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Electron delocalization in gate-tunable gapless silicene

Yan-Yang Zhang,1,2 Wei-Feng Tsai,3,* Kai Chang,1 X.-T. An,1 G.-P. Zhang,4 X.-C. Xie,2 and Shu-Shen Li1
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China

2ICQM, Peking University, Beijing 100871, China
3Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

4Department of Physics, Renmin University of China, Beijing 100872, China
(Received 12 February 2013; revised manuscript received 7 September 2013; published 26 September 2013)

The application of a perpendicular electric field can drive silicene into a gapless state, characterized by two
nearly fully spin-polarized Dirac cones owing to both relatively large spin-orbital interactions and inversion
symmetry breaking. Here we argue that since intervalley scattering from nonmagnetic impurities is highly
suppressed by time-reversal symmetry, the physics should be effectively single-Dirac-cone like. Through
numerical calculations, we demonstrate that there is no significant backscattering from a single impurity that is
nonmagnetic and unit-cell uniform, indicating a stable delocalized state. This conjecture is then further confirmed
from a scaling of conductance for disordered systems using the same type of impurities.
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I. INTRODUCTION

It is well known that a single-cone Dirac fermion is immune
to backscattering and is thus hard to be localized.1–4 However,
graphene has two Dirac cones (valleys), as required by the
fermion doubling theorem.1,5,6 Consequently, in the presence
of impurities, the intervalley scattering from impurities cannot
be strictly prohibited and this leads to remarkable backscatter-
ing, resulting in localization in two dimensions (2D).7–9 This
is essentially different from three-dimensional topological
insulators (3DTIs), with just one Dirac cone for each surface.10

Recently, silicene, which is the silicon version of graphene
on a honeycomb lattice, has been an exciting subject.11–14 Due
to its buckled structure, the spin-orbital coupling (SOC) is
highly enhanced. With a perpendicular external electric field,
such structure also provides the tunability of the bulk gap �G.15

As the applied field increases, the gap closing and reopening
indicates a topological phase transition between a 2DTI and
a trivial band insulator.12,16–19 Exactly in the critical gapless
state, where �G = 0, the low-energy electronic structure can
be described by a massless Dirac Hamiltonian, forming two
Dirac cones. The presence of various SOC interactions on the
lattice results in rich spin textures around the Dirac points and
eventually leads to profound behaviors in response to impurity
scattering.

The most intriguing property of the gapless gated silicene,
which is also the focus in this work, is the opposite spin po-
larization at different valleys, i.e., the valley-spin locking.17–19

Explicitly, the Dirac cone around the K (K ′) point is polarized
with spin up (down), mainly originating from the intrinsic
SOC between next-nearest-neighbor (NNN) sites as well
as broken inversion symmetry due to the external electric
field. Thus, such phase is dubbed spin-valley-polarization
metal (SVPM).18 Ideally, assuming no Rashba SOC, the spin
around each cone is fully polarized and, contrary to graphene,
intervalley (also spin-flip) scattering from nonmagnetic impu-
rities is strictly prohibited by time-reversal symmetry (TRS).
Therefore, two Dirac cones in this system are effectively
decoupled and consequently the two-component, single-flavor
Dirac physics emerges. Now it is quite essential to ask if
there can be any delocalized states in the strict sense under

disorder. In addition, Rashba SOC, which includes spin-flip
processes, is nevertheless inevitable in realistic silicene. Can
it induce intervalley scattering and lead to the breakdown of
the single-Dirac-cone physics as well?

To answer these questions, in this paper, we systematically
study the nonmagnetic impurity scattering problem in the
gapless system, designed to capture the physics of silicene and
related materials, via numerical calculations. By comparing
with various typical arrangements of SOCs, we found that
(1) from the quasiparticle interference (QPI) pattern associated
with single impurity, within a certain region of parameter
space (low energy, small Rashba SOC, and moderate impurity
scattering strength) for spin-valley-polarization metal, the
“unit-cell impurity” will not give rise to significant inter-
or intravalley backscattering; and (2) the positive β function
(defined below) in the disordered system further confirms
the conclusion in (1) and suggests the existence of a truly
delocalized state.

II. HAMILTONIAN AND EFFECTIVE THEORY

Silicene or the Ge, Sn, and Pb counterparts can be minimally
described by a tight-binding model defined on a honeycomb
lattice with energy scales t � λSO > λR ,14,17,18
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The first term describes the nearest-neighbor (NN) hopping,
where c

†
iσ creates an electron at site i with spin polarization σ .

