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We study the free-energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method
which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the
level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero
temperature. The free energy of such states exhibits an essential singularity for weak compositional disorder
pointing to their necessary occurrence. Ferroelectric states appear as local minima in the free energy at high
temperatures and become stable below a coexistence temperature 7,. We calculate the phase diagram in the
electric-field—temperature plane and find a coexistence line of the polar and nonpolar phases which ends at a
critical point. First-order phase transitions are induced for fields sufficiently large to cross the region of stability
of the metastable paraelectric phase. These polar and nonpolar states have distinct structure factors from those
of conventional ferroelectrics. We use this theoretical framework to compare and gain physical understanding of

various experimental results in typical relaxors.
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I. INTRODUCTION

The unusual linear and nonlinear dielectric responses of
relaxor ferroelectrics make them both technologically impor-
tant and scientifically remarkable.' Typical relaxors such as
Pan1/3Nb2/3O3 (PMN) and PbZl’l]/3Nb2/303 (PZN) show
extended regions of fluctuations (often called diffuse phase
transitions) with several special energy scales: for temperatures
above the so-called Burns temperature T® their dielectric
constant follows the Curie-Weiss law with a characteristic
Curie-Weiss temperature Tcy.” Below Tj, it deviates from the
Curie-Weiss behavior and reaches a broad, frequency depen-
dent maximum at temperature Tp.x(w) without any signature
of a global broken symmetry.3!! T,...(w) follows the Vogel-
Fulcher law.'? At low temperatures, no macroscopic structural
changes are observed'*!* unless large enough electric fields
are applied, which reveal an additional energy scale 7,.'>'
Very significantly, neutron-scattering experiments observe the
onset of elastic diffuse scattering at a temperature 7* with
unusual temperature dependence'*~>? and non-Lorentzian line
shapes.?? It is found that T* ~ Tcw within experimental
uncertainty.>!> Under static conditions, 7, and T* are the
only temperature scales observed in elastic x-ray and neutron-
scattering experiments.?!*22* Solid solutions of relaxors with
conventional ferroelectrics such as PbMn;3Nb,/303-PbTiO3
(PMN—PT) and PbZn1/3Nb2/303 —PleO3 (PZN—PT) also show
relaxor behavior for small PT content and well-defined ferro-
electric transitions for sufficiently large PT.>>? Transitions of
structurally distinct ferroelectric phases across a morphotropic
phase boundary occur for intermediate PT concentrations.?8~

Though relaxors were first synthesized more than 50 years
ago,*3* and several models have been proposed to describe
their dielectric behavior,>* several aspects of their properties
are not well understood. A common problem is that it is
difficult to assign the parameters of a model to their char-
acteristic temperatures in a universal fashion.! An additional
difficulty has been to identify the ground state or glassy
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metastable states of relaxors due to their skin effect. For PMN,
a cubic-to-rhombohedral distortion is observed at about T, in
the near-surface region (the skin) while the bulk remains cubic
down to low temperatures.’**' The skin is macroscopically
large (a few tens of micrometers) and thus it is not clear whether
the skin or the bulk is in a thermodynamic stable state. Similar
skin effects have been observed in PZN,*?> PMN-PTO, and
PZN-PTO.*#

Compositional disorder is essential to observe relaxor
behavior.*> In the heterovalent relaxor PMN, for instance,
disorder arises from the different charge valencies and atomic
radii of Mg*2 and Nb*> on the octahedrally coordinated site.'
Such disorder leads to (i) quenched random electric fields*®
and (ii) quenched random bonds.> It is expected that quenched
random electric fields introduce effects similar to those in
magnets with quenched random magnetic fields,*’*® while
quenched random bonds are the classic ingredients of spin
glasses if the bonds are frustrated.*® If they are not, this is the
random local transition temperature model in Landau theory
of phase transitions.”® Quite generally, it is understood in the
theory of phase transitions that fields which couple linearly to
the order parameter affect the properties much more strongly
than random bonds, which couple to the order parameter
quadratically. This point has been appreciated in connection
with relaxors.! Therefore, the effects of quenched random
electric fields must be understood before including quenched
random bonds. Experiments on the nonergodic behavior of
relaxors, 84650 their skin effect,?**"** and their structure
factors®!?? provide support for this view, as similar effects have
been observed in magnets with quenched random fields.”>>?

