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Anisotropic Fermi contour of (001) GaAs electrons in parallel magnetic fields
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We demonstrate a severe Fermi contour anisotropy induced by the application of a parallel magnetic field
to high-mobility electrons confined to a 30-nm-wide (001) GaAs quantum well. We study commensurability
oscillations, namely, geometrical resonances of the electron orbits with a unidirectional, surface-strain-induced,
periodic potential modulation, to directly probe the size of the Fermi contours along and perpendicular to the
parallel field. Their areas are obtained from the Shubnikov-de Haas oscillations. Our experimental data agree
semiquantitatively with the results of parameter-free calculations of the Fermi contours, but there are significant
discrepancies.
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I. INTRODUCTION

An isotropic two-dimensional (2D) carrier system is char-
acterized by a circular Fermi contour. In such a system, the
application of a small perpendicular magnetic field leads to
circular quasiclassical cyclotron orbits. If the layer of charged
carriers is purely 2D, i.e., has zero thickness, the application
of a parallel magnetic field (B‖) would not affect the shape
of its Fermi contour, and the cyclotron trajectories would
remain circular. However, if the layer has a finite (nonzero)
thickness, B‖ couples to the carriers’ out-of-plane motion
and distorts the Fermi contours and the cyclotron orbits. To
date, such distortions have been studied only in GaAs/AlGaAs
heterojunctions where the extent of the wave fucntion and
hence the finite layer thickness are limited.1–3 Subsequently,
the distortions observed in these systems are small and difficult
to measure directly.

Understanding this B‖-induced Fermi contour anisotropy
is not only of fundamental interest but is also important
for devices whose operation relies on ballistic transport.4 In
particular, in the presence of magnetic field parallel to the
conduction plane, the collector voltage peaks in a transverse
focusing measurement shift because of the Fermi contour
distortion. Even at a few Tesla parallel field, the shifts could
be quite significant and must be taken into account if peak
positions are important for the experiment at hand. The
anisotropy also emerges in the context of magnetic breakdown5

and Fermi contour disintegration in bilayer systems subjected
to a strong in-plane magnetic field.6

II. OVERVIEW OF RESULTS

Here we demonstrate the ability to tune and measure the
B‖-induced Fermi contour anisotropy of electrons confined
to a 30-nm-wide GaAs quantum well. Using geometrical
resonances of cyclotron orbits with a periodic superlattice,
the so-called commensurability oscillations (COs),7–13 we
directly probe the resulting distortions of the ballistic electron
trajectories and the shape of the Fermi contour. Measuring
Shubnikov-de Haas (SdH) oscillations allows us to determine
the evolution of the Fermi contour areas with B‖. Our results
show that the Fermi contour distortion is significant and leads
to a contour anisotropy of � 3.5:1 for B‖ � 20 T in our sample.

This is much higher than the previously reported anisotropy
in GaAs/AlGaAs heterojunctions1–3 and stems from the larger
thickness of the electron layer in our sample. We also find
that, in contrast to the B||-induced Fermi contour anisotropy
in hole samples,14 the electron anisotropy appears to be
spin-independent. Comparison of our data with the results
of numerical calculations reveals generally good agreement,
although there are also significant disagreements.

Figure 1 captures the key points of our study. In Fig. 1(a) we
show the results of parameter-free calculations of the Fermi
contours; we elaborate on the details of the calculations later
in the paper. At B‖ = 0 T, the Fermi contours of the two
spin-subbands are circular and essentially identical. With the
application of B‖ along the [110] direction, both contours
become elongated in the [110] direction while shrinking along
[110]. The areas enclosed by the two contours also differ from
each other as electrons are transferred from the minority- to
the majority-spin subbands.

In our study we measure surface-strain-induced COs,14,16–20

triggered by a periodic density modulation [Figs. 1(b) and 1(c)]
to directly map the Fermi wave vectors in two perpendicular
directions, [110] and [110]. The magnetoresistance of the
modulated sections of our Hall bars exhibits minima at the
electrostatic commensurability condition 2RC/a = i − 1/4,

where i = 1,2,3, . . .;7–13 an example is shown in Fig. 2. Here
2RC = 2kF /eB is the real-space cyclotron diameter along
the modulation direction and a is the period of the potential
modulation (kF is the Fermi wave-vector perpendicular to
the modulation direction).21 The anisotropy of the cyclotron
diameter and the Fermi contour can therefore be deduced
directly from COs measured along the two perpendicular
arms of the L-shaped Hall bar in Fig. 1(c). The COs for
the arms along [110] and [110] yield kF along [110] and
[110], respectively. In our measurements, we also recorded
SdH oscillations in the unpatterned (reference) part of the Hall
bar to probe the area enclosed by each of the Fermi contours.

