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We present numerical studies of conduction in graphene nanoribbons with reconstructed edges based on the
standard tight-binding model of the graphene and the extended Hiickel model of the reconstructed defects. We
performed atomic geometry relaxation of individual defects using density functional theory and then explicitly
calculated the tight-binding parameters used to model electron transport in graphene with reconstructed edges.
The calculated conductances reveal strong backscattering and electron-hole asymmetry depending on the edge
and defect type. This is related to an additional defect-induced band whose wave function is poorly matched
to the propagating states of the pristine ribbon. We find a transport gap to open near the Dirac point and to
scale inversely with the ribbon width, similarly to what has been observed in experiments. We predict the largest
transport gap to occur for armchair edges with Stone-Wales defects, while heptagon and pentagon defects cause
about equal backscattering for electrons and holes, respectively. Choosing the heptagon defect as an example,
we show that although electron interactions in the Hartree approximation cause accumulation of charge carriers
on the defects, surprisingly, their effect on transport is to reduce carrier backscattering by the defects and thus to

enhance the conductance.
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I. INTRODUCTION

The transport gaps measured experimentally in graphene
nanoribbons (GNRs) exceed the theoretical electronic con-
finement gap.!?> This discrepancy is attributed to localized
states induced by edge disorder.'™ Most theoretical studies
of the electronic transport properties of GNRs assumed
simplified edge topologies; see, e.g., Refs. 3-5. However, sev-
eral experimental studies have characterized individual edge
defects by means of Raman spectroscopy, scanning tunneling
microscopy, or transmission electron microscopy.®~'® The high
degree of chemical reactivity of graphene edges favors edge
reconstruction with different topologies, some of which were
examined in recent ab initio calculations.!'~!3 Dubois et al.'*
showed that realistic edge topologies strongly affect electron
transport in the armchair GNRs: The conductance can be
suppressed by orders of magnitude for either electrons or
holes, depending on the defect geometry.'* Heptagon defects
were found to act as donors and to suppress the electron
conductance much more strongly than the hole conductance
whereas pentagon defects were found to act as acceptors and
to suppress the hole conductance much more strongly than
the electron conductance.'* This can be understood intuitively
since a heptagon (pentagon) carbon ring introduces one more
(less) m electron into the graphene ribbon 7 bands than
does a hexagon ring resulting in donor (acceptor) character
of the defect and electron-hole asymmetry in the electronic
structure. More recently, a few defect topologies for armchair
and zigzag GNRs were studied theoretically in Ref. 15. In
contrast to Ref. 14, these authors'? reported pentagon and
heptagon edge reconstructions to have little effect on the
ribbon conductance near the Dirac point.'® The origin of this
difference between the predictions of these two studies'®!
remains unclear. Furthermore, theoretical estimates of the
transport gaps in GNRs are still not available for realistic
models of edge reconstruction, and the implications for the
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interpretation of experimental data'-? are yet to be explored. It
has also been shown that electron-electron interactions modify
electron conduction in GNRs substantially.!”!8 Specifically,
when the electron Fermi level is not at the charge neutrality
point, electrons are predicted to accumulate along the edges
of the ribbon and therefore any edge imperfection may be
expected to play an important role in transport. However,
the interplay between this charge redistribution effect and
edge reconstruction in the context of transport is yet to be
examined either theoretically or experimentally. Thus, the
detailed understanding of electron transport in GNRs with
realistic topological edge defects is still incomplete.

In this paper we report systematic studies of the electronic
transport in realistic edge-disordered GNRs with both zigzag
and armchair edges (zGNR and aGNR). Three different
defect topologies are examined: pentagon, heptagon, and
Stone-Wales. The Stone-Wales mechanism reconstructs zZGNR
edges into alternating pentagon-heptagon pairs (z57), while in
aGNR it causes two separate “armrest” hexagons to merge
into adjacent heptagons (a757). To describe realistic defect
topologies we first relax the atomic geometries using density
functional theory.'” We then obtain the tight-binding (TB)
parameters for the relaxed geometries from the standard
quantum chemical parametrization of the extended Hiickel
model.?%?!