The second term represents the intrinsic SOC between NNN
sites, where s = (sx,sy,sz) are the Pauli matrices for physical
spins, and νij = (di × dj )z/|di × dj | = ±1, with di and dj

the two NN bonds connecting NNN sites i and j . The third term
is the NNN Rashba SOC,20 where μij = ±1 for the A and B

125431-11098-0121/2013/88(12)/125431(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.125431


ZHANG, TSAI, CHANG, AN, ZHANG, XIE, AND LI PHYSICAL REVIEW B 88, 125431 (2013)

sites, respectively, and d̂ij = dij /|dij | represent the unit vector
of dij which connects NNN sites i and j . The fourth term
represents the staggered potential, and the strength λv = lzEz

can be tuned by a perpendicular electric field Ez because of
the buckling distance lz between two sublattices. The model
parameters for silicene are t = 1.04 eV, λSO = 4.2 meV, λR =
8.66 meV, and lz = 0.035 eÅ.19 Note that if we only keep
the first term with t = 2.7 eV, then Eq. (1) simply describes
undoped graphene.1 Hereafter, we adopt t as the energy unit
and lattice constant a (NNN distance) as the length unit.

Around two Dirac points at K(K ′) = (±4π/3,0) in k space,
the low-energy effective Hamiltonian for Eq. (1) with the basis
(ψA↑,ψB↑,ψA↓,ψB↓)T reads

H
η

1 (q) =
(

h
η

1(q) g1(q)

g
†
1(q) h

η

1(q)

)
, (2)

h
η

1(q) =
(
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√
3

2 t(−ηqx − iqy)√
3

2 t(−ηqx + iqy) ηλSO − λv

)
, (3)

g1(q) =
(

λR(iqx + qy) 0
0 −λR(iqx + qy)

)
, (4)

where q is measured from the Dirac point, η = ±1 for K

(K ′) point is the valley index, and h
η

1(q) is just the ideal Dirac

fermion Hamiltonian for pseudospin, with Fermi velocity
√

3
2 t

and mass λv − ηλSO . Gating the system such that λv = λSO

but with λR = 0, the full spin polarization of the valleys can
be clearly seen: At valley K , the spin-up bands are gapless
forming a Dirac cone, in contrast to spin-down bands now
separated by a gap �G = 2|λSO + λv| and thus out of the
low-energy regime; at valley K ′, it is in opposite orientation
due to TRS. The presence of considerable λR destroys this
full spin polarization, but the majority around each valley does
not change. Such states with two massless Dirac cones will
be the main focus throughout this work. Restricting λv = λSO

(therefore, �G = 0) while allowing one to vary their strengths
as well as the values of the Fermi level and λR in the system
gives rise to rich physics, which reflects the interplay among
spin, sublattice (pseudospin), and valley degrees of freedom
under nonmagnetic impurity scattering.

III. QPI FROM SINGLE IMPURITY

The focus of the current study will be the effect of electronic
scattering from impurity potentials. Impurity potentials can be
induced by atomic substitution, surface adsorption, or by the
substrate under the 2D sample. Among various origins, the
adsorption of different atoms for silicene has been discussed
from ab initio calculations recently.21–24 In particular, it has
been found that silicene tends to adsorb adatoms (including
metal atoms) more strongly than graphene. Depending on
which element is concerned, the adatom can sit on the “hill,”
“valley,” “bridge,” or “hollow” positions of the hexagonal ring,
respectively.23,24

We first investigate the scattering from a single impurity
by calculating the QPI pattern.25 The Green’s function for
the clean system is G0(E,k) ≡ G0(E,k,k) = [(E + iγ )I −
H (k)]−1, where I is the identity matrix and γ 
 1 is the energy
broadening. Here we only consider a single impurity with
potential ∼δ(x) in a definite unit cell so that the impurity matrix

V (k1,k2) = V is independent of k. The impurity-induced
Green’s function is expressed as

δG(E,k1,k2) = G0(E,k1)T (E,k1,k2)G0(E,k2). (5)

The standard perturbation method gives25

T (E) = [I − V 0(E)]−1V, (6)

where 0(E) = ∫
d2k

(2π)2 G
0(k,E). Now the Fourier transform

of the induced local density of states is

δρ(E, Q) = i

2π

∫
d2k

(2π )2
g(E,k, Q), (7)

where Q = k′ − k and g(E,k, Q) = Tr[δG(E,k,k′) −
δG∗(E,k′,k)]. The spectrum δρ(E, Q) in Eq. (7) is called
the QPI pattern, which can also be obtained experimentally
from the Fourier transformation of scanning tunneling
microscopy (STM) measurements.26,27 This pattern provides
an intuitive picture of scattering processes: Significant
scattering processes will manifest themselves as peaks in the
QPI pattern with associated scattering momenta Q.

