meV/Å, and restoring forces confirm this extremum
as a first-order saddle point. The attempt frequency prefactor
for each transition is estimated with the Vineyard equation30

in a hopping-atom approximation, the errors of which are
estimated in the Appendix. The derivatives of energy barriers
with respect to strain are computed with finite difference of
±0.01 strains.

III. RESULTS

A. Energy barriers

Table I gives the energy barriers for atomic jumps in FCC
Ni. The “five-frequency” model19,20 considers five atomic
jumps, all involving a vacancy moving along nearest-neighbor
directions 1

2 〈110〉: a vacancy in Ni jumping without Si, the
vacancy neighboring a Si atom jumping to another neighboring
site, a vacancy exchanging with a Si atom, and the dissociation

and association of a vacancy and a Si atom. This assumes the
solute and vacancy interact at the first neighbor only, while
DFT shows an attractive–0.100 eV first neighbor interaction
and a repulsive + 0.045 eV third neighbor interaction. We
include this interaction in the transport coefficient computation
with additional jumps: 16 total jumps in the strain-free case.
Note that, except for the solute jump �E(2) and the vacancy
jump �E(1) between first neighbors, forward and reverse
energy barriers average to ±0.015 eV of the vacancy jump
�E(0); this means beyond first neighbors, different barriers
result mainly from the site energy changes. Except for the
vacancy jump in Ni with a prefactor of 4.8 THz, we find
prefactors of 5.0–5.3 THz (see the Appendix). Figure 1(a)
shows the ratio LSiV/LSiSi where a sign change occurs
at a crossover temperature of Tcross = 1060 K; below this
temperature, Si diffusion is dominated by complexes (“solute
drag”).31 The transition temperature is consistent with the
strength of the Si-vacancy binding energy.

B. Strain derivatives

The derivative of macroscopic LAB with respect to strain
is the fourth-rank elastodiffusion tensor, with three indepen-
dent entries for cubic symmetry.13,32 Strain and transport
coefficients are both symmetric second rank tensors, so the
derivative L′

abcd = dLab/dεcd |ε=0 is symmetric for ab and
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FIG. 1. (Color online) (a) Ratio of LSiV/LSiSi for Si in Ni, showing
the crossover from solute-drag below 1060 K to vacancy-exchange
dominated diffusion above 1060 K, and (b) change in crossover
temperature with tetragonal strain e3 = −2e1 = −2e2 along parallel
[001] and perpendicular 〈100〉 directions.
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cd, and benefits from using a contracted Voigt notation like
the elastic constants Cij .13 Similarly, if the cubic axes are
chosen as x, y, and z, then the derivatives L′

11 = L′
22 = L′

33,
L′

12 = L′
21 = L′

13 = L′
31 = L′

23 = L′
32, and L′

44 = L′
55 = L′

66
while all other components are zero. A further simplification
is possible: We represent the elastodiffusion tensors with the
volumetric derivative Lv, a tetragonal strain derivative Lt, and
a [100](010) shear derivative Ls. The strain tensor ε has six
independent components e1 through e6 and can be written

1

3
εv1 +

⎛
⎜⎝

e1 − 1
3εv 0 0

0 e2 − 1
3εv 0

0 0 e3 − 1
3εv

⎞
⎟⎠

+

⎛
⎜⎝

0 1
2e6

1
2e5

1
2e6 0 1

2e4
1
2e5

1
2e4 0

⎞
⎟⎠, (3)

where εv = e1 + e2 + e3; let εt and εs be the final two tensors.
Then the L(ε) tensor is

L = L01 + Lv 1
3εv1 + Ltεt + Lsεs, (4)

where L0 is the stress-free value, following Ref. 13.
The changes in microscopic jump barriers with hydrostatic

strain are characterized by changes in local geometry without
a change in symmetry, and so the number of transitions
remains unchanged. Volumetric strain couples to vacancy
energy (αV = 18.1 eV) and Si solute energy (αSi = −2.05 eV)
but weakly with vacancy-binding energy (−0.37 eV energy
derivative). For Si in Ni, we found all barriers modified by the
same amount to first order in volumetric strain. The barriers
change by −7 eV times the fractional length change (εv/3)
for volumetric strain εv; here, lattice expansion gives higher
jump rates. Hence, the derivative Lv = L0 · (7eV/kBT ) for
all LAB; moreover, the crossover temperature is to first-order
independent of lattice constant and insensitive to thermal
expansion.