We note that the previous theoretical studies of transport
in GNRs with reconstructed topological defects'*!> employed
TB parameters obtained by fitting tight-binding models to the
results of density functional theory (DFT) based calculations in
different ways. As we have already mentioned, those transport
calculations'®!" yielded qualitatively different results. Also,
the validity of DFT is limited to ground-state properties.’!
This is a fundamental limitation of DFT that often renders
the results of DFT calculations of properties that involve
excitations (such as electronic band structures and transport
coefficients) unreliable.?! For example, DFT calculations
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yield semiconductor band gaps that typically differ from the
experimental values by factors of the order of 2. For these
reasons we chose to base our TB parameters instead on the
extended Hiickel model whose parameters were derived from
a large body of experimental molecular electronic structure
data.”’ We incorporate these TB parameters into the standard
TB Hamiltonian of graphene. As will be discussed below, the
transport results that we obtained using this TB model agree
reasonably well with those in Ref. 14 for the systems that were
studied in Ref. 14.

We identify the defect bands in the electronic band
structures of the GNRs with reconstructed edge defects and
relate strong electron backscattering in these GNRs to the
presence of these bands. We estimate realistic transport gaps
for the reconstructed GNRs with randomly located defects
and find gap sizes to depend on the type of defect and
to be ordered in the following way: a757 > a7 2> a5 >
757 > z5 2 z7. We find all of the transport gaps to scale
inversely with ribbon width, consistent with experimental
findings.!-?

Finally we report on calculations with electron-electron
interactions taken into account in the Hartree approximation
for a representative class of systems with single and mul-
tiple heptagon defects in aGNRs. Consistent with previous
studies,!”!® we find that the electron-electron interactions to
give rise to charge redistribution towards the edges of the
ribbons when gating shifts the ribbon Fermi energy away
from the Dirac point. This results in enhanced concentrations
of the charge carriers on the defects at the edges of the
ribbon. Naively, one might expect this to result in increased
backscattering of the charge carriers by the edge defects
and therefore a decrease of the ribbon conductance due to
electron-electron interactions. However, surprisingly, we find
the opposite. Namely, we find the conductances of ribbons with
these edge defects to increase for most values of the Fermi
energy when electron-electron interactions are introduced into
the model. We explain this counterintuitive behavior as arising
from spatial rearrangement of the electronic eigenstates of the
ribbons and screening of local density of states fluctuations,
both of which result from electron-electron interactions. This
weakening of the effects of edge disorder on transport due
to electron-electron interactions is a novel effect that appears
to be unique to graphene devices. It may have played a role
in the conductance quantization that has been observed in
recent experimentszz‘24 on graphene nanostructures despite
the presence of edge imperfections.

II. MODEL

We consider suspended graphene nanoribbons, adopting a
similar approach to that in Ref. 18. The GNR is separated from
the back gate by dielectric and air layers and is attached at its
two ends to semi-infinite leads represented by ideal ribbons
having the same width W. The system is described by the
Hamiltonian

H =Y (E+V) ala; =Y tjafa; +He), (1)

(i)
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where E; is the bare atomic orbital energy on atom i, ¢;; is the
matrix element between nearest-neighbor atoms; in pristine
graphene #;; =t = 2.7 eV. VH# is the Hartree potential at
atom i which results from the Coulomb interaction with the
uncompensated charge density —en in the system (including
the image charges). In coordinate space the Hartree potential
can be written as

¢ /dr’z —nk(r’) ,
dmeoe K o/Ir =12+ b}

where —eny(r’) is the kth electron or image charge placed at
distance by from the graphene layer. The integration in (2) was
performed over the whole device including the semiinfinite
leads. For details of our model we refer the reader to Ref. 18.
Note that spin effects are outside of the scope of present
study.