III. COMMENSURABILITY OSCILLATIONS AND
FERMI CONTOUR ANISOTROPY IN B||

We prepared strain-induced superlattice samples with a
lattice period of a = 200 nm and 2D electrons confined

125435-11098-0121/2013/88(12)/125435(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.125435


D. KAMBUROV et al. PHYSICAL REVIEW B 88, 125435 (2013)

(a)

−0.2

0.0

0.2mn(]011[
k

1-
)

−0.2 0.0 0.2

k [110] (nm-1 )

B|| = 0 T 20 T

(c)(b)
B

B||

B┴

I

R
[110]

R
[110]

φ I

R
ref

B||

I

I

[110]

]011[

10 T

−0.2 0.0 0.2 −0.2 0.0 0.2

k [110] (nm-1 ) k [110] (nm-1 )

FIG. 1. (Color online) (a) Calculated 2D electron Fermi contours
for a 30-nm-wide GaAs quantum well when B‖ is applied along the
[110] direction. The majority- (minority-) spin contour is given by
solid (dotted) lines. (b) Schematic of the L-shaped Hall bar. The arms
of the Hall bar, oriented along the [110] and [110] directions, are
covered with stripes of negative electron-beam resist. Part of the Hall
bar is intentionally left unpatterned, and its magnetoresistance (Rref)
is used to measure Shubnikov-de Haas oscillations. (c) The geometry
of the Hall bar is designed to use the commensurability of the ballistic
cyclotron orbits with the period of the potential modulation induced
by the stripes to probe the size of the Fermi wave vector along the
[110] and [110] directions directly. Note that the real-space orbits are
rotated by 90◦ with respect to the Fermi contours.15

to a 30-nm-wide GaAs quantum well grown via molecular
beam epitaxy on a (001) GaAs substrate. The superlattice
is made of negative electron-beam resist and modulates the
2D potential through the piezoelectric effect in GaAs.14,16–20

The quantum well, located 135 nm under the surface, is
flanked on each side by 95-nm-thick Al0.24Ga0.76As spacer
layers and Si δ-doped layers. The 2D electron density at
T � 0.3 K is n � 2.84 × 1011 cm−2, and the mobility is
μ = 18.4 × 106 cm2/Vs. We passed current along the two
Hall bar arms of the sample [Fig. 1(b)] and measured the
longitudinal resistances simultaneously along both arms. The
measurements were carried out by first applying a fixed,
large magnetic field in the plane of the sample along [110].
We then slowly rotated the sample around the [110] axis to
introduce a small magnetic field (B⊥) perpendicular to the 2D
plane.22,23 This B⊥ induced COs and SdH oscillations in our
sample. The magnitude of B⊥ was extracted from the Hall
resistance we measured in the reference region of the sample
simultaneously with the resistances of the two patterned
regions. We performed all experiments using low-frequency
(∼13–18 Hz) lock-in techniques in a 3He cryostat with a base
temperature of T � 0.3 K.

The magnetoresistance data from the two perpendicular
Hall bar arms are shown in Figs. 3(a) and 3(b). In each
panel the bottom traces, taken in the absence of B‖, exhibit
clear COs. The Fourier transform (FT) spectra of these two
traces are shown as the bottom curves in Figs. 3(c) and 3(d).
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FIG. 2. (Color online) Low-field magnetoresistance measured in
the [110] direction at B‖ = 0 showing pronounced COs. Vertical lines
mark the positions of the expected COs resistance minima according
to 2RC/a = i − 1/4. Shubnikov-de Haas oscillations are visible on
top of the COs above 0.2 T. The large number of COs minima (up to
� 17) attests to the very high quality of the sample and the periodic
modulation. Inset: An example SEM image of the 200-nm-period
grating of negative electron-beam resist.

