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We investigate the behavior of low-energy electrons in two-dimensional molybdenum disulfide when submitted
to an external magnetic field. Highly degenerate Landau levels form in the material, between which light-induced
excitations are possible. The dependence of excitations on light polarization and energy is explicitly determined,
and it is shown that it is possible to induce valley and spin polarization, i.e., to excite electrons of selected valley
and spin. Whereas the effective low-energy model in terms of massive Dirac fermions yields dipole-type selection
rules, higher-order band corrections allow for the observation of additional transitions. Furthermore, inter-Landau-
level transitions involving the n = 0 levels provide a reliable method for an experimental measurement of the
gap and the spin-orbit gap of molybdenum disulfide.
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I. INTRODUCTION

Molybdenum disulfide (MoS2), in its two-dimensional (2D)
form, has recently been isolated via the exfoliation technique,
similarly to graphene and 2D boron nitride.1 In contrast to bulk
or few-layer MoS2, which is an indirect-gap semiconductor,
recent experiments have shown that 2D MoS2 is a semiconduc-
tor with a direct gap on the order of 1.66 eV,2,3 in agreement
with ab initio and tight-binding calculations.4–11 The direct
gap is situated at the corners K and K′ = −K of the hexagon-
shaped first Brillouin zone. In the vicinity of these points
(valleys) and at low energy, the electronic properties can be
modeled by massive Dirac fermions with a moderate spin-orbit
coupling.5,12 This opens the fascinating possibility to study the
particular topological properties of pseudorelativistic fermions
in a condensed-matter system other than graphene where the
low-energy electronic properties are governed by massless
Dirac fermions.13 Recent experiments have indeed shown14,15

that circularly polarized light allows one to address electrons
in a single valley, in agreement with previous analytical12 and
numerical ab initio16 calculations, such that MoS2 might be a
promising candidate for valleytronics devices.

One of the most salient features of 2D Dirac fermions
in condensed-matter systems is certainly their topological
property in the form of a singularity in the wave function
at the (massive) Dirac point that gives rise to a nonzero Berry
curvature.17,18 A prominent consequence is an anomaly in the
n = 0 Landau level in the presence of a magnetic field, which
in contrast to all other levels is bound either to the top of the
valence or the bottom of the conduction band.

In the present paper, we study the magneto-optical proper-
ties of 2D MoS2, which arise precisely due to the presence of
massive Dirac fermions in the vicinity of the K points. Whereas
the n = 0 Landau level at the K point is situated at the top
of the valence band, that at the K′ point is bound to the bottom
of the conduction band. As a consequence, circularly polarized
light allows one to excite electrons in a single valley if the
inter-Landau-level transition involves the n = 0 level. This
transition provides a direct measure of the mass gap and the
spin-orbit coupling in MoS2. Very similar results have recently
been obtained by Tabert and Nicol, who investigated the
magneto-optical properties of silicene and similar 2D materials

that may also be described in terms of massive Dirac fermions
at low energy.19,20 Whereas massive Dirac fermions respect
the dipole selection rules n → n ± 1 (regardless of the band),
we show furthermore that higher-order band corrections such
as trigonal warping give rise to additional allowed transitions,
such as the interband transitions n → n or n → n ± 2 and
n → n ± 4.

The remaining parts of the paper are organized as follows. In
Sec. II, we build up the model Hamiltonian, which is discussed
in the absence and the presence of a magnetic field, the latter
giving rise to the Landau-level spectrum. The magneto-optical
excitations within the model of massive Dirac fermions with
spin-orbit coupling are investigated in Sec. III, where the
selection rules for MoS2 are presented. Section IV is devoted to
a study of band corrections, their influence on the Landau-level
spectrum, and optical transitions beyond the dipole-allowed
ones.

II. GENERAL OVERVIEW

In this section, we characterize the low-energy behavior of
electrons in MoS2 in both the absence and the presence of a
transverse magnetic field. We begin by introducing the Dirac
Hamiltonian and the spin-orbit coupling before considering
the effect of a magnetic field.