The edge reconstruction is introduced as randomly located
defects at the edges of the hexagonal graphene lattice. We sup-
pose low concentrations of defects that do not cluster though
later we shall comment on such a case. We performed geometry
relaxations for the edge reconstruction in GNRs using the
GAUSSIAN 09 software package.!” The structures studied were
graphene half disks of several tens of carbon atoms passivated
at the edges with hydrogen, the defects being near the center
of the straight edge. The carbon atoms belonging to the defect
core as well as several nearest atoms at the edge were allowed
to relax freely, the other carbon atoms being held fixed in the
standard hexagonal graphene geometry with the C-C distance
of 1.42 A. The whole structure was kept planar. The relaxed
structures obtained in this way are shown in the insets in Figs. 1
and 2. The matrix elements in the Hamiltonian Eq. (1) were
modified to account for reconstructed topology by calculating
the relevant matrix elements within the extended Hiickel
model.?%?!

The extended Hiickel model employs a small basis set of
Slater-type atomic orbitals {|¢;)}, their overlaps S;; = (¢;|$;),
and a Hamiltonian matrix H;; = (¢;|H|¢;). The diagonal
Hamiltonian elements H;; = & are the experimentally de-
termined (negative) atomic orbital ionization energies &;.
We approximate the nondiagonal elements as in Ref. 20 by
Hij = (1754 A}, = 0.75A3)S,;(E + €))/2, where A =
(& —E)N/E + &), a form chosen® for consistency with
experimental molecular electronic structure data. In the stan-
dard tight-binding Hamiltonian of pristine graphene with
one atomic p orbital per carbon atom, the energy scale is
chosen so that the carbon 2p, orbital energy is zero whereas
in extended Hiickel theory®” the carbon 2p. orbital energy
is the ionization energy &c,, = —11.4 eV. Accordingly, for
consistency, in our extended Hiickel Hamiltonian matrix we
make the replacement H;; — H;; — &c,,. = E; in Eq. (1).
Because the extended Hiickel basis states on different atoms
are not in general mutually orthogonal the nondiagonal
extended Hiickel Hamiltonian matrix elements are then also
adjusted according to H;; — H;; — S;; €sz as is discussed in
Ref. 25. 1;; in Eq. (1) is then obtained from H;; that depends
formally on the geometry of the reconstructed graphene ribbon
through the atomic orbital overlaps S;;. For further details
and comparison with tight-binding parametrizations estimated

vHr) = ()
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FIG. 1. (Color online) The conductances (a)—(c) and defect band structures (d)—(f) for armchair graphene nanoribbons with heptagon,
pentagon, and Stone-Wales edge reconstruction defects, respectively. The respective single-defect geometries along with the tight-binding
parameters are illustrated in the insets of (a)—(c). The conductances are presented for the ideal ribbon (dotted line), the ribbon with a single
defect (dashed line), and 30 randomly distributed defects (solid gray line). The solid black line in (a)—(c) corresponds to the averaged conductance
over 100 configurations. The band structures in (d)—(f) are calculated for the defect periodically repeated along both edges of the ribbon. The
bands due to defects [shown in red in (d) and (e)] are clearly distinct from the standard dispersion of the armchair ribbon and correspond to
the Fermi energies where strong electron or hole backscattering occurs. The top plots (g)—(j) show the square modulus of the wave function for
the energies marked by the arrows in (d)—(f). All ribbons are 4.2 nm wide and 500 nm long, which corresponds to 33 carbon atoms in the cross
section and 1173 unit cells along the device.
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study of adsorbed atoms and molecules on .graphe.ne.zf’ The G = _2e% JE Z I,.(E) df (E — EF) 3)
modified matrix elements are given in the insets in Figs. 1 h Y oF
and 2. "
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FIG. 2. The same as Figs. 1(a)-1(f) but for zigzag graphene ribbons. The ribbon dimensions W = 4.2 nm and L = 500 nm correspond to
20 carbon atoms in the cross section and 2033 unit cells along the device.
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subband i in the right lead, at energy E and f is the Fermi
function. T;; (E) is calculated by the recursive Green’s-function
method?’ and includes the effect of electron interactions via

Eq. (2).