The purpose of this paper is to study the effects on quenched
electric random fields in a simple displacive model with
which conventional ferroelectrics were first understood.>*>>
This model was recently used in Ref. 56 to show that the
broad region of fluctuations (a hallmark of relaxors) is the
result of dipolar interactions (already present in the displacive
model) acting together with compositional disorder. This point
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can be appreciated from the fact noted by Onsager,’’ that
due to intrinsic fluctuations a model with dipolar interactions
alone has no phase transition down to the lowest temperature.
Similar models with further extensions have been studied
earlier; however, they have almost exclusively been studied
by numerical methods.*”*® Analytic solutions often help in
finding general features of the solution; therefore, we consider
the minimal model of Ref. 56. Though by no means exhaustive,
this analysis allows an analytic account of microscopic aspects
of the physics of relaxors. In this paper we introduce a method
more general than that used in Ref. 56 and also study the effects
of static applied electric fields.

The essential physical points in the simplest necessary
solution of the model are to formulate an approximation which
considers thermal and quantum fluctuations at least at the
level of the Onsager approximation®’ and treats compositional
disorder at least at the level of a replica theory.>® Here, we do
so with a variational method which extends the self-consistent
phonon approximation®® to incorporate disorder.®’ This vari-
ational method leads to the self-consistent equations of the
earlier approximation but also allows us to explore the energy
landscape and the competition between states with and without
spontaneous polarization. We show that there are metastable
paraelectric states in the free energy that persist down to zero
temperature. Within our approximation, the free energy of
the disordered state exhibits an essential singularity for weak
disorder. Ferroelectric states appear as local minima in the free
energy above a coexistence temperature 7, and become stable
below it. We calculate the electric-field—temperature (E-T')
phase diagram for moderate disorder and find a coexistence
line of the polar and nonpolar phases which ends at a
critical point. First-order phase transitions are induced for
fields sufficiently strong to cross the stability line of the
metastable paraelectric phase. These ordered and disordered
states are unusual, as their structure factors differ from those
of conventional ferroelectrics.

This paper is organized as follows: in Secs. II and III
we present our model Hamiltonian and variational solution,
respectively; the results and discussion are presented in
Sec. IV; a comparison to experiments is provided in Sec. V;
and a summary and conclusions are given Sec. VI.

II. MODEL HAMILTONIAN

We consider the model for relaxor ferroelectrics of Ref. 56
and add an applied field. We focus on the relevant transverse
optic-mode configuration coordinate u; of the ions in the
unit cell i along the polar axis (chosen to be the z axis).
u; experiences a local random field h; with probability
P(hy,hy, ...) due to the compositional disorder. The model
Hamiltonian is

1

2
H = Z [m + V(l/t,):| — %Zviju,-uj
i iJ
—Zhiui—EOZui, (1)

where IT; is the momentum conjugate to u;, M is an effective
mass, and Ej is a static applied electric field. We assume #;
are independent random variables with Gaussian probability
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distribution with zero mean and variance A2:

1—[ 1 | 1
P(hi,hy,..) = ——e a7, 2
SN2m A2
V(u;) is an anharmonic potential:
Vi) = Sut + L, 3)

where « and y are positive constants. v;; is the dipole
interaction:

(Zi—Z;)* _ 1
IR —R;|° IRi—R;|3’

R # R;
R = R;

Vij / 6*2 = ’ (4‘)
where e* is the effective charge and Z; is the z component of
R;.

The Hamiltonian of Eq. (1) presents long-ranged
(anisotropic) dipolar interactions, compositional disorder, and
anharmonicity. We do not consider cubic symmetry, coupling
to strain fields and disorder in the bonds v;; expected in
relaxors.!3373% As we stated above, our purpose is to study
the effects of quenched random fields alone in a displacive
model for ferroelectrics.

III. VARIATIONAL SOLUTION

In this section, we present a variational framework to
study the statistical mechanics of the problem posed by the
Hamiltonian Eq. (1).

We consider a trial pair-probability distribution:

1 tr
r_ —BH
,0 - Zn_e ’ (5)

where H" is the Hamiltonian of coupled displaced harmonic
oscillators in a random field,

2
H" = Z 21_[_1\;[ + % Z(ui —p)Gi_j(u; — p)— Zhi”i»
i 2¥) !

(©)

and ZY is its normalization:

20 = Tre #1" = (l_[ [2 sinh <ﬂh29q )Tl)

q
([Tetmeooms), ”
i,j

Here, p is a uniform order parameter: it is the displacement
coordinate averaged over thermal disorder ({. . .)) first and then

over compositional disorder (.. .)):

o0
p=m=/ dhydhy -+ P(hi s . ) Tep s, (8)

]

In the standard variational scheme of the self-consistent
phonon approximation, the Fourier transform of the function
G;_; is the frequency of the transverse optic mode M Qé =
Z[ j Gi_jei‘l'(R”Rf), at wave vector q.59 We define G,-_,lj =
(1/N) Y, (M)~ 'e ' ®i=R)) where the summations over
q extend over the first Brillouin zone. p and €2, are variational
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parameters and are determined by minimization of the free
energy.