The two shears—tetragonal and [100](010) shear—produce
changes in local geometry, and lowered symmetry increases
the number of independent jumps. Tetragonal shear (e3 =
−2e1 = −2e2, all others zero) breaks cubic symmetry, and
the twelve 〈110〉 vectors break into two groups: four 〈110〉 and
eight 〈011〉 vectors with fractional length changes of −e3/2
and e3/4, respectively.1 The jumps are fully characterized by

the vector between the Si atom and vacancy position before
and after the jump. In the five frequency model, the lifted
degeneracy results in two different �E(0) and �E(2) jumps,
and 3 �E(1), and 4 �E(3), and �E(4) types of jumps for a
total of 15 jump frequencies. Accounting for third-neighbor
Si-V interactions, the 16 stress-free frequencies become 2 +
22 + 2 + 9 + 9 = 44. For Si in Ni, first-principles calculations
show that the energy barrier change is mostly determined by
the particular jump vector direction alone, where the barrier
change is 15.5 eV times the fractional length change (−e3/2
or e3/4). The difference compared with volumetric strain is
a consequence of the transition state geometry: Tetragonal
strain expands the lattice at the transition state when decreasing
the distance for the jump, in contrast to volumetric strain. In
addition, there is little change in the Si-vacancy binding energy
with tetragonal strain. For an [100](010) shear (e6 �= 0, all
others zero), the number of independent jumps increases even
further; however, the energy barrier changes with respect to
strain are nearly an order of magnitude smaller than volumetric
or tetragonal shears—a maximum change of 1.2 eV times the
shear strain—and hence are ignored in this study.

Figure 1(b) shows the change in crossover temperature
due to tetragonal strain along perpendicular directions, and
Table II summarizes values and derivatives for transport coef-
ficients near the crossover temperature. With a tetragonal strain
(e3 = −2e1 = −2e2, εv = 0), Eq. (4) gives opposite signs
along parallel and perpendicular directions. In particular, at the
crossover temperature Tcross where L0

SiV = 0, LSiV,33 has a sign
opposite to LSiV,11 and LSiV,22—that is, solute drag happens
in one 〈100〉 direction, but solute exchange in perpendicular
directions. Thus, different crossover temperatures are found
in parallel and perpendicular directions for a fixed tetragonal
strain. In the small strain limit, symmetry imposes the ratio
of derivatives of Tcross with strain in the parallel direction to
perpendicular direction to be − 2 [c.f. Eq. (4)]; at larger strains,
Tcross is nonlinear due to different temperature dependence of
L0

SiV and Lt
SiV. Note that the changes from tetragonal strain

are entirely caused by changes in jump barriers without any
significant changes in Si-vacancy binding energy.

C. Initial flow near a dislocation

One consequence of the anisotropy in transport coefficients
due to strain is the creation of complex solute flow in the

TABLE II. Transport coefficients [mol/(eV Å ns)] and derivatives below, at, and above the crossover
temperature. In the dilute limit, LVV is proportional to cV while LSiV and LSiSi are proportional to cVcSi.

L0 Lv Lt

960 K VV 1.52 × 10−1cV 1.29 × 101cV −7.42 × 100cV

SiV 1.57 × 10−1cVcSi 1.33 × 101cVcSi −2.24 × 101cVcSi

SiSi 1.29 × 100cVcSi 1.09 × 102cVcSi −5.08 × 101cVcSi

1060 K VV 4.69 × 10−1cV 3.59 × 101cV −2.08 × 101cV

SiV 0 0 −3.72 × 101cVcSi

SiSi 3.27 × 100cVcSi 2.51 × 102cVcSi −1.16 × 102cVcSi

1160K VV 1.18 × 100cV 8.27 × 101cV −4.80 × 101cV

SiV −7.55 × 10−1cVcSi −5.29 × 101cVcSi −4.65 × 101cVcSi

SiSi 7.02 × 100cVcSi 4.92 × 102cVcSi −2.25 × 102cVcSi

134108-3



GARNIER, MANGA, TRINKLE, NASTAR, AND BELLON PHYSICAL REVIEW B 88, 134108 (2013)