III. RESULTS

We investigate the transport properties of edge recon-
structed GNRs of realistic sizes, similar to those investigated
experimentally.> Two host/edge graphene orientations are
studied in the following: armchair and zizgag. The edges
are assumed to be randomly decorated by either heptagon,
pentagon, or joint heptagon-pentagon (Stone-Wales) defects.
The graphene ribbons with edge reconstruction defects that we
study are assumed to be passivated with hydrogen; they can
be realized experimentally by introducing hydrogen into the
system after the reconstruction defects are formed.

Before we proceed with these edge reconstructions we
shall comment on the effect of edge relaxations that preserve
the benzenoid topology of pristine armchair and zigzag
graphene edges. In this case, the outermost carbon atoms,
when relaxed, move toward the graphene host which in turn
leads to incremental changes of the hopping energies between
the outermost carbon atoms. In the armchair configuration,
we find the Hamiltonian matrix elements #;; between the
two outer atoms of the armrest to increase by 9% while
the hopping matrix elements between these atoms and their
other nearest neighbors are enhanced by 3%. In the zigzag
configuration, the two nearest-neighbor hopping energies #;;
to/from the outermost carbon atoms increase by 3%. With
these marginal changes incorporated, the transport properties
stay qualitatively unchanged although the electronic subband
bottoms shift by a few percent.

Because any topological edge defect causes much more
dramatic changes in the electron transport properties we shall
in what follows neglect the above hexagon relaxation except in
the vicinity of the topological defects. For the sake of clarity
we shall begin by considering electron transport within the
noninteracting approach, setting V¥ = 0in Eq. (1).

A. Armchair ribbons

Figure 1(a) shows the conductances of aGNRs with
heptagon edge defect(s). The relaxed defect geometry along
with the estimated hopping energies between neighboring
carbon atoms are given in the inset. The conductance for
a single relaxed heptagon [the dashed line in Fig. 1(a)]
develops stronger backscattering for higher electron subbands.
As the defect concentration grows, the conductance becomes
suppressed more strongly with pronounced oscillations due
to quantum wave interference. After averaging over different
defect configurations, conductance dips due to enhanced
backscattering near subband bottoms become apparent, as has
been discussed previously in the context of simple atomic
lattice defects.’ This property appears to be generic for
any edge reconstruction defect. For sufficiently large defect
concentrations the electron transport mechanism undergoes a
transition from ballistic transport to Anderson localization in
these 500-nm-long GNRs.
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The strong electron-hole conductance asymmetry in
Fig. 1(a) for heptagon defects randomly distributed along
the edges of the ribbon (solid grey and solid black lines) is
qualitatively similar to that predicted by Dubois et al.'* for
armchair ribbons with heptagon defects. They found heptagon
defects to act as donors and quasibound states associated with
them to result in strong electron scattering and depressed
conductances at positive energies.'* We also find that if the
heptagon defect is repeated periodically along the edges of the
ribbon an additional electron subband appears in the GNR
spectrum mainly at positive energies; this is the subband
shown in red in Fig. 1(d). The associated Bloch states are
exponentially?® localized at the edges of the ribbon as is
shown in Fig. 1(g). We note that this additional subband
is poorly matched to the Bloch states propagating in the
pristine GNR leads and therefore results in strong electron
backscattering in the positive energy range. For heptagon
defects randomly distributed along the GNR’s edges this
additional electron subband breaks up into electron defect
states that also mediate electron backscattering, giving rise
to the much stronger suppression of electron conductance than
hole conductance in Fig. 1(a). [Note that the band structure in
Fig. 1(d) is an idealized one presented only for the purpose
of the present discussion since it is computed using the
tight-binding parameters of the core of the isolated defect;
for extended or clustered defects some of the tight-binding
parameters will differ.]

By contrast, pentagon edge defects [see the inset in
Fig. 1(b)] in armchair ribbons have been predicted to behave
as acceptors.'* Consistent with this we find them to introduce
hole states, or in the case of pentagons periodically repeated
along the edges, an additional hole subband shown in red in
Fig. 1(e). The result is strong hole backscattering and therefore
much stronger suppression of the hole conductance than of the
election conductance, see Fig. 1(b), as in Ref. 14.