Using Egs. (1)~(8), we calculate the free energy, F =
(H) + T (kg In p'r). The result is given as follows:

F
- = —[p +n+ APyl + 4 [p* +6p> A%y +3A%°
+6n{p> + A2y} + 377
11 h R\ 1 |,
_2NZU"2MQ,, COth( 2 )_Evop
1 A?
X e v i
(Me2)} N M
11 hQ
——— ) h&,coth pr<,
4N 2
hQ
—Zln |:2sinh<ﬁ ")] ()
q
where v, /(ne*?) = 1/(ne*?) > vijel Rk = a1 -

3%) — ¢|qal® + 3¢(g.a)? is the Fourier component of the
dipole interaction v;; for cubic lattices in the long-wavelength
limit; ¢ is a dimensionless coefficient that depends on
the structure of the lattice:®! a is the lattice constant; and
vy = 4mne*?/3 is the ¢ = 0 component of v, in the direction
transverse to the polar axis (v, is nonanalytic for ¢ — 0). n
are mean-squared fluctuations averaged over compositional
disorder:

D 1 h nQ
n= (0 — W) =5 3 e th(,gz q), (10)
q q

and v is defined as follows:

1 1
wE_Z(M—QgI)Z' (11)

We have ignored terms independent of p and €24 in Eq. (9).
Minimization of the free energy with respect to p and €2,
gives the result

Eo = [M(Q)* — 2yp*1p, (12a)
M = M(Qp) + (vg — vy). (12b)
M(Qy)* =« +3yIn+ A +p’l—vy. (120

Equations (12a)—(12c) together with Eqs. (10) and (11)
are self-consistent equations that determine the temperature
dependence of the zone-center soft mode € and the order
parameter p. The temperature dependence of €2, is determined
through Q. For Eg = 0 and p = 0 they correspond to those
derived in Ref. 56. For no disorder (A = 0), they correspond
to those of the self-consistent phonon approximation for pure
ferroelectrics.

We now compute the structure factor S,. The structure
factor is obtained from the Fourier transform of the correlation
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functions {u;u ;) ;). With the help of Egs. (5)—(7), we obtain the
following result

S 28, + f th A<, + A’ (13)
= CO! 5
1= P % T ong, 2 M2y’

where pand 2, are given by Eq. (12). This expression
corresponds to the structure factor derived in Ref. 56 with
an additional contribution from the order parameter p. We
identify the correlation length £ from the structure fac-
tor of the pure system: in the classical limit and for no
compositional disorder, we recover the structure factor for
conventional ferroelectrics, S, = p26q + kgT /(M Q‘ZI), with

2 _ a0 2 ;
MQ, = i3 (677 +|q|°) for wave vectors ¢ in the x and

y directions. We recognize £ as the correlation length:

[ ¢/@a3)
S/a - M(Qé)z U(J)" (14)

which diverges at the onset of the ferroelectric transition for
the pure system.
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FIG. 1. (Color online) Temperature dependence of (a) the or-
der parameter p and (b) the zone-center soft-mode frequency
Q. Inset: Temperature dependence of the correlation length &.
There is an essential singularity for small compositional dis-
order. Solid lines correspond to stable and metastable states.
Dashed lines correspond to a saddle point in the free energy.
Here, h/(Mvya*)V? =4.5x107%, (vy —«)/vy = 1.98 x 1073,
ya’/vy = 1.98 x 107", and ksT?/(vya®) =5.70 x 107*. These
model parameters were obtained from fits to transition temperature,

Curie-Weiss constant, polarization, and phonon dispersion of PT at
A = (6364
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IV. RESULTS AND DISCUSSION
A. No applied electric field, Ey = 0