A. Low-energy Hamiltonian

The electronic behavior of MoS2 has been studied
both in the framework of ab initio and tight-binding
calculations.4,5,8,10,12 The material has one molybdenum and
two sulfur atoms per unit cell (see Fig. 1), and in total 11
orbitals thus need to be considered: three p orbitals for each of
the sulfur and five d orbitals from the molybdenum atoms. In
contrast to bulk or few-layer MoS2, which is an indirect-gap
semiconductor,7,9,11 a single layer of MoS2 has a direct gap of
roughly 1.66 eV at the K and K′ = −K points situated at the
corners of the hexagonal first Brillouin zone.11 In spite of the
complexity of the band structure, the low-energy electronic
properties of MoS2, in the vicinity of the two valleys K
and K′, may be understood within a simplified model that
only takes into account three molybdenum orbitals: |d3r2−z2〉,
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FIG. 1. (Color online) Crystal structure of 2D MoS2. (a) Perspec-
tive view of the honeycomb lattice. (b) The unit cell. Each of the two
sulfur atoms of the A sublattice (purple) is separated by a length11

z ≈ 1.572 Å from the B sublattice (red) plane. The characteristic
lattice spacing11 ã ≈ 3.16 Å is defined as the distance between the
two closest points in a sublattice.

which mostly forms the bottom of the conduction band, and a
valley-dependent mix of |dxy〉 and |dx2−y2〉 for the top of the
valence band,12

|φc〉 = |d3r2−z2〉 ,
∣∣φξ

v

〉 = 1√
2

(|dx2−y2〉 + iξ |dxy〉). (1)

Here, ξ = + denotes the valley K and ξ = − stands for K′.
If one represents the Hamiltonian in this basis and expands it
around the points K and K′, the low-energy Hamiltonian of
the system can be written as12

Ĥ0 = h̄vF (ξqxσx + qyσy) + �σz, (2)

in which σx,σy , and σz are Pauli matrices, and q is the
reciprocal-lattice vector measured with respect to ξK with
ã |q| � 1 (ã being the characteristic lattice spacing). Notice
that the Fermi velocity vF ≈ 85 000 m/s in MoS2 is compara-
ble to that of graphene.

B. Spin-orbit coupling

As mentioned above, MoS2 is characterized by a strong
intrinsic spin-orbit coupling (see Fig. 2). The spin-orbit
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FIG. 2. (Color online) Sketch of the low-energy band structure
of molybdenum disulfide in arbitrary units (a.u.). The band structure
consists of two pairs of massive Dirac cones separated by spin-orbit
coupling.

Hamiltonian, which needs to be added to Ĥ0, is

Ĥso = ξ

(
�c

so 0

0 �v
so

)
⊗ sz, (3)

in which sz is the Pauli matrix for spin (of eigenvalues ±1)
and 2�c,v

so is the spin-orbit gap in the conduction and valence
band, respectively. Ab initio calculations indicate that �v

so ≈
150 meV while �c

so is very small but finite (�c
so ≈ 3 meV).

Thus, we note

�so = �v
so − �c

so ≈ �v
so. (4)

Obviously, as long as spin relaxation processes are not
considered, the spin remains a good quantum number. It is
noteworthy that �c,v

so � �, and thus the low-energy physical
properties in MoS2 are largely controlled by the mass gap 2�.
Therefore, in spite of the similarity with the model Hamiltonian
used in the description of graphene with a spin-orbit gap21 or
silicene,22 no quantum spin Hall effect is to be expected in
MoS2 because the latter would require �c,v

so 	 �. Even if
Ĥso is different in each valley, it is locally constant around
ξK and therefore does not complicate the analysis of the
orbital (wave-vector-dependent) electronic properties, such as
the calculation of the Landau levels (see Sec. II C). Thus, the
system is equivalent to two spin-resolved Dirac Hamiltonians
similar to Ĥ0 with a spin- and valley-dependent gap 2�ξs as
well as a constant energy term,

Ĥξ,s = Ĥ0(� = �ξs) + �c
so + �v

so

2
12, (5)

�ξs = � − ξs

2
�so. (6)

The term of constant energy (�c
so + �v

so)12/2 plays no
physical role and is omitted henceforth.