The effect of the Stone-Wales defect [Fig. 1(c)] is more
subtle because it does not change the number of carbon atoms
at the ribbon’s edge. For periodically repeated Stone-Wales
defects the aGNR unit cell is doubled and the band structure
exhibits both electron and hole bands associated with the
defect; see Figs. 1(f), 1(i), and 1(j). The Bloch states are
localized on different graphene sublattices [Figs. 1(i) and 1(j)]
and cause differing backscattering. We found somewhat
stronger backscattering for holes than for electrons for this
757 defect, see Fig. 1(c), whereas Ref. 14 predicted similar
scattering for electrons and holes, and slightly stronger for the
electrons.

B. Zigzag ribbons

The conductances and band structures for GNRs of
nominally the same sizes and having the same numbers of
reconstructed topological defects as in Fig. 1 but for the zigzag
edge configuration are shown in Fig. 2. Some significant
differences between the zigzag and armchair cases are as
follows. First, the pristine ZGNR supports a zero-energy mode
whose wave function is localized along the edges. This mode
hybridizes with the defect states and (unlike for armchair
ribbons) no distinct defect bands occur in the band structures.
This can be seen by comparing Figs. 1(d) and 1(e) and
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Figs. 2(d) and 2(e). Also, unlike in the case of aGNRs, for
zGNRs this hybridized band, whose wave function occupies
edge carbon atoms, matches well with the bands of the pristine
zGNR and supports enhanced conduction at positive (negative)
Fermi energies for the heptagon (pentagon) defect. Second, the
scattering of the carriers by the defects is generally weaker for
the zigzag case. Third, the z575 defect causes especially strong
conductance suppression near the flat band of the structure with
periodically repeated defects; see Figs. 2(c) and 2(f). Fourth,
the flat band of the pristine ZGNR is strongly affected and no
longer present near the graphene Dirac point for heptagon and
pentagon defects but not so for the z575 defect. The strong
modification of the subband structure in the first two cases
results from the topological properties of the zigzag edge
because it supports charge localization at the edges where
defects form. The much weaker perturbation of the flat band
for the z575 defect may be explained by effective narrowing
of the ribbon such that the zigzag edge moves effectively into
the ribbon interior.

C. Transport gaps

The GNRs studied above in Figs. 1 and 2 were only
4.2 nm wide and 500 nm long, but the analysis presented
applies equally well to other geometries including realistic
sizes fabricated experimentally."”> An important property of
disordered ribbons measured in the experiments is the transport
gap E,. This quantifies the energy (or gate voltage) window
where the conductance is suppressed below some threshold
value. Figure 3 shows the calculated E, as a function of the
ribbon width. The length of ribbon is fixed at L = 1 um and
the number of defects is 440. The threshold value was chosen
to be half of the conductance quantum. We found that, for the
reconstructed GNRs with randomly located defects, E, scales
inversely with the ribbon width. This agrees qualitatively
with experimental data."> We find the magnitudes of E, to
be ordered as follows: a757 > a7 2 a5 > z57 > z52 77,
according to the type of defect and ribbon edge. The heptagon
and pentagon defects cause approximately the same gap to
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FIG. 3. (Color online) The transport gap E, of GNRs with 440
randomly placed edge reconstruction defects as a function of ribbon
width. The length is fixed at L = 1 um. The widths of the aGNRs
are chosen so that conduction at the Dirac point is metallic for the
defect-free ribbons. The effect of edge reconstruction defects on the
transport gap is similar for aGNRs that are semiconducting when they
are defect free.
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develop. Note that this width dependence of of E, is very
different than that for bulk defects where £, was found to be
independent of W .2