Figures 1(a) and 1(b) show the temperature dependence
of the order parameter and the zone-center transverse optic
frequency obtained from Eq. (12) for £y = 0. For no disorder,
we obtain the well-known results of the self-consistent phonon
approximation: a paraelectric-to-ferroelectric second-order
phase transition at a critical temperature T,° with a transverse
optic phonon frequency that softens as (25)* o |T — T,
with logarithmic corrections.®? For finite disorder, ordered
states with opposite polarization appear below a superheating
temperature 7; < T (only the state with positive polarization
is shown). The paraelectric states persist down to zero
temperature for small [(A%/vy)/(kpT?) < 0.01] and moderate
[0.01 < (A%/vy)/(kgT?) < 0.02] disorder. For small disor-
der, we now show that the nonpolar states have an essential
singularity: for T = 0 and p = 0, we solve in the classical
limit the Euler-Lagrange equations (12) for the zone-center
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transverse optic-mode frequency:
(y/2) (Ao/vg (A /vy)
B2
4B4Q4v0le_1
0 A2 o €
By /2) (Ao/vy (A% /vy)

M(Qi) =

22 kBT
2870 (A2/vf)

s)

Here, Wy[z] is the zeroth branch of the Lambert function;®
Ao/vg = (1/N) Y, (o — v)™" = ((4n//3)BQ)™", B> =
(¢a®)/(4m/3), kpT? = (vy — k)/(By Ao/vy), and Q is a
wave-vector cutoff. Using that Wy[z] =~ z + O(z?) for 7 — 0,
we obtain that in the limit of small disorder

kg1
(a2 /o)
bl

2B2Q2

M(QE)? ~ (4B*Q%vie e (16)

which is an essential singularity. This points to the necessary
occurrence of nonpolar states with a stability region that
extends to zero temperature. First-order phase transitions are

0.0030 - ! E
(b) T=T,=0.12T¢
0.0025 - E
2.0%107?
0.0020 - B
1.5x107
0.0015 1
N 1.0x107
0.0010 \ / 1
5.0x107
0.0005 ‘ i{ 1
0
0.0000 | N | =
—-0.05 0.00 0.05
0.0030 [ ' :
‘ (d) T=0
0.0025
2.5%107
0.0020 -
20x1073
0.0015 1
«y 1.5%107
0.0010 1.0x107
0.0005 F 5.0%x107
e 0
0.0000 | n | 1
-0.05 0.00 0.05
pla

FIG. 2. (Color online) Contour plots of the free energy for moderate disorder without applied electric fields. (a) The paraelectric global
minimum at high temperatures. (b) Ferroelectric states with opposite polarization appearing as local minima below a superheating temperature
T;. (c) Coexisting polar and nonpolar states at temperature 7,. (d) The metastable paraelectric state and the stable ferroelectric states at 7 = 0.
Free energies are measured with respect to that of the global minimum in units of ks T. Here, (A%/vy)/(kpT.) = 0.018.
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FIG. 3. (Color online) Disorder dependence of the coexisting and
superheating temperatures 7, and 7}, respectively.

expected, nonetheless, as the paraelectric state is close to a
saddle point in the free energy for small disorder and well
below T}, as shown in Fig. 1.

Figure 2 shows the free-energy landscape ( p,Qé) for
several temperatures. For 7 > T; the paraelectric phase is
stable. At Tj, ordered ferroelectric states appear as local
minima. Atatemperature 7, < T) there is a coexistence region
of disordered and ordered states. For T < T, the ordered states
are stable and the disordered state is metastable downto 7" = 0.
Two saddle points with opposite polarization appear at 7. The
temperature dependence of these saddle points is shown by the
dashed line in Figs. 1(a) and 1(b).

The temperature dependence of the correlation length £ is
shown in the inset of Fig. 1(b). For finite disorder, £ remains
finite at all temperatures in the disordered states, though it
becomes very large for weak disorder as a consequence of the
essential singularity Eq. (16). For the ferroelectric states, &
grows as it approaches the superheating temperature 7.

Figure 3 shows the temperature-disorder phase diagram.
Paraelectric metastable states extend from the the coexisting
temperature 7, down to zero temperature for small and
moderate disorder. First-order phase transitions are expected
in the small disorder regime since the saddle points in the free
energy are very close to the metastable paraelectric states at
low temperatures, as stated above. For intermediate disorder,
no transition occurs for 7 — T,: the saddle and paraelectric
points remain well separated (see Fig. 1). Nucleation of
polar domains may occur within the paraelectric phase, as
stable ferroelectric states are present in the free energy.®® For
large disorder [(A?/vy)/(kpT?) 2 0.02], there is only a global
paraelectric minimum in the free energy, as shown in Fig. 4.