C. Landau levels

When 2D electrons are subjected to a transverse mag-
netic field B = ∇ × A, Landau levels form and the energies
within the valence and conduction bands get quantized.
Indeed, making the Landau-Peierls substitution q → q +
eA/h̄ in the Hamiltonian shows that it is possible to
write the wave functions of the Hamiltonian as |ψk〉 =
φ(x) exp(ikyy), in which φ is an eigenvector of the effective
Hamiltonian,

Ĥ
ξ,s

B = h̄vF

[
ξqxσx +

(
ky + eB

h̄
x

)
σy

]
+ �ξsσz, (7)

where we have used the Landau gauge A = (0,Bx,0) for the
vector potential. Because x and qx do not commute, it is
possible to rewrite the Hamiltonian using dimensionless opera-
tors Q = lBqx and X = x/lB + h̄ky/eB such that [X,Q] = i.
Here, lB = √

h̄/eB is the magnetic length,

Ĥ
ξ,s

B = h̄vF

lB
(ξQσx + Xσy) + �σz. (8)

With the help of the ladder operators a = (X + iQ)/
√

2 and
a† = (X − iQ)/

√
2, we may rewrite the Hamiltonian in both
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valleys,

Ĥ
ξ=+,s

B =
(

�s −iεa

iεa† −�s

)
, (9)

Ĥ
ξ=−,s

B =
(

�−s iεa†

−iεa −�−s

)
, (10)

in which ε = √
2h̄vF / lB ≈ 30.5

√
B(T ) meV.

Using the eigenvectors |n〉 of the number operator n = a†a,
it is possible to find the eigenstates of the Hamiltonian in both
valleys,

ψ
ξ=+,s
λn = (

α+s
λn |n − 1〉 ,βn |n〉 )

for n � 1, (11)

ψ
ξ=+,s

−0 = (0, |0〉) for n = 0, (12)

ψ
ξ=−,s
λn = (

α−s
λn |n〉 ,βn |n − 1〉 )

for n � 1, (13)

ψ
ξ=−,s

+0 = (|0〉 ,0) for n = 0, (14)

where λ = ±1 designates the band. Here, the coefficients α
ξs
λn

and βn are defined as

α
ξs
λn = �ξs + λ

√
�2

ξs + nε2, (15)

βn = −i
√

nε. (16)

Counting possible values of ky yields that the Landau-level
degeneracy is nB = eB/h for each of the four spin-valley
branches.

Notice that the norm of the vector ψ
ξ,s
λn is the same for both

valleys and will be noted as N
ξs
λn ,

N
ξs
λn =

√∣∣αξs
λn

∣∣2 + |βn|2 for n � 1, N
ξs

λ0 = 1. (17)

The energy associated with the spinor ψ
ξ,s
λn is

ε
ξs
λn = λ

√
�2

ξs + nε2 for n � 1. (18)

In contrast to the n 
= 0 levels, which occur in pairs in each
valley (one for each band), the n = 0 level needs to be treated
separately. Indeed, one finds a single n = 0 level per valley. In
the present case, as �ξs is always positive (since �so � �), for
both values of spin the n = 0 Landau levels in the K valley are
fixed at the top of the valence band (ε+s

n=0 = −�+s) whereas
the two n = 0 levels in the K′ valley are located at the bottom of
the conduction band (ε−s

n=0 = �−s) (see Fig. 3). This is a direct
consequence of the fact that electrons behave as massive Dirac
fermions. The two valleys react differently to the magnetic
field, and the particular behavior of the n = 0 Landau levels
is due to the particular winding properties of the Berry phase,
as may be understood in the framework of a semiclassical
analysis.18

Notice finally that, if 2�so > �, �+ is negative while �−
remains positive. Therefore, in both valleys, the ψ