D. Electron-electron interactions

Having studied the effects due to edge reconstruction within
the noninteracting electron model, we are in a position to
consider the effects of electron interactions. However, an
approach that accounts for Coulomb interactions as formulated
in Sec. II demands huge computational resources that prohibit
the study of GNRs of realistic sizes. Therefore we will restrict
further study to a representative aGNR of W = 10 nm and
L = 100 nm with heptagon defects only and will focus on the
new physics introduced by the electron interactions. Figure 4
shows the conductance and charge densities on individual
carbon atoms as a function of the Fermi energy. Previous
theoretical work'”!® has shown electron-electron interactions
to result in redistribution of charge towards the ribbon edges
when the ribbon is gated away from the charge neutrality
point. This effect is responsible for the nonlinear growth of the
calculated charge densities on the atoms of the heptagon edge
defect in the Hartree approximation as the Fermi energy moves
away from the Dirac point in Fig. 4(b). The stronger charge
accumulation at positive than negative energies in the Hartree
approximation in Fig. 4(b) is due to the donor character of
the heptagon edge defect. In stark contrast, the noninteracting
model for the same single defect location predicts linear charge
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FIG. 4. (Color online) (a) The conductances of aGNRs with
heptagon defects calculated in the noninteracting and Hartree ap-
proaches. Forty-eight heptagon defects corresponds to 10% of the
hexagon rings being replaced. (b) The charge densities on individual
carbon atoms of the heptagon defect as numbered in the inset. L =
100 nm, W ~ 10 nm (82 carbon atoms in cross section), temperature

=10K.
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accumulation on the defect in Fig. 4(b) and slightly larger hole
densities than electron densities.

Thus electron-electron interactions result in the redistri-
bution of charge towards the ribbon edges where the edge
defects are located. However, surprisingly, we find that
this does not result in stronger electron backscattering by
the edge defects in the Hartree approximation than in the
noninteracting electron model. To the contrary, we find the
net effect of the electron-electron interactions to be, in most
cases, to weaken electron backscattering by the edge defects
and therefore to increase the ribbon conductance.

For a single edge defect, the weakening of electron
backscattering due to electron-electron interactions manifests
itself most clearly at positive energies in Fig. 4(a) where it
results in weakening or complete suppression (in the Hartree
approximation) of the conductance dips at subband edges that
are a prominent feature of the noninteracting model. For 48
heptagon defects distributed randomly along the edges of the
ribbon, as can be seen in Fig. 4(a), the calculated conductance
in the Hartree approximation is substantially higher than that
for the noninteracting electron model for most values of the
Fermi energy. To understand this effect it is helpful to examine
the wave functions and transmission probabilities for the
different electronic eigenstates of the ribbon. These are shown
for the noninteracting and Hartree models in Figs. 5 and 6,
respectively, for the states at the Fermi energy Er = 0.14¢
indicated by the arrow in Fig. 4(a).

We attribute the counterintuitive enhancement of the ribbon
conductance that arises from electron-electron interactions
to a combination of two physical mechanisms, namely, (i)
spatial rearrangement of both the low- and high-energy
electronic eigenstates due to the formation of triangular
electrostatic potential wells at the edges of the sample and
(i1) screening of local density of states features associated
with electron backscattering. Mechanism (i) is as follows: If

noninteracting

FIG. 5. (Color online) The partial transmission probabilities
(a) and the wave-function square modulus | ¥|? (b)—(e) for aGNR with
heptagon defects calculated within the noninteracting approximation.
The Fermi energy is Er = 0.14¢; see the arrow in Fig. 4(a).
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FIG. 6. (Color online) As for Fig. 5 but for the Hartree approxi-
mation.