B. Applied electric field, Ey > 0

Figures 5(a) and 5(b) show the temperature dependence
of the order parameter and the zone-center transverse optic
frequency obtained from Eq. (12) for finite applied fields
and moderate compositional disorder. For clarity, only the
states with polarization parallel to Ej are shown. For small
field strengths [Epa/(kp TCO) < 0.002], the paraelectric state
acquires a tiny polarization parallel to E, and persists
down to zero temperature. The stable ferroelectric state does
not change significantly from that without applied fields.
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FIG. 4. (Color online) Contour plot of the free energy for large
disorder. No ferroelectric states appear and there is only a global
paraelectric minimum at all temperatures. Free energies are measured
with respect to that of the global minimum in units of kg T°.

For moderate field strengths [0.002 < Eoa/(kp Tf) < 0.007],
first-order phase transitions are induced as the the paraelectric
state merges with the saddle point in the free energy. Upon
increasing Ey, the transition smears out for fields greater than
a critical field E¢; [Eqa/(kpT?) =~ 0.007], thus revealing a
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FIG. 5. (Color online) Temperature dependence of (a) the order
parameter p and (b) the zone-center soft-mode frequency Q& for
several applied field strengths. Solid lines correspond to stable and
metastable states. Dashed lines correspond to saddle points in the free
energy. Here, (A%/vy)/(kgT®) = 0.018.
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FIG. 6. (Color online) Contour plots of the free energy for moderate disorder and moderate applied electric fields. (a) The global paraelectric
minimum for high temperatures, with polarization parallel to Ey. (b) The ferroelectric metastable state appearing at temperature T;(Ey), with
polarization parallel to Ej. (c) The coexisting paraelectric and ferroelectric states at T.(E). (d) The paraelectric state as a local minimum
and the stable ferroelectric state below T,.(Ej). (¢) A new local ferroelectric minimum appearing for low temperatures in the free energy, with
polarization opposite to Ey. Free energies are measured with respect to the global minimum in units of k7. Here, (A /vy)/(kgT?) = 0.018

and Ega/(kgT?) = 0.003.

critical point. The free-energy landscape for moderate disorder

is shown in Fig. 6.

Figure 7 shows the E-T phase diagram for moderate
disorder. The coexistence line 7, ends at the critical point
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FIG. 7. (Color online) Calculated E-T phase diagram for mod-
erate disorder. 7, is the coexisting line ending at the critical point
(Ee,T,). To and Ty are spinodal curves that indicate the end of
the stability region of the paraelectric and ferroelectric phases,
respectively. Here, (A?/vy)/(kgT®) = 0.018.

(E.,T.;) above which the transition is smeared out. The
spinodal curves 7y and 7} indicate the end of the stability
region of the paraelectric and ferroelectric phases, respectively.
As opposed to pure ferroelectrics, where it is observed that the
spinodal curve Ty of the paraelectric phase is close to the
coexistence line and crosses the T axis,®’ T, extends to zero
temperature and does not cross the abscissa for finite disorder.

V. COMPARISON TO EXPERIMENTS

We compare our model with experiments in PMN and
PMN-PT.

A. No applied electric field, Ey = 0

In the absence of applied electric fields and for moderate
compositional disorder, our model shows that there is no
symmetry breaking down to low temperatures, as observed
in PMN.!>! This disordered state is metastable and is not that
of a simple paraelectric, as their structure factors are distinct
[see Eq. (13)].

We now estimate the Curie-Weiss temperature Tcw and
Curie-Weiss constant Ccw for PMN from our model. By calcu-
lating the inverse dielectric susceptibility of our model, x ~! =
M(Q7)? /vy for (A?/vg)/(kpT?) = 0.014 (see Sec.V B), we
estimate by linear extrapolation that Tcw =~ 300K and that
Cow ~5x 10°K (TC0 ~ 720K for PT%%). This Tcw is lower
than the observed value (=400 K)” but it is consistent with
a temperature higher than 7,. The calculated Ccw is slightly
higher than that of experiments (~ 1.2 x 10° K).” As opposed
to 7. and T}, we find that Tcw does not correspond to any
special temperature in the free energy of our model: it is simply
the onset temperature of critical fluctuations of polarization of
a paraelectric state which do not undergo a phase transition.