Each of the FT spectra exhibits one peak whose position (�
0.88 T) agrees with the commensurability frequency fCO =
2h̄kF /ea = 0.88 T expected for a circular, spin-degenerate
Fermi contour with kF = √

2πn.7–13 With increasing B‖, the
peak in the FTs for the [110] Hall bar data [Fig. 3(c)] moves to
higher frequencies. In sharp contrast, the peak in the [110]
direction [Fig. 3(d)] moves to smaller frequencies as B‖
increases. Figure 4 summarizes the measured kF as a function
of B‖, normalized to its value k◦

F at B‖ = 0.
In Fig. 4 we also plot the extreme values of the Fermi

wave vectors predicted by our parameter-free calculations
using the 8 × 8 Kane Hamiltonian.24 We include the in-plane
magnetic field B‖ = (Bx,By,0) via the vector potential A(z) =
(zBy, − zBx,0) so that the in-plane canonical momentum
k‖ = (kx,ky,0) remains a good quantum number. The Fermi
contours, examples of which are plotted in Fig. 1(a), define
the charge density ρ(z) from which the Hartree potential
VH(z) is derived self-consistently as a function of B‖. We
include results from calculations that treat the exchange-
correlation energy (Vxc) differently. The Vxc = 0 calculation
(red curves) ignores exchange-correlation completely while
the Vxc �= 0 calculation (blue curves) uses spin-density func-
tional theory25 to take into account exchange-correlation in
the 2D electron system that is partially spin-polarized because
of B‖.

The evolution of the COs’ FT peaks with increasing B‖
is qualitatively consistent with the calculated Fermi contours.
The agreement is quantitatively good, but for the kF ⊥ B case
the elongation deduced from the experimental data is smaller
than the calculations predict. This discrepancy implies that the
shape of the Fermi contour is less elongated. Alternatively it
might also be signaling that the commensurability condition
we use to measure the magnitude of kF becomes modified
when the Fermi contour is very elongated. We note that
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FIG. 3. (Color online) (a), (b) Magnetoresistance data for the
patterned sections of the L-shaped Hall bar in the [110] and [110]
directions at different values of B‖. (c), (d) Normalized Fourier
transform spectra of the COs data shown in (a) and (b), respectively.
The anticipated B‖ = 0 COs frequency, based on a spin-degenerate,
circular Fermi contour, is marked with dashed lines. The low-
frequency parts of the spectra (below the vertical dotted lines) are
severely affected by the Hamming window used in the Fourier
analysis and are shown here suppressed by a factor of 100.

we have encountered a similar disagreement in our study
of hole Fermi contours.14 Despite this discrepancy, however,
the overall agreement between the measured and calculated
values of kF is remarkable, considering that there are no
adjustable parameters in the calculations. The results of Fig. 4
clearly point to a severe distortion of the Fermi contours and
the associated real-space ballistic electron trajectories in the
presence of a moderately strong B‖. Both calculations show
that the extreme sizes of the contours for the two spin species
remain very similar, explaining why the COs’ FT peaks show
no splitting.26
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FIG. 4. (Color online) Summary of the Fermi wave vector (kF )
peak deduced from the positions of the COs’ FT spectra for the
two Hall bar arms. Filled circles represent kF ⊥ B‖ and open circles
the kF ‖ B‖ experimental data. Values of kF in the two directions
calculated using Vxc = 0 and Vxc �= 0 are given by red and blue lines,
respectively. The calculated kF corresponding to the majority-spin
species are plotted using solid lines, and the minority-spin species
using dotted lines.

IV. SHUBNIKOV-DE HAAS OSCILLATIONS
AND FERMI CONTOUR AREAS IN B||

The COs data in Figs. 3 and 4 probe the electron Fermi
contours in two specific directions in k-space but give no
information about their areas. To probe the areas enclosed
by the Fermi contours, we measured the SdH oscillations
in the unpatterned region of the sample [Rref in Fig. 1(b)].
Figure 5(a) shows the magnetoresistance traces at different
B‖. Their corresponding FTs are shown in Fig. 5(b). Up to
B‖ = 10 T, the FT of each trace has two peaks. The position of
the stronger peak is very close to the value of (h/2e)n � 5.8 T
expected for spin-unresolved SdH oscillations of electrons
of density n � 2.8 × 1011 cm−2. The weaker peak at 11.6 T
corresponds to spin-resolved oscillations [(h/e)n = 11.6 T].
Starting at B‖ � 12 T, the spin-unresolved peak at 5.8 T
splits, with the upper peak corresponding to the area (electron
density) of the majority-spin-subband and the lower peak to
the minority-spin-subband.