ξ,s=+
±0 states

would be fixed to the bottom of the conduction band and the
ψ

ξ,s=−
±0 states are at the top of the valence band, which is a

case discussed in the framework of silicene.19,20

III. MAGNETO-OPTICAL EXCITATIONS

In the present section, we consider optical excitations
between Landau levels of MoS2 and establish selection rules
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FIG. 3. (Color online) Representation of the Landau levels in the
valleys K and K′ when spin-orbit coupling is not taken into account,
i.e., it is assumed that �ξs = �. In that peculiar case, the energy
levels are spin-degenerate. For the sake of clarity, the figure is not
to scale as the energy separating the closest Landau levels is much
smaller than the gap.

depending on the circular polarization of the radiation. To that
effect, we assume that the MoS2 layer is exposed to circularly
polarized light. We shall label kp the wave vector and h̄ω the
energy of the light field. kp is orthogonal to the plane of the
material and much smaller than 1/ã, thus authorizing only
vertical transitions. The polarization index is denoted as σ .
For clockwise-polarized light σ = +1, otherwise σ = −1. We
shall now determine interaction with light and the associated
selection rules.

A. General theory

To take into account the coupling to the light field, one
may again use the Landau-Peierls substitution with a modified
total potential Atot = A + Arad(t), in which A is the potential
introduced earlier, and

Arad(t) = A

⎛
⎜⎝

cos(ωt)

cos
(
ωt − σ π

2

)
0

⎞
⎟⎠ (19)

is the potential describing the light. The interaction between the
light and electrons in the system is given by the Hamiltonian

Ĥl(t) = e

h̄
∇kĤ

ξ,s

B · A(t)rad = Ŵξσ e−iωt + Ŵ
†
ξσ eiωt , (20)

which needs to be added to the Hamiltonian. Here,

Ŵξσ = evF Ahξσ with hξσ = 1
2 (ξσx + σ iσy), (21)

where we have defined

hξs=+1 =
(

0 1

0 0

)
and hξs=−1 =

(
0 0

1 0

)
. (22)

This may be be treated as a time-dependent perturbation,
and transitions between initial states |i〉 and final states |f 〉
are possible only if their respective energies are related to ω

by Ef − Ei = ±h̄ω. The excitation term, which is what is
interesting here, is proportional to |〈f |Ŵξs |i〉|2 and thus to
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TABLE I. Values of relative transition rates Pξ,s,σ

λini ,λnf
for every possible transition |i〉 → |f 〉 are given as a function of the valley and light

polarization. Here, n denotes a nonzero positive integer and the state labeled as ψ
ξ,s

0 is either ψ
ξ=+1,s

−0 in the K valley or ψ
ξ=−1,s

+0 in the K′ valley.

Valley and light polarization

Transitions ξ = +1, σ = +1 ξ = +1, σ = −1 ξ = −1, σ = +1 ξ = −1, σ = −1

ψ
ξ,s

−(n+1) → ψ
ξ,s

λn 0
∣∣ α+s

−(n+1)βn

N+s
−(n+1)N

+s
λn

∣∣2
0

∣∣ α−s
λn βn+1

N−s
−(n+1)N

−s
λn

∣∣2

ψ
ξ,s

λn → ψ
ξ,s

n+1

∣∣ α+s
n+1βn

N+s
λn N+s

n+1

∣∣2
0

∣∣ α−s
λn βn+1

N−s
λn N−s

n+1

∣∣2
0

ψ
ξ,s

−1 → ψ
ξ,s

0 0
∣∣ α+s

−1

N+s
−1

∣∣2
0

∣∣ β1
N−s

−1

∣∣2

ψ
ξ,s

0 → ψ
ξ,s

+1

∣∣ α+s
+1

N+s
+1

∣∣2
0

∣∣ β1
N−s

+1

∣∣2
0

|〈f |hξσ |i〉|2. Hence, the transition rates are defined as

Pξ,s,σ
λini ,λf nf

=
∣∣∣∣∣∣
(
ψ

ξ,s
λf nf

)†
hξσψ

ξ,s
λini

N
ξs
λini

N
ξs
λf nf

∣∣∣∣∣∣
2

, (23)

where we have explicitly taken into account the normalization
(17) of the vectors. The number Pξ,s,σ

λni ,λnf
is comprised between

0 and 1, which indicates the relative amount of electrons that
will be excited for a given transition. It is thus a measure of
the strength of the associated absorption or emission peaks.

