
PHYSICAL REVIEW B 88, 125426 (2013)

Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene
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Energy versus magnetic field (Hofstadter butterfly diagram) in twisted bilayer graphene is studied theoretically.
If we take the usual Landau gauge, we cannot take a finite periodicity even when the magnetic flux through a
supercell is a rational number. We show that the periodic Landau gauge, which has the periodicity in one
direction, makes it possible to obtain the Hofstadter butterfly diagram. Since a supercell can be large, magnetic
flux through a supercell normalized by the flux quantum can be a fractional number with a small denominator,
even when a magnetic field is not extremely strong. As a result, quantized Hall conductance can be a solution
of the Diophantine equation which cannot be obtained by the approximation of the linearized energy dispersion
near the Dirac points.

DOI: 10.1103/PhysRevB.88.125426 PACS number(s): 73.22.Pr, 73.20.−r, 73.40.−c, 81.05.ue

I. INTRODUCTION

Two-dimensional electron systems are realized in
graphene.1 Bilayer graphene2 and twisted bilayer graphene3

have been shown to have many interesting properties and
have been studied extensively. The quantum Hall effects
in single layer graphene4,5 and bilayer graphene are well
understood by the energy versus magnetic field, which is
known as the Hofstadter butterfly diagram, in the tight binding
models of honeycomb lattice,6–8 and on Bernal-stacked bilayer
graphene.9 The quantized value of the Hall conductance is
obtained by the solution of the Diophantine equation.10–12 Near
the half filled case, the quantum Hall conductance is given by a
solution of the Diophantine equation (24) with sr = 1 (sr = 2)
in single layer (bilayer) graphene.

Twisted bilayer graphene has attracted much attention
recently. When two layers are twisted in a commensurate
way, a supercell becomes large with a moirè pattern3,13–16 (see
Fig. 1) and the velocity at the Dirac points is shown to become
smaller when the rotation angle α is small.17,18

Quantum Hall effect and the Hofstadter butterfly diagram
in moirè superlattices have been observed experimentally in
single layer graphene on hexagonal boron nitride (hBN)19 and
Bernal-stacked bilayer graphene on hBN.20

Electronic structure in twisted bilayer graphene in a uniform
magnetic field has been studied only by taking the linearized
energy dispersion near the Dirac points21–23 or by the Lanczos
algorithm applied to large systems in real space.24 The whole
lattice structure has not been taken into account when we
take the linearized energy dispersion. Exact band structure is
difficult to obtain by the Lanczos algorithm due to the finite-
size effects and numerical errors.

When we use the usual Landau gauge in twisted bilayer
graphene with long range hoppings, there is no periodicity in
the phase factor of hoppings. In that case we cannot obtain
the Hofstadter butterfly diagram. In this paper we show that
we can recover the periodicity when a magnetic flux through
a supercell is a rational number, if we use the periodic Landau
gauge. As far as we know, a special choice of gauge was
first used to study the system of the 4 × 4 square lattice with
periodic boundary conditions in the presence of the uniform
magnetic flux p/16 with p = 1,2,3, . . .25 (if a usual Landau

gauge is used in that system, only magnetic flux p/4 is
allowed). String gauge, which is obtained by adding the flux
line with a flux quantum, has been introduced to study the
periodic system in a magnetic field.26 The periodic vector
potential (equivalent to the periodic Landau gauge) has been
introduced to study the Schrödinger equation with periodic
potential in a uniform magnetic field,27 and it has been applied
to study the tight binding model in Bernal stacked bilayer
graphene.9 Another approach by using Fourier transform has
been proposed for the periodic system in a magnetic field.28

However, the periodic Landau gauge has not been used to
study twisted bilayer graphene in a magnetic field. By virtue
of the periodic Landau gauge we can calculate the energy
spectrum in twisted bilayer graphene in a magnetic field in a
similar way as in single layer graphene6–8 or Bernal stacked
bilayer graphene.9 We obtain very rich Hofstadter diagrams,
which have not been obtained in previous studies.21–24 We find
many energy gaps near the half filled case, which are indexed
by integers given by a solution of the Diophantine equation
as (sr ,tr ) = (2n0,2), (2n0 ± 2,0), (2n0 ± 2,2), (2n0 ± 4,2),
(2n0 ± 6,2), . . . , where n0 is the number of the A site in the
first layer in the supercell. The quantized value of the Hall
conductance is obtained by tr .