As a warm-up, but essential, example, we start with the
single-valley, single-spin, 2 × 2 ideal Dirac fermion Hamilto-
nian with just linear terms, hη=1

1 (k) =
√

3t
2 (−kxτx + kyτy) [see

Eq. (3)], with τi being the Pauli matrix acting on sublattice
(pseudospin) space. The impurity potential in k space is
diagonal as Va ≡ V0τ0, Vb ≡ V0τ3, or their combinations with
relative weight r ,

V = rVa + (1 − r)Vb, 0 � r � 1. (8)

The computed QPI, δρ( Q) of Va , is plotted as the blue curve
in Fig. 1(e). The curve has no significant scattering peaks,
which is consistent with the well-known fact that Va cannot
induce backscattering for a massless ideal Dirac fermion.2–4

Notice that in the language of sublattice as pseudospin τ , Va

corresponds to a unit-cell impurity which is uniform within
two sites of a unit cell. On the other hand, we also show the
QPI for the “site impurity,” Vb, in Fig. 1(e) as the black curve.
Two peaks associated with intravalley backscattering can be
seen. This is not surprising because Vb is a mass term for
ideal Dirac fermion and destroys the pseudo-TRS, leading to
a tendency towards localization.2 From results for an impurity
with different weights of Va and Vb also shown in Fig. 1(e), it
is interesting to notice that a small weight (r � 20%) of Va is
sufficient to annihilate the significant backscattering peaks into
the smooth background. In real space, an impurity with a finite
Va component corresponds to a long-range one, with a smooth
potential configuration within the unit cell. Such impurities can
be dominant in graphene1 and therefore should also be easily
realized experimentally for silicene. Moreover, the “hollow-
type” and “bridge-type” adsorptions in silicene,23,24 which do
not induce strong staggered potential, should also play such a
role. In the rest of the paper, we will restrict ourselves to the
discussions of unit-cell impurity Va .

In the following, we will consider the full tight-binding
4 × 4 Hamiltonian H (k), i.e., the k representation of H in
Eq. (1). For comparison purposes, we first take parame-
ters λSO = λv = λR = 0 such that H (k) describes graphene
without SOC. Different from the case with the ideal Dirac
fermion Hamiltonian, here H (k) has two important features:
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FIG. 1. (Color online) 2D dispersions E(k) (upper row) and corresponding QPI curves δρ( Q) (lower row) for (a),(e) ideal Dirac fermion,
(b),(f) graphene, and silicene with either (c),(g) λR = 0 or (d),(h) λR = 0.1t . Red arrows on dispersions illustrate the orientations of (a)
pseudospins or (b)–(d) physical spins. Green thick arrows indicate significant scattering processes. Main QPI curves are plotted along the Qx

axis, while in the inset of (g), the QPI curves are plotted in different directions. All QPI curves are plotted for impurity strength V0 = t , at
Fermi energy EF = 0.2t , with energy broadening γ = 0.005t and 1000 × 1000 grid for numerical integrations.

the existence of two spins and two valleys, and higher-order
corrections (trigonal warping) within each valley, as illustrated
in Fig. 1(b). Given a unit-cell impurity potential,

Va = V0s0 ⊗ τ0 = diag(V0,V0,V0,V0), (9)

which is “nonmagnetic” both for physical spin s and pseu-
dospin τ , the corresponding QPI is shown in Fig. 1(f). It has
very sharp peaks associated with intervalley backscatterings
between states with opposite k and velocity, as indicated
by the green arrows. As in ordinary orthogonal disordered
systems in 2D,28,29 this strong backscattering is responsible
for the localization in graphene7–9 and weak 3DTI.10 In short,
the coupling between two Dirac cones (with opposite Berry
curvatures)30 makes the physics rather trivial.

Armed with QPI studies from the above two examples,
we come to our main focus, which is gapless silicene with
λSO = λv = 0.5t for H (k). Such large SOC is taken simply
to give enough space to extract out clear physics within our
numerical precisions. No qualitative difference is expected as
long as Fermi energy EF ∈ (−|λSO + λv|,|λSO + λv|), where
the SPVM picture holds.