B. Selection rules

The above results can be used to determine which tran-
sitions are authorized for both polarizations in each valley.
Considering the form of the vectors defined in Eqs. (11)–(14)
and h±1, it is obvious that the only possible transitions are
from states ψ

ξ,s
λni

to ψ
ξ,s
λnf

such that ni and nf differ by exactly
1. Notice, however, that other transitions may occur if band
corrections (such as trigonal warping) to the model are taken
into account. We discuss these corrective terms in more detail
in Sec. IV.

All possible transitions as well as the corresponding
amplitudes are given in Table I and shown in Fig. 4. It
appears that the authorized transitions are the same in both
valleys, with the exception of transitions implying the ψ

ξ,s

0
states. Hence, those are the transitions interesting for valley
polarization. Other possible transitions which are activated at
different energies are not considered in the following sections.
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FIG. 4. (Color online) Possible optical transitions between Lan-
dau levels in the absence of spin-orbit coupling. Full arrows corre-
spond to σ = +1 polarization whereas dashed arrows correspond to
σ = −1 polarization.

If the Fermi level εF is comprised between ε
ξs

−1 and ε
ξs

+1, it
is possible to polarize either valley using these transitions. To
help characterize them, we define

�
ξs

B = ε
ξs

+1 − ε
ξs

−0 ≈ 2�ξs, (24)

δ
ξs

B = ε
ξs

+1 − ε
ξs

+0 ≈ ε2

2�ξs

, (25)

where we have used the fact that ε ≈ 30.5
√

B(T ) meV �
�ξs . �

ξs

B is the energy associated with the ψ
ξ=+1,s

−0 → ψ
ξ=+1,s

+1

and ψ
ξ=−1,s

−1 → ψ
ξ=−1,s

+0 transitions, while δ
ξs

B is associated

with the ψ
ξ=+1,s

−1 → ψ
ξ=+1,s

−0 and ψ
ξ=−1
+0 → ψ

ξ=−1
+1 transi-

tions. The possible transitions involving the Landau level
n = 0 are depicted in Fig. 5.

For the transitions discussed above, the relative amplitudes
are readily calculated with the help of approximation (24),

Pξ=+1,s,σ=+1
−0,+1 = 1 − ε2

4�2
ξs

, Pξ=+1,s,σ=−1
−1,−0 = ε2

2�2
ξs

,

(26)

Pξ=−1,s,σ=+1
−1,+0 = ε2

4�2
ξs

, Pξ=−1,s,σ=−1
+0,+1 = 1 − ε2

2�2
ξs

.

As ε/�ξs ≈ 10−2, the magnitudes of the transitions involving
σ = −ξ polarizations are expected to be much less intense
than the σ = ξ transitions.

+0
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−1

K K’
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FIG. 5. (Color online) Possible optical transitions in undoped
MoS2 involving ψ

ξ,s

λ0 states between Landau levels in the presence of
spin-orbit coupling. The splitting is reversed between the two valleys.
s = +1 corresponds to the red bands while s = −1 is represented by
the green bands. The arrow signification remains the same as in Fig. 4.
The figure takes into account the fact that 2� 	 2�v

so 	 δ
ξs

B ,�c
so.
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1. Transitions in undoped MoS2

In the case of undoped MoS2, that is, when the Fermi level
is situated in the gap between the valance and the conduction
band, the above analysis shows that it is possible to excite
electrons in a single valley with use of circularly polarized
light, similarly to the case of MoS2 in the absence of a magnetic
field.12 In contrast to the latter case, the magnetic field has two
major consequences: first, it defines well-separated energy
levels that one may address in a resonant manner; second,
the absorption and emission peaks are proportional to the
density of states, which is strongly enhanced at resonance
by the magnetic field because the density of states per Landau
level is given by the flux density nB ∝ B. As depicted in Fig. 5,
light with a polarization σ = + is associated with the transition
from −0 to +1 in the K valley, whereas light with a polarization
σ = − couples the Landau levels −1 and +0 in the K′ valley.
Furthermore, due to the spin-orbit gap, each transition is split
into two rays �

ξs

B , such that one may furthermore identify
each ray with a particular spin orientation of the involved
electrons. This is depicted in Fig. 6. The frequency of the
rays is thus a direct measure of the spin-orbit gap in MoS2.
Notice finally that, as calculated in Eqs. (26), the absorption
peaks of light with polarization σ = + (in the K valley) are
much stronger than those for σ = − (in the K′ valley). This
situation needs to be contrasted to the case of silicene, where
due to a strong spin-orbit gap, the n = 0 Landau levels are
both situated at the bottom of the conduction band (for a
particular spin orientation) such that circularly polarized light
excites electrons in both valleys, with roughly the same spectral
weight.19,20

2. Transitions in moderately doped MoS2

The transitions discussed in the preceding paragraph are the
only ones involving the n = 0 level and visible for undoped
MoS2, i.e., when the Fermi level is situated in the gap between
the valence and the conduction band. In the case of moderate
doping, that is, if the Fermi level εF is comprised between

FIG. 6. (Color online) Schematic plot of light absorption as a
function of energy. The color of the peaks indicates the corresponding
polarization (red for σ = + and blue for σ = −). Each peak
corresponds to excitations for a single valley and value of the spin.
The peaks are separated by �so ≈ 150 meV. The peaks corresponding
to σ = − polarization are expected to be 104 smaller than the peaks
corresponding to σ = + polarization.

ε
ξs

−1 and ε
ξs

+1, other transitions involving n = 1 and 0 are
possible. Indeed, using light of σ = − polarization but of
energy δB allows one to excite electrons in the valley K,
whereas a resonance at �B is still associated with a transition
from −1 to +0 in the K′ valley. In the case of a polariza-
tion σ = +, the role of the valleys is exchanged. Notice,
however, that the resonances occur at extremely different
energies since we have �

ξs

B ≈ 1.7 eV, roughly independent
of the magnetic field, whereas δ

ξs

B ≈ 0.27 B(T ) meV is much
smaller.

IV. DEVIATIONS FROM THE MAGNETO-OPTICAL
SELECTION RULES DUE TO BAND CORRECTIONS

In contrast to the preceding section, where massive Dirac
fermions were considered, the band structure of 2D MoS2

reveals deviations from this ideal dispersion. The most
prominent ones are the electron-hole asymmetry, which yields
a mass difference of roughly 20% for electrons and holes,23 and
trigonal warping.10 In the present section, we investigate how
these corrections affect the magneto-optical selection rules
obtained above.

Similarly to monolayer graphene, trigonal warping arises
from higher-order band corrections beyond linear order in
the off-diagonal terms and may be accounted for via the
term24

Ĥ3w =
(

0 γ (ξqx + iqy)2

γ (ξqx − iqy)2 0

)
, (27)

whereas the electron-hole asymmetry is encoded in the
corrective term

Ĥas =
(

αq2 0

0 βq2

)
. (28)

The relevant parameters may be obtained from a fit to tight-
binding or ab initio calculations, and one finds α = 1.72 eVÅ2,
β = −0.13 eVÅ2, and γ = −1.02 eVÅ2.10

A. Modified Landau levels

As in Sec. II C, the modified Landau-level spectrum may
be obtained with the help of the Landau-Peierls substitution.
The term Ĥas remains diagonal in the basis of eigenstates of
Eqs. (11)–(14) and reads

Ĥ
ξ,s

B,as = 1

l2
B

(
α(2n + 1) 0

0 β(2n + 1)

)
. (29)

Thus the eigenstates are of the same form as in Eqs. (11)–(14),
with marginally different values of α

ξs
λn. However, the energies

levels are slightly shifted,

ε
ξs
λn = α + β

l2
B

(
n + 1

2

)

+ λ

√[(
n + 1

2

)
α − β

l2
B

+ �ξs

]2

+ nε2 for � 1, (30)

ε
ξs

n=0 = α + β

2l2
B

− ξ

(
α − β

2l2
B

+ �ξs

)
. (31)
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In contrast to the electron-hole asymmetry term, the trigonal
wrapping term24,25