In Sec. II we define the twisted bilayer graphene with
commensurate twisted angle. In Sec. III the tight binding
model and the periodic Landau gauge are explained. In
Sec. IV we show the Hofstadter butterfly diagram and study
the quantized Hall conductances, which are obtained by the
Diophantine equation. We give the summary in Sec. V. The
detailed explanation of the periodic Landau gauge in the square
lattice is given in Appendix A. The periodic Landau gauge in
the twisted bilayer graphene is discussed in Appendix B.

II. TWISTED BILAYER GRAPHENE

In a unit cell in each layer there are two sites, A and B,
which form triangular lattices, respectively. We define unit
vectors as

a1 = a

( √
3

2

− 1
2

)
(1)
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FIG. 1. (Color online) Twisted bilayer graphene with (m1,m2) =
(2,1). Large (small) open and filled circles are A and B sublattice in
the first and second layer, respectively. The second layer is rotated by
π/3 − α. The orange area is the supercell.

and

a2 = Rπ/3a1 = a

( √
3

2
1
2

)
, (2)

where a is the lattice constant and Rπ/3a1 is the π/3 rotated
vector of a1. Hereafter we take a = 1 for simplicity. The
reciprocal lattice vectors are given by

G1 = 2π

(
1√
3

−1

)
, (3)

G2 = 2π

(
1√
3

1

)
. (4)

In the first layer, sites in the A sublattice are given by sets of
two integers (j1,j2) as

rA
j1,j2

= j1a1 + j2a2. (5)

Three vectors connecting nearest neighbor sites in the first
layer are

δa =
( √

3
3

0

)
. (6)

δb =
(

−
√

3
6

1
2

)
, (7)

δc =
(

−
√

3
6

− 1
2

)
. (8)

Sites in the B sublattice in the first layer are given by

rB
j1,j2

= rA
j1,j2

+ δa. (9)

The AB (Bernal) stacking of bilayer graphene is obtained by
rotating the second layer around one of the A sites in the first
layer by the angle (2n + 1)π/3, where n is an integer. In this
case the A sublattice in the second layer is just above the A

sublattice in the first layer, but the B sublattice in the second
layer is on the center of the hexagon in the first layer. The same

stacking is obtained by translating the second layer by −δa ,
−δb, or −δc. When the rotation angle is 2nπ/3, we obtain the
AA stacking, i.e., all sites in the second layer are on the sites
in the first layer. We obtain twisted bilayer graphene when the
rotation angle is neither (2n + 1)π/3 nor 2nπ/3.

When twisted bilayer graphene has a supercell with
finite number of sites, it is called commensurate twisted
bilayer graphene. We construct commensurate twisted bilayer
graphene as follows. Since there is sixfold symmetry in twisted
bilayer graphene, we can take a supercell as a diamond with
the angle π/3 as shown in Fig. 1. We define unit vectors of
superlattice with two integers m1 and m2 (m1 �= 0, m2 �= 0,
and |m1| �= |m2|):

L1 = rA
m1,m2

= m1a1 + m2a2, (10)

L2 = Rπ/3L1 = rA
−m2,(m1+m2). (11)

Twisted bilayer graphene with (m1,m2) = (2,1) is shown in
Fig. 1. Since

a1 · a2 = 1
2 , (12)

we obtain

|L1|2 = |L2|2 = m2
1 + m2

2 + m1m2 ≡ n0. (13)

The area of a supercell is given by

S = |L1||L2| sin
π

3
=

√
3

2
n0. (14)

There is another site in the supercell that has the same distance
from the origin as |L1|, where we define L′

1 as shown in Fig. 1:

L′
1 = rA

m2,m1
= m2a1 + m1a2. (15)

We define α by the angle between the vectors L′
1 and L1. Since

L′
1 · L1 = 1

2

(
m2

1 + 4m1m2 + m2
2

)
, (16)

we obtain

cos α = L′
1 · L1

|L′
1||L1| = m2

1 + 4m1m2 + m2
2

2
(
m2

1 + m1m2 + m2
2

) . (17)

Then we obtain twisted bilayer graphene by rotating the second
layer with the angle π/3 − α to move the vector L′

1 into L2.
We obtain another type of twisted bilayer graphene when we
rotate the second layer by the angle −α. In this paper we take
the rotation angle π/3 − α to obtain the Bernal stacking when
α → 0.

The Bravais lattice of twisted bilayer graphene is the −α/2-
tilted two-dimensional triangular lattice with the primitive
vectors L1 and L2. A supercell has n0 sites in the A and B

sublattice in each layer, and hence 4n0 sites.

III. TIGHT BINDING MODEL AND PERIODIC
LANDAU GAUGE

We consider tight binding models in a uniform magnetic
field. Spin is not taken into account. When a magnetic field
is applied, the hopping tij between sites ri and rj (ri and rj

are on the same layer or on different layers) has the factor
exp(iθij ) with a phase θij given by

θij = 2π

φ0

∫ rj

ri

A · d�, (18)
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where A is a vector potential and

φ0 = ch

e
(19)

is the flux quantum with charge e, the speed of light c, and the
Planck constant h. The Hamiltonian is

H = −∑
(i,j )(e

iθij tij c
†
j ci + H.c.), (20)

where c
†
i and ci are the creation and annihilation operators at

site i, respectively. We take the approximation17,23,29

tij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t exp
(− d−|δa |

δ

)
if sites i and j are on the same layer,

t12 exp
(− d−d0

δ12

)
if sites i and j are on different layers,

(21)

where d = |ri − rj | is the distance between sites i and j

and d0 is the distance between layers. When we take δ → 0
and t12 = 0, we obtain two independent layers of honeycomb
lattice with only nearest-neighbor hoppings. When t12, δ, and
δ12 are finite, we obtain twisted bilayer graphene with finite
range hoppings. Interlayer hoppings are not restricted to the
perpendicular direction.

The energy is independent of the sign of the interlayer
hoppings t12, since we obtain the same Hamiltonian by
changing the sign of t12, and the signs of c

†
i and ci in the

second layer simultaneously.
Even if the flux per supercell is an integer times the flux

quantum φ0, the phase factor θij is not periodic with modulus
2π , if we use the usual Landau gauge (A = Hxŷ). For single
layer graphene with only nearest-neighbor hoppings, we could
take a special gauge,6,7,30 in which the phase factor appears
only in the links for one of the three directions, δa , δb, or
δc. However, such choice of gauge is not possible for twisted
bilayer graphene.

In this paper we study the energy spectrum in the twisted
bilayer graphene in magnetic field by using the periodic
Landau gauge, which is essentially the same as the gauge
used by Nemec and Cuniberti9 to study the Bernal stacked
bilayer graphene. We explain the periodic Landau gauge for
the square lattice in Appendix A. The generalization to the
nonsquare lattice is given in Appendix B.

When flux through a supercell is

� = SH = p

q
φ0, (22)

where p and q are mutually prime integers in twisted bilayer
graphene with a commensurate twisted angle [Eq. (17)],
energy spectrum is obtained by the eigenvalues of (4n0q) ×
(4n0q) matrix, as in the case of the single layer graphene where
it is obtained by the eigenvalues of (2q) × (2q) matrix.6

In Fig. 2, we plot the energy versus magnetic flux through
a unit cell in single layer graphene with only nearest-neighbor
hoppings. In Figs. 3, 4, and 5, we take parameters for the bilayer
graphene23 t = 2.7 eV, t12 = −0.48 eV (t12/t = −0.18),
|δa| = 0.142 nm, d0 = 0.335 nm, and δ = δ12 = 0.0453 nm
(δ/|δa| = 0.184), and we plot the energy versus magnetic flux
through a unit cell in each layer (φ = �/n0) in twisted bilayer
graphene.