electron-electron interactions are included in the model, the
excess electronic charge on the ribbon gives rise to triangular
electrostatic potential wells at the edges of the ribbon. If
the structure of the ribbon does not have mirror symmetry
about the ribbon centerline, then its eigenstates do not have
a definite parity and each low-energy electron eigenstate
localizes primarily in one of the triangular potential wells or
the other. This can be seen in Figs. 6(b) and 6(c) where W,
(W) localizes primarily along the lower (upper) edge of the
ribbon, whereas no pronounced effect of this kind is visible in
Fig. 5. (Unlike the armchair structures in Fig. 1, the structures
in Fig. 4 do not have mirror symmetry due to their different
widths.) Thus, for the ribbon considered here in the presence
of electron-electron interactions, electrons in the low-energy
eigenstates backscatter mainly from defects on one edge of the
ribbon; defects at the other edge have relatively little effect on
them. Thus the low-energy electrons interact primarily with
approximately half of the defects in the sample in the model
with electron-electron interactions, although they interact with
each of these defects somewhat more strongly than in the
absence of the electron-electron interactions. Of these two
competing effects, the reduction in the number of defects with
which the electron interacts strongly has a larger effect on
the conductance than does the stronger coupling. Thus the
transmission probabilities for modes 1 and 2 are somewhat
larger in Fig. 6(a) (the Hartree case) than in Fig. 5(a) (the
noninteracting case). The higher-energy states also undergo a
spatial re-arrangement due to electron-electron interactions in
the Hartree approximation and this gives rise to an even larger
enhancement of the ribbon conductance: The charge associated
with the low-energy electronic states that localizes in the
triangular wells at the edges of the ribbon repels the carriers
in the higher-energy states. Thus in the Hartree approximation
the wave functions of the higher-energy electronic eigenstates
have less weight at the ribbon edges where the edge defects are
located. Therefore the transmission probabilities through the
ribbon for the higher-energy electronic states are enhanced,
as can be seen by comparing the transmission probabilities
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for W3 and W, in Fig. 6(a) (the Hartree case) with those in
Fig. 5(a) (the noninteracting case). Thus the re-arrangement
of the electronic states that occurs when electron-electron
interactions are turned on results in an enhancement of the
ribbon’s conductance. The screening mechanism (ii) is more
subtle. Local charge fluctuations associated with electronic
scattering resonances are screened or antiscreened due to
electron-electron interactions. The effect of this on electron
backscattering is strongly energy dependent: At energies near
subband edges the screening tends to strongly suppress charge
fluctuations and the associated electron backscattering is also
suppressed. At other energies screening weakly enhances
the charge fluctuations, however, the conductance is also
enhanced. Thus mechanism (i) appears to have a larger effect
on the conductance than does mechanism (ii) at those energies.

IV. DISCUSSION

Heptagon and pentagon edge reconstruction has been
observed directly in experimental studies of armchair and
zigzag graphene edges.”'? Our results demonstrate strong
charge scattering by the edge reconstruction defects, the
scattering strength being different for electron and holes, for
both armchair and zigzag ribbons. This results in electron-
hole asymmetry in the conductances of GNRs with such
defects. We find the transport gap in the GNR conductance
to scale inversely with the ribbon width, suggesting that
the edge reconstruction defects may be responsible for the
gaps observed in experiments.> The gaps were fitted by
E; =a/(W—W?*) with W* =16 nm and o = 0.2 eV nm
and @« = 0.38 eV nm in Refs. 1 and 2, respectively. W*
accounts for inactive edges whose widths are not those of
the defect regions themselves but rather are determined by the
extent of the disorder-induced localized surface-type states.’
Fitting the above formula to our band gaps in Fig. 3 yields
a=0.04...0.8eVnmand W* =2...10 nm depending on
edge and defect type. These values agree reasonably well
with experimental findings'* though the absolute values of E,
exceed the experimental values for most of the defects except
z5 and z7. It is plausible that the defects studied here were not
the only defects in experiments, but might be accompanied by
other types of the defects.

Our study for aGNRs supports the results and conclusions
drawn by Dubois et al.'* but not of Hawkins et al.'> The
latter claimed the low bias conduction of reconstructed GNRs
to be similar to that of the pristine GNRs. By contrast,
we found strong electron scattering due to reconstructed
edge defects near E = 0. It should be emphasized that our
study provides simple and realistic tight-binding parameters
for edge reconstruction defects that we explicitly calculated
in the extended Hiickel model. Strong electron and/or hole
backscattering is interpreted as being due to the mismatch
between propagating states in the pristine GNRs and the states
associated with the defects.