FIG. 2. (Color online) Initial flow streams from Eq. (1) around a dislocation for (a) vacancies, (b) Si 50 K below the effective crossover,
(c) Si at the effective crossover, and (d) Si 50 K above the effective crossover temperature. The initial Si and vacancy distribution is homogeneous,
allowing fluxes to be found analytically throughout all space. The spatial dimensions are in units of the Burgers vector (2.49 Å) for an edge
dislocation in Ni placed at the origin, with the [11̄0] horizontal and [111] vertical, in the (112̄) plane. The coloring shows the cosine of the flow
direction with the radial vector r̂ , where orange is flow away from the dislocation core, blue is flow to the core, and white is orthogonal to r̂ .

presence of heterogeneous strain fields. To illustrate this
phenomenon, we consider a dislocation. A natural coordinate
system for an edge dislocation is the Burgers vector �b =
a
2 [11̄0], slip plane normal �n = [111], and threading vector
�t = [112̄]. To highlight the anisotropy of transport coefficients,
for simplicity we use isotropic elasticity: The three strain
components that couple to transport coefficients when Ls ≈ 0
are volumetric strain εv = −b sin θ/4πr , shear strain εbn =
3b(cos θ + cos 3θ )/16πr , and Burgers-vector normal strain
εbb = −b(4 + 3 cos 2θ ) sin θ/8πr , where r is the distance
from the dislocation, and θ is the angle from the slip plane.
These strain fields produce anisotropic transport coefficients,
and provide a driving force for both solutes and vacancies
due to the change in chemical potential from volumetric strain
in Eq. (2). The LAB in dislocation coordinate system for an
edge dislocation in FCC has a particular spatially-dependent
transport coefficient tensor, with varying amount of anisotropy.
In the �b × �n plane, the anisotropic transport tensor is

(
L0 + 1

3Lvεv + 1
6Ltεbb

2
3Ltεbn

2
3Ltεbn L0 + 1

3Lvεv

)
(5)

Here, we restrict to initially uniform vacancy and solute fields;
this creates a Si flux given by −(LSiVαV + LSiSiαSi)∇εv where
∇εv = (−r̂ sin θ + θ̂ cos θ )b/4πr2. The unstrained combina-
tion L0

SiVαV + L0
SiSiαSi changes sign at approximately 970 K

(c.f., Table II)—this is an effective crossover temperature T eff
cross

for solute-drag from a strain-gradient driving force. Note that
anisotropy in the transport tensor is entirely due to Lt and
coupling with εbn and εbb strain components.

Figure 2 shows initial flow patterns for vacancies and Si
from a dislocation strain field. For the vacancy, the L0 and
Lv components dominate over Lt at most temperatures, and
so the initial flow is closely proportional to ∇εv; vacancies
flow from tensile stressed region below the slip plane to
compressive stressed region above the slip plane. However, for
Si, anisotropy in Eq. (5) produces very unusual flow patterns.
At the effective crossover temperature T eff

cross in Fig. 2(c), the
dominant contribution to LSiV are from Lt

SiV, leading to Si flux
out of the dislocation core in all directions despite vacancy
transport circuits around the dislocation. Moreover, solute
flows perpendicular to vacancy flow near the slip plane. Below
the effective crossover temperature, solute drag is prevalent so

that Si flow mostly follows vacancy flux; however, even 50 K
below T eff

cross, anisotropy of LSiV leads to diffusional circuits on
opposite sides of the dislocation as εbb and εnb change mag-
nitudes. Similarly, above the effective crossover temperature,
solute exchange is prevalent so that Si flow is mostly opposite
to vacancy flux, and anisotropy produces circuits. The size of
the region of strong anisotropy around the dislocation scales as
1/|T − T eff

cross|. As point defects evolve in time, the distribution
of Si will change, which will modify the chemical potentials
and vacancy flux; we expect anisotropy to affect Si segregation
patterns near a dislocation core, and creep rates. As the method
can be adapted to include interstitial transport,33 the study of
irradiation-induced precipitation is possible.34

IV. CONCLUSIONS

We expect such complex flow of solute near a dislocation,
or other defects, to occur in other systems. The change in
crossover temperatures due to tetragonal strain is a con-
sequence of fundamental symmetry, and hence, completely
general. The primary requirement is an effective crossover
temperature T eff

cross in a range where solute diffusion is non-
negligible. This is the situation for FCC and BCC alloys,
such as Ni-Cr,35 Al-Si and Al-Cu,15 and Fe-Cu.36 Other
systems could exhibit more complex flow patterns if, for
example, volumetric strain changed the crossover temperature,
or if Ls were comparable to Lv and Lt. The change of
transport coefficients with strain impacts many important
phenomena. In addition to segregation and creep, the rate
of precipitation and topology of precipitates formed near
a dislocation will be affected. Other sources of heteroge-
neous strain fields in a material—such as grain boundaries,
secondary phases, voids, bubbles—can attract vacancies and
solutes. Beyond the illustration of complex solute flow,
the computation of transport coefficients and their strain
derivatives from first principles combined with SCMF enables
multiscale modeling for diffusion-controlled evolutions of
microstructures.
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APPENDIX: PREFACTOR COMPUTATION