Ĥ
ξ=+,s

B,3w = −2γ

l2
B

(
0 (a†)2

a2 0

)
, (32)

Ĥ
ξ=−,s

B,3w = −2γ

l2
B

(
0 a2

(a†)2 0

)
(33)

is not diagonal in the basis (11)–(14) and thus needs to be
treated perturbatively. Such a treatment shows that trigonal
warping yields a second-order correction relative to the
leading-order (h̄vF / lB)

√
n Landau-level behavior that arises

only in second-order perturbation theory in γ .24,25 However,
the eigenstates are modified at first order and one finds that
the original eigenstate ψ

ξ,s
λn mixes with at most four states

ψ
ξ,s

λ′n′ such that n′ = n ± 3. The modified eigenstate ψ̃
ξ,s
λn

corresponding to the energy ε
ξs
λn is

ψ̃
ξ,s
λn = ψ

ξ,s
λn +

∑
λ′ = ±λ

n′ = n ± 3

(
ψ

ξ,s

λ′n′
)†

Ĥ
ξ,s

B,3wψ
ξ,s
λn

ε
ξs

λ′n′ − ε
ξs
λn

ψ
ξ,s

λ′n′ . (34)

Since |εξs

−λn′ − ε
ξs
λn| ≈ � while |εξs

λn′ − ε
ξs
λn| ≈ δ

ξs

B � �, the
interband mixing with λ′ = −λ can be neglected in the sum.
Evaluation of the matrix elements of Ĥ

ξ,s

B,3w yields

ψ̃
ξ,s
λn � ψ

ξ,s
λn + μ

ξs
λnψ

ξ,s

λ(n−3) + ν
ξs
λnψ

ξ,s

λ(n+3) (35)

with

μ+s
λn = δn�3

γ

l2
B

(βn−3)† α+s
λn

√
(n − 1) (n − 2)

N+s
λ(n−3)N

+s
λn

(
ε+s
λ(n−3) − ε+s

λn

) , (36)

μ−s
λn = δn�3

γ

l2
B

(
α−s

λ(n−3)

)†
βn

√
(n − 1) (n − 2)

N−s
λ(n−3)N

−s
λn

(
ε−s
λ(n−3) − ε−s

λn

) , (37)

ν+s
λn = γ

l2
B

(
α+s

λ(n+3)

)†
βn

√
(n + 2) (n + 1)

N+s
λn N+s

λ(n+3)

(
ε+s
λ(n+3) − ε+s

λn

) , (38)

ν−s
λn = γ

l2
B

(βn+3)† α−s
λn

√
(n + 2) (n + 1)

N−s
λn N−s

λ(n+3)

(
ε−s
λ(n+3) − ε−s

λn

) , (39)

where δn�3 symbolically indicates that μξs
λn is nonzero only for

n � 3. For these expressions to remain valid for the zero states,
one may define ψ

ξ=−λ,s
λn = 0 and α

ξ,s

λ0 = β0 = 1. Considering
that γ /l2

B � αλn
ξs or βn, it is a good approximation to say that

the norm N
ξs
λn is unchanged for small values of n.

B. Optical transitions

With the help of the above-mentioned states, it is possible
to examine the effect of the additional terms on the optical
transitions. To that effect, one may use the same formalism
as in Sec. III A. To take into account the addition of Ĥas

and Ĥ3w, one has to change the Ŵξσ matrix of Eq. (21) into

Ŵ tot
ξσ = Ŵξσ + Ŵ 1

ξσ with

Ŵ 1
+ξ = Ae

lBh̄

(
αi

√
2a† −i

√
2γ (1 − ξ )a

i
√

2γ (1 + ξ )a† βi
√

2a†

)
,

(40)

Ŵ 1
−ξ = Ae

lBh̄

(
−αi

√
2a i

√
2γ (1 + ξ )a†

−i
√

2γ (1 − ξ )a −βi
√

2a

)
.