The influence of edge reconstruction defects on the trans-
port properties might be understood from the Clar sextet
theory.'#?%3 This proposes an interpretation of the electronic
properties in terms of valence bond theory based on the
localization of aromatic sextets. According to Clar’s theory,
zZGNRs can be viewed as the superposition of Kekulé structures
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with a finite number of benzene rings in each row of
hexagons.?> For aGNRs, the Clar representation depends
on ribbon width, being either fully benzenoid, Kekulé, or
incomplete Clar structures. Upon the introduction of any edge
reconstruction defects, the bonding can be considered as the
superposition of two mirroring Kekulé structures that partially
destroy the benzenoid character of GNRs. By increasing the
localization of m electrons in carbon-carbon double bonds,
such defects destroy the local aromaticity at the ribbon edge
and are thus expected to have large impact on 7r-7* conduction
channels.'*

We studied isolated edge reconstruction defects that are
assumed to be surrounded by the pristine hexagonal graphene
lattice. This picture is valid for low defect concentrations when
neighboring defects do not merge. However, the model that
we have presented might be further extended to clustered
groups of defects that were, for example, observed in some
experiments.’! In this case, neighboring defects will affect
the geometry of the relaxed structure and the tight-binding
parameters #;; in the Hamiltonian Eq. (1) will be different. We
have performed a test calculation for periodic Stone-Wales
defects in a zZGNR and found tight-binding parameters close
to those reported in the literature.'>*> For those parameters the
band structure, that is similar to Fig. 2(f), reveals downward
bending of the flat band, i.e., the flat band occurs below
the graphene Dirac point, in agreement with ab initio band
structures in the literature.'!12:33:34

It is worth noting that the present formulation of the model
does not include next-neighbor hopping in the Hamiltonian (1).
We estimate that hopping to be 0.27¢ for pristine graphene.
Next-neighbor hopping is known to introduce electron-hole
asymmetry into the graphene band structure that becomes
significant at energies well away from the Dirac point. While
inclusion of this parameter will substantially complicate the
calculation we expect that it would not change the results
presented above qualitatively; much stronger electron-hole
asymmetries at the energies of interest in this work (those
closer to the Dirac point) are introduced by the heptagon and
pentagon edge defects that we consider here. It is also worth
pointing out that, in realistic devices, the edge reconstruction
regions are not infinitely long but rather are sandwiched
between electron reservoirs. This is equivalent to the transport
problem we formulated and studied here whereas the band
gaps obtained for infinitely long periodic defect structures'>3*
do not straightforwardly correspond to the transport gaps in
such devices.

In the case where ribbon edges contain several different
defects the combined effect on transport appears to be roughly
additive.'* For example, equal concentrations of heptagon and
pentagon defects restore electron-hole conductance symmetry
and act in concert to increase the transport gap value.

Based on our findings, electron-electron interactions play a
significant role in transport in graphene ribbons. Although
they result in redistribution of charge to the edges of the
ribbon where the edge defects are located, their net effect
on transport is to reduce the backscattering of charge carriers
by edge defects and thus to increase the ribbon conductance.
While electron-electron interactions affect the conductance
quantitatively, at the Hartree level of approximation they do
not change the transport properties of the ribbon considered in
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the present study qualitatively. For example, the electron-hole
asymmetry of the conductance in Fig. 4 is maintained.

V. CONCLUSION

Our quantum transport calculations have shown edge
reconstruction to cause strong electron/hole scattering and
transport gaps to occur in GNRs in agreement with the
experiments of Han et al.! and Molitor e al.? Strong scattering
is a manifestation of mismatch between propagating states
in the pristine ribbon and the states due to the defect. It is
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accompanied by electron-hole conductance asymmetry for de-
fects that behave as donors or acceptors. We show that electron-
electron interactions at the Hartree level of approximation
result in charge accumulation at edge defects when the Fermi
energy (or the gate voltage) varies but predict weaker electron
backscattering by the defects in comparison to the noninter-
acting approach. Our results suggest that edge reconstruction
may affect electron transport strongly in many experimentally
realized graphene based devices. Work is in progress to address
this issue in the context of the 0.7 anomaly in graphene
nanoconstrictions observed recently by Tombros et al.**
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