To compute the attempt frequency using the Vineyard
equation from harmonic transition state theory30 for each
transition, we use the restoring forces on the jumping atom
only. This approximation leaves out the coupling of the
jumping atom vibration to the vibration of the other atoms.
To estimate the error induced by ignoring this term, we first
computed the attempt frequency for the five frequencies of the
five frequency model in a 2 × 2 × 2 supercell and considered
an increasing number of modes. That is, if ω1 > ω2 > · · · >

ω3N are the (ordered) normal modes from the starting configu-
ration (for an N atom supercell) and ω′

1 > ω′
2 > · · ·ω′

3N−1
are the (ordered) normal modes for the transition state,

FIG. 3. (Color online) Values of the prefactors associated with
five frequencies in THz (top) and relative to ν(0) (bottom). The jumps
are for a solute atom ν(2), of the vacancy in the bulk ν(0), of a rotation
from a first to another first nearest neighbor site ν

(1)
111, to a second near-

est neighbor site ν
(1)
121 and from a second to a first nearest neighbor site

ν
(1)
112. The modes considered are ordered by decreasing frequencies;

lower frequencies correspond to less localized vibrational modes.

we compute ∏n
i=1 ωi∏n−1
i=1 ω′

i

(A1)

for increasing values of n, up to 3N = 93. In general, lower
frequencies correspond to less localized modes. Figure 3
shows the prefactors of the five atomic jumps as a function
of the number of modes considered. It can be seen that all
the frequencies have a similar behavior, decreasing with the
number of modes and reaching a plateau when approximately
40 modes are taken into account. When more distant modes are
taken into account, the plateau is near 60 modes and the value
of each prefactor increases in an exponential manner. This
last growth can be attributed to the accumulation of numerical
error as the prefactor is a product of the frequencies of the
modes considered. For the calculation of kinetic correlations,
only the relative value of the prefactor is significant. Figure 3
shows the evolution of the prefactors of the different frequen-
cies with the number of modes considered. The values are
normalized by the prefactor ν(0) of the jump frequency of the
vacancy in bulk nickel. When up to 60 modes are considered,
the different frequencies stay between 2/3 and 3/2 of the
values of the vacancy jump in the bulk. The restriction to the
forces on the jumping atom thus seems to be a meaningful
approximation of the value of the different prefactor for the
current problem.

To estimate the effect of the inaccuracy of the prefactors
on the transport properties, we determine the sensitivity of the
crossover temperature Tcross to the value of the prefactors. In
the unstrained case, the drag ratio LSiV/LSiSi is a nonlinear
function of 16 frequencies. If the binding entropy is assumed
to be accurate, the sensitivity with respect to nine different
independent prefactor must be studied. Figure 4 shows
calculations of this ratio for the 512 sets of values of the
prefactors that corresponds to all possible cases where each of
these independent parameter takes either the value 3/2ν(0) or
2/3ν(0). This figure shows the most extreme variations that can
be expected from the variations of the prefactors induced by the
approximation performed in their calculation. The frequency
associated with a displacement of the vacancy from a nearest

FIG. 4. (Color online) Ratio of LSiV/LSiSi for dilute Si in Ni as a
function of the temperature. For each curve, the value of each of the
prefactors takes either the value 3/2ν(0) or 2/3ν(0).
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neighbor site of the solute towards another nearest neighbor
site has the most influence: In all cases a crossover takes place,
and the crossover temperature Tcross remains between 800 and
1400 K. The density functional theory results can predict the
value of the crossover temperature to within a few hundred
degrees. However, the crossover temperature remains below

the melting point of the alloy and in a temperature region with
significant mobility for vacancies and Si. Hence, the qualitative
behavior of the Ni-Si dilute alloy is robust with respect to
variations of the prefactors, and the unusual flow patterns—
which rely on the broken macroscale symmetry—are
robust.
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