We first consider the spin-conserved case λR = 0, where
each valley is fully spin polarized [see Fig. 1(c)], and therefore
intervalley scattering is prohibited. Indeed, with the same Va in
Eq. (9), now the QPI in Fig. 1(g) is qualitatively different from
that of graphene, but similar to that of the ideal Dirac fermion
[Fig. 1(e)]. Moreover, there are no significant intravalley
backscattering peaks either. The intravalley features are almost
isotropic in Q, as shown in the inset of Fig. 1(g), even
though the full band structure is anisotropic around each
Dirac point. It was argued that trigonal warping would lead to

nonzero backscattering amplitude.2 However, our numerical
results show that such backscattering is very weak and
could be immersed in the continuum background of other
scattering processes, reflected by the absence of associated
distinguishable peaks. Therefore, the gapless silicene with
broken inversion symmetry effectively exhibits the massless
Dirac fermion physics, so long as the Fermi energy is not far
from the Dirac point and the impurity strength is not strong
[i.e., |EF | + |V0| < E, where E ∼ O(λSO + λv), the energy
scale which protects the spin-valley-polarization metal phase].
This is one of the important findings in this work. The absence
of remarkable backscattering should signify a delocalized state
to disorders, as will be numerically verified later.

Before entering into the discussion on disordered systems,
two remarks are in order. First, in Figs. 1(c) and 1(g), with
vanishing λR , intervalley scattering is, in fact, suppressed
a priori. Nonzero λR , as is the case in silicene, makes the
spin-valley polarization imperfect [see Fig. 1(d)]. However, as
shown in Fig. 1(h), it is remarkable to see that such Rashba
term does not give rise to a significant intervalley scattering,
and thus the effective “single-valley Dirac physics” remains
intact. This can be due to the following two intuitive reasons:
(1) The NNN Rashba interaction makes no contribution at K

(K ′) points and thus its effect is also expected to be small
around K (K ′) points; (2) the full backward scattering, which
relates intervalley points, i.e., time-reversal partners (still
with opposite spin polarizations under Rashba interaction),
is difficult to happen through nonmagnetic impurity.

Second, further increasing a parameter such as EF , impurity
strength V0, or λR in the system is expected to enhance
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FIG. 2. (Color online) QPI pattern for silicene with different Fermi energies EF , impurity strengths V0, and Rashba SOC λR . (a)–(c) V0 = t

and λR = 0; (d)–(f) EF = 0.2t and λR = 0; (g)–(i) EF = 0.2t and V0 = t . The scanning angle is chosen along the Qy axis from (a) to (f),
where possible intravalley backscattering reaches its maximum amplitude,2 and along Qx axis from (g) to (i) for the detection of possible
intervalley scattering. All other parameters are the same as Fig. 1(g).

intra- and intervalley scattering processes due to unavoidable
contributions from higher-order corrections and spin/valley
mixing. Indeed, as clearly shown in Fig. 2, the QPI pat-
tern changes at some point, indicating a transition from a
delocalized to localized state beyond effective single-valley
Dirac physics. For instance, in the case of very strong λR

in Fig. 2(i), although two states |k〉 and |−k〉 in different
valleys (with exactly opposite spin orientations) cannot be
coupled by a nonmagnetic impurity, the spin orientations in
their neighborhoods will not be exactly opposite. Thus, an
intervalley backscattering can be allowed due to the energy
broadening γ .

IV. SCALING OF CONDUCTANCE:
MULTIPLE IMPURITIES

So far, the scattering from a single impurity has been
investigated. If the backscattering is effectively ignorable, does
this really lead to a delocalized state in disordered gapless
silicene with unit-cell impurities? To confirm that it does, we
perform a standard numerical scaling for disordered silicene.
Disorder is added to the Hamiltonian (1) as

∑
i,σ εic

†
iσ ciσ ,

where εi is a random number uniformly distributed within
(−W/2,W/2). Here, εi is independent of spin due to TRS. If
εi is further identical for two sites in each unit cell, then it
corresponds to unit cell impurities Va . In realistic silicene
material, such impurities can be long-range impurities as
in graphene,1 or the hollow and bridge types of adsorbed
impurities as reported in Refs. 23 and 24. The intrinsic
conductance g is defined as 1/g = 1/gL − 1/Nc, where gL

is the two-terminal quantum conductance, Nc is the number
of propagating channels, and 1/Nc is the contact resistance.31

This g is suitable for a numerical scaling,9,32

β = d〈ln g〉
d ln L

, (10)

where 〈·〉 is the average over random ensemble, and L is the
spatial size of the sample with a fixed ratio of length and width.
This scaling function β is used as a criteria: β < 0 and β > 0
correspond to localized and delocalized states, respectively.