Two types of corrections, to first order in γ (and principally
also in α and β), need to be considered. First, the perturbed
states (35) allow for additional transitions when evaluated
in the unperturbed coupling Hamiltonian (20), due to the
mixing between ψ̃

ξ,s
λn and ψ

ξ,s

λ(n±3). In this case, the previous
selection rules apply, and thus n′ = n ± 3 ± 1, i.e., n′ = n ± 2
or n′ = n ± 4. Second, the modified light-matter coupling Ŵ 1

ξσ

yields additional transitions when evaluated in the unperturbed
states, such as, for example, the interband transition n → n.
These transitions arise from the nondiagonal terms in Eq. (40),
whereas the diagonal terms yield dipolar transitions n →
n ± 1, such as the ones discussed in Sec. III. Table I can
be used to determine the relative magnitude of the transitions.
The value for the ψ̃

ξ,s
λn → ψ̃

ξ,s

λ′n′ transition relative amplitude
with n′ = n ± 2 or 4 is the amplitude for ψ

ξ,s

λ(n±3) → ψ
ξ,s

λ′n′

normalized with the adequate factor, either |μξs
λn/N

ξs
λn|2 or

|νξs
λn/N

ξs
λn|2. Other possible transitions involving both the

perturbed states and the corresponding light matrix elements
are proportional to at most l−4

B ∝ B2 and can thus be neglected
to first order in perturbation theory.

Henceforth, trigonal warping and electron-hole asymmetry
induce additional transitions ψ

ξ,s
λn → ψ

ξ,s

λ′n′ with n′ = n, n′ =
n ± 2, or n′ = n ± 4. One may want to evaluate the relative
intensity of corresponding absorption peaks, at least for small
values of n. For transitions involving the Ŵξσ light matrix
and perturbed ψ̃

ξ,s
λn states, the evaluation of |μξs

λn/N
ξs
λn|2 shows

that, for B = 10 T, the n′ = n ± 3 ± 1 peaks should be about
3000 times smaller than the regular peaks corresponding
to ψ

ξ,s

λ(n±3) → ψ
ξ,s

λ′n′ transitions. Similarly, the n′ = n peaks
originating from the additional terms in the light coupling can
be evaluated to be about 1000 times smaller than the regular
peaks.

V. CONCLUSIONS

In summary, we have used a two-band model that reduces
to massive Dirac fermions with a spin-valley-dependent gap
at low energies to investigate the magneto-optical properties
of MoS2. Most saliently, the particular behavior of the n = 0
Landau levels, which stick to the top of the valence band
and the bottom of the conduction band in the K and K′
valleys, respectively, allows for a selection of electrons in a
particular valley via the circular polarization of the light field.
Whereas the −0 → +1 transition (in the valley K) is addressed
by the polarization σ = +, the −1 → +0 transition (in the
valley K′) couples only to light with a polarization σ = −.
Moreover, because of the moderate spin-orbit gap (mainly in
the valence band), it is possible to address electrons with a
particular spin orientation. Indeed, a resonant excitation of
the above-mentioned Landau level transitions would allow not
only to excite electrons in a single valley (via the circular
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polarization of the light) but also a single spin state in that
valley because the resonance condition is spin-dependent. In
light transmission measurements of MoS2 flakes in a magnetic
field, for example, one would therefore expect two absorption
peaks for each polarization separated by the spin-orbit gap.
This would allow for a direct spectroscopic measurement
of the spin-orbit coupling in MoS2 in the vicinity of the
K points.

The analysis remains valid for other systems sharing the
low-energy structure of MoS2, as might be the case for
other group-VI dichalcogenides.12 Beyond the description
of low-energy electrons in MoS2 in terms of massive Dirac
fermions, which yields the typical dipole-type magneto-optical
selection rules n → n ± 1 (regardless of the bands involved),

we have shown that higher-order band corrections give rise to
nondipolar magneto-optical transitions. Whereas to first order
in perturbation theory the Landau-level spectrum is affected
only by the particle-hole asymmetry, but not by trigonal
warping, the latter induces additional transitions already at
first order. As such, we have identified the interband transition
n → n as well as n → n ± 2 and n → n ± 4. These transitions
are expected to cause additional absorption peaks in light
transmission experiments, albeit with a significantly lower
spectral weight as compared to the dipolar transitions.
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