Well-defined ferroelectric transitions are observed in PMN-
PT with sufficiently large PT content (=>30%).2” This is
consistent with our model, as transitions to polar stable states
are expected for small disorder [(Az/vd-)/(kB TCO) < 0.010].
From Fig. 3, we find that TC/TC0 ~ 0.48 (or T, ~ 350K) for
(A%/vy)/(kpT?) = 0.010. This is slightly lower but consistent
with the observed transition temperature of about 400K in
PMN-PT with 30% PT.
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B. Applied electric field, Ey > 0

In comparing to experiments in PMN in the presence of
applied fields, we must distinguish between the observed
behavior of the skin and that of the bulk. Since the skin is
macroscopically large (a few tens of micrometers),”**! we
compare our model to the skin and the bulk separately.

We first compare to the skin of PMN. Our model shows
there is a field induced first-order phase transition for applied
fields that are large enough to cross the stability limit of the
paraelectric phase (see Fig. 7). Upon increasing the applied
field, the transition smears out above a critical field E;, as
observed in PMN.!” We can estimate E., from our model: by
fitting the superheating temperature 7 to that of field cooled
zero-field heating experiments in PMN (7} ~ 210K),'>'® we
find that the corresponding disorder strength is of about
(Az/vol)/(kB T°) = 0.014, according to Fig. 3. For this disor-
der strength, the transition is smeared at about E..a/(kp TCO) =
0.004, which corresponds to about 5kV/cm.®® This is close
to the observed value of about 4kV/cm.!” Morphotropic
phase boundaries between structurally distinct ferroelectric
phases are observed in the skin of PMN-PT for PT con-
centrations of about 30-35%.%*! We cannot discuss this
effect within our approximation, as we do not consider
cubic symmetry.

We now compare to the bulk of PMN. Bulk PMN does not
go through any macroscopic structural phase transition under
applied fields,?* which is in disagreement with our model. We
believe this discrepancy arises because we ignore coupling
to strain fields. Despite the fact that there is no observation
of global broken symmetries, neutron-scattering experiments
reveal a smooth peak in the diffuse scattering upon application
of an electric field precisely at about 7. ~ 200 K.** This is
suggestive of clamping effects,’” for which there are two
possible scenarios: (i) the bulk is clamped and remains in the
metastable disordered state while the skin can relax to access
the stable states with spontaneous polarization or (ii) clamping
effects are such that the disordered phase is stable down to
T = 0 and the skin is in a metastable ordered state. Previous
theoretical studies consider coupling to acoustic modes but do
not address this point.?7-38

VI. CONCLUSIONS

We have studied the effects of quenched random fields in a
simple displacive model for ferroelectrics using a variational
method. We show that for small and moderate disorder there
are metastable paraelectric states in the free energy with a
stability region that extends to zero temperature. For small
disorder, these states exhibit an essential singularity in their
free energies. Ferroelectric states appear as local minima
below a superheating temperature 7; and above a coexisting
temperature 7.. Below T, the ferroelectric states become
stable. No global symmetry breaking occurs for moderate
disorder, as the saddle points and disordered states remain
well separated down to zero temperature. First-order phase
transitions are induced for electric fields large enough to cross
the stability limit of the paraelectric phase. These paraelectric
and ferroelectric states have distinct structure factors from
those of conventional ferroelectrics.
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Based on our results, we present our view of the static
thermodynamic behavior of heterovalent relaxors. Pure re-
laxors such as PMN and PZN are in a stable paraelectric
state for temperatures above T,; below T, they remain in a
metastable disordered state with a stability region that extends
down to zero temperature. Nucleation of local polar domains
within the nonpolar phase may occur, as there are stable
ferroelectric states in the free energy. First-order transitions are
induced for applied fields large enough to cross the stability
region of the metastable paraelectric phase. Upon increasing
the applied field, the coexisting region approaches a critical
point. The paraelectric and ferroelectric states are not those
of conventional ferroelectrics, as their structure factors differ.
Tew (>~ T*) is the onset temperature of critical fluctuations of
polarization of a paraelectric state which does not undergo a
phase transition. It does not correspond to a special temperature
in the free energy within the variational solution of our model.
Ferroelectric transitions occur in PMN-PT and PZN-PT with
sufficiently large PT content, as they fall in the weak disorder

PHYSICAL REVIEW B 88, 134106 (2013)

regime where the metastable disordered state is close to an
instability point.

We suggest that clamping effects are responsible for the
lack of macroscopic symmetry breaking in the bulk of PMN
and PZN upon application of electric fields. Extensions of
this model to incorporate cubic symmetries and coupling to
acoustic phonons are needed to validate or refute this point.
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