In Fig. 3, we plot 〈ln g〉 as a function of size L (in
logarithmic scale), where the slope represents β. It can be seen
from Figs. 3(a) and 3(b) that for unit-cell impurities, apart from
some fluctuations due to the smallness of conducting channels,
〈ln g〉 is clearly increasing with increasing L, suggesting a
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FIG. 3. (Color online) Typical conductance as a function of the system size (in logarithmic scale). (a) λSO = λv = 0.5t , λR = 0;
(b) λR = 0.1t ; (c) Two examples of localization: graphene with W = 2t (black line) and silicene with λSO = λv = 0.5t , λR = 0, under
strong disorder W = 4t (red line). Each dot is the average over 2000 disorder samples with unit-cell impurities.

delocalized state with β > 0. These are consistent with our
results of the absence of significant backscattering from the
single-impurity study, further confirming the robustness of
the effective single-valley Dirac physics. Note that this is
totally different from the case of graphene with the W = 2t

[black curve in Fig. 3(c)], where the slope is negative. It
has been found that for graphene, even long-range impurities
cannot maintain a fully delocalized state with β > 0 because
of inevitable intervalley scattering.9 Of course, as in any
lattice models, sufficiently strong disorder, for instance with
V0 � O(λSO + λv), will eventually localize all the electrons,
as the red curve in Fig. 3(c) shows. Therefore, it is natural to
expect rich localization-delocalization transition behavior in
the parameter space spanned by EF , W , λR , and λSO (=λv).
More details of such localization-delocalization transition,
e.g., the universality, critical exponents, and global phase
diagram, will be discussed elsewhere.

Delocalized bulk states in the doped Kane-Mele model
with nontrivial Z2 topological nature were found in Ref. 33.
In that case, delocalized states can only appear when large
(comparable to EF ) and inversion-broken NN Rashba SOC is
nonzero, making the system truly symplectic. Otherwise, the
system is just decoupled into two gapped unitary subsystems,
namely, two massive Dirac cones around K and K ′, where
no states with β > 0 can be observed.33 This is indeed
reasonable, as a gapped Dirac cone has serious backscattering.2

In our case, however, the physics behind delocalization lies on
either independent unitary subsystems, each of which owns a
massless Dirac cone (zero NNN Rashba SOC), or symplectic
subsystems with two nearly independent gapless Dirac cones
(nonzero NNN Rashba SOC). The Dirac cones are already
nondegenerate with almost fully spin polarization (along the z

axis) as long as the inversion-symmetric, NNN λR interaction
is small.

V. DISCUSSION AND CONCLUSION

The essence of this work is to reveal the physics behind the
delocalization phenomenon, which can be understood from
the picture of effectively decoupled gapless Dirac cones. This

picture is valid in certain parameter ranges. Here we emphasize
again the relevant energy scales important to any experimental
demonstration for the delocalization in silicene, such as the
presence of a robust Dirac point and linear dispersion in
STM or the weak antilocalization in the magnetoresistance
measurement. First, the gapless condition λv = lzEz = λSO

gives the critical electric field Ez = λSO/lz ∼ 0.12 VÅ−1,
which is experimentally achievable. In this case, the half width
of the energy window for spin-valley locking is |λSO + λv| =
2|λSO | ∼ 8.4 meV. This range can be even larger in the Ge,
Sn, or Pb counterpart.19 On the other hand, such energy
window is still small enough to keep the dispersion of Dirac
fermions linear. Although NNN Rashba SOC breaks the
perfect spin-valley locking, λR = 8.66 meV is less than 1% of
t , and therefore this effect is very weak.

In summary, we reveal the essential transport properties
via numerical simulations on a critically gated buckled
honeycomb structure of silicene (and also suitable for Ge, Sn,
and Pb counterparts) under nonmagnetic impurity scattering.
In particular, as long as |EF | + |V0| < E, with E an energy
scale of the order of λSO + λv , we find the following: (1) QPI
by a single unit-cell impurity shows no significant backscat-
tering, suggesting an effective single-valley Dirac physics, in
spite of weak trigonal warping. (2) The robustness of such
delocalized state is further confirmed by the positiveness of
the β function for a disordered system, even in the presence
of Rashba SOC. Our finding sheds light on constructing
high-mobility silicene-based electronic devices. Moreover,
we believe our result is also insightful to relevant systems
such as a 2D MoS2 (Ref. 34) and a cold-atom system with
arranged SOC.35
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