Figure 5(c) summarizes, as a function of B‖, the measured
SdH FT peak frequencies (fSdH) normalized to the frequency
f ◦

SdH ≡ 5.8 T at B‖ = 0, and the results of our energy band
calculations. Overall, there is good qualitative agreement
between the measured and calculated Fermi contour areas.
Quantitatively, however, the experimental results fall between
the calculated values with Vxc = 0 and Vxc �= 0. The differ-
ences between the two calculations are visualized in the inset
of Fig. 5(c). When Vxc = 0, the system is less spin-polarized
and the areas enclosed by the Fermi contours of the two spin
species are similar. When Vxc �= 0, more charge is transferred
from the minority- to the majority-spin species. Evidently Vxc

affects the spin polarization significantly but not the shape of
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FIG. 5. (Color online) (a) Shubnikov-de Haas oscillations measured in the unpatterned (reference) region of the Hall bar as B‖ increases.
(b) Fourier transform spectra of the SdH oscillations as a function of B‖. The dashed line shows the expected position of the spin-unresolved FT
peak. The signal in the region to the left of the vertical dotted line is shown suppressed. (c) Summary of the SdH FT peak positions normalized
to f ◦

SdH, the frequency at B‖ = 0. Open squares represent the measured frequencies. The frequencies predicted by the calculations with Vxc = 0
and Vxc �= 0 are shown using red and blue lines, respectively. For each calculation, the solid lines represent the majority-spin density, and the
dotted lines the minority-spin density. Inset: Fermi contours corresponding to the Vxc = 0 (red) and Vxc �= 0 (blue) calculations at B‖ = 20 T.

the Fermi contours. The reason for the discrepancies between
experiment and theory may be the fact that the spin-dependent
exchange-correlation potential Vxc, which we use in our
calculations and is derived in Ref. 25, refers to a strictly 2D
system, whereas our system is quasi-2D with a finite layer
thickness in z direction. A more detailed theoretical study
of the interplay between exchange-correlation effects and the
in-plane magnetic field in a quasi-2D system is beyond the
scope of the present work.

V. SUMMARY AND CONCLUSIONS

The experimental data and the numerical calculations
presented here shed light on the shape of the electron Fermi
contours in the presence of B‖. The Fermi contour distortions
implied by our data are by far larger than the distortions (�10%
at B‖ = 10 T) expected or seen for 2D electrons confined
to GaAs/AlGaAs heterojunctions.1–4 This is mainly because
of the larger thickness of the electron wave function in our
30-nm-wide quantum well sample. However, we emphasize
that, besides the finite thickness of the carrier layer, other
factors, such as the nonparabolicity of the energy bands and the
spin-orbit interaction, also affect the distortion. For example, in
2D holes confined to a much narrower 17.5-nm-wide quantum
well, the distortions are yet larger than the ones reported
here.14 At B‖ = 15 T, the observed Fermi contour anisotropy
for holes is �3:1,14 while the distortion we see for electrons
(Fig. 4) is only �1.6:1. Furthermore, in contrast to the data
presented here, the Fermi contour anisotropy exhibited by
holes is very much spin-dependent: the majority-spin contour
is much more elongated than the minority-spin contour.14

This strong spin dependence stems from the much stronger
spin-orbit interaction in 2D hole systems.24

Finally, from the experimentally deduced extremal kF

(Fig. 4), it appears that the Fermi contours are less elongated
than the calculations predict. Remarkably, there is a similar
discrepancy between the calculated and measured kF ⊥ B‖ for
2D hole samples,14 suggesting that for very elongated Fermi
contours the commensurability condition might need to be
modified. We hope our work will stimulate future research on
the physics of geometric resonances in systems with severe
Fermi contour anisotropy.
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