FIG. 2. (Color online) Energy spectrum in single layer graphene
with only nearest-neighbor hoppings. Numbers in the figures are
(sr ,tr ). Quantized value of Hall conductance is given by tr . See
Eqs. (24) and (25).

IV. DIOPHANTINE EQUATION

Consider the case

�

φ0
= p

q
, (23)

where � is the flux through a supercell and p and q are integers.
In the square lattice and the honeycomb lattice � = φ, and
in twisted bilayer graphene � = n0φ, where φ is the flux
through a unit cell in each layer. When the chemical potential
is in the rth gap from the bottom, we have the Diophantine
equation10–12,31

r = qsr + ptr , (24)

which gives quantized Hall conductance by

σxy = e2

h
tr . (25)
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FIG. 3. (Color online) Energy spectrum in twisted bilayer
graphene with (m1,m2) = (3,2). Numbers in the figures are (sr ,tr ).
Quantized value of Hall conductance is given by tr .

If we take account of the spin and neglect the Zeeman energy,
the Hall conductance is multiplied by 2.

For the tight binding models with only nearest-neighbor
hoppings in the square lattice or the honeycomb lattice, the flux
quantum φ0 through a unit cell is equivalent to zero magnetic
flux. As a result, the energy spectrum is periodic with respect
to φ with a period φ0. Even when we consider the models with
long range hoppings, the energy spectra are a periodic function
of φ with a period 2φ0 or 6φ0 in the square lattice or the
honeycomb lattice, respectively. This is because the smallest
areas enclosed by hoppings are 1/2 and 1/6 of the areas of
a unit cell in the square lattice and the honeycomb lattice,
respectively. See Fig. 6 for the honeycomb lattice. The energy
spectrum is also periodic with respect to φ with a period 6φ0 for
Bernal stacked bilayer graphene. The situation is drastically
changed in twisted bilayer graphene. When there are hoppings
between layers in twisted bilayer graphene, projected areas
enclosed by hoppings have irrational values as shown in the

FIG. 4. (Color online) Energy spectrum in twisted bilayer
graphene with (m1,m2) = (8,7). Numbers in the figures are (sr ,tr ).
Quantized value of Hall conductance is given by tr .

red triangles in Fig. 6. As a result the energies are not periodic
in φ.

In single layer graphene, there are 2q band when flux
through a supercell is (p/q)φ0. In Fig. 2, we show (sr ,tr )
for several gaps for single layer graphene.6 Large gaps have
indices tr = 0, 1, and 2. The gaps, which are focused at the
bottom of the band at φ → 0, have sr = 0, and tr = 1,2,3, . . . .
They correspond to the usual Landau levels. The gaps, which
are focused at the top of the band at φ → 0, have sr = 2, and
tr = −1,−2,−3, . . . . The gaps near half-filling (E ≈ 0) and
φ � φ0 have sr = 1 and tr = ±1,±3,±5, . . . , which have
been observed in graphene.4,5 For the finite φ the band near
E ≈ 0 becomes broadened gradually and many gaps can be
seen in Fig. 2. Note that φ = φ0 in a unit cell corresponds to
40 000 T, which is not attainable in a present day laboratory.

In Figs. 3, 4, and 5, we plot the Hofstadter butterfly diagrams
for twisted bilayer graphene with (m1,m2) = (3,2), (8,7), and
(12,11), respectively. Although energy gaps near the bottom
have sr = 0 and tr = 1,2,3, . . . , for all three cases as in single
layer graphene, there are crossings of the bands near the bottom
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FIG. 5. (Color online) Energy spectrum in twisted bilayer
graphene with (m1,m2) = (12,11). Numbers in the figures are (sr ,tr ).
Quantized value of Hall conductance is given by tr .

of the energy. For example, the gap indexed by (0,2) vanishes
at φ/φ0 ≈ 0.16 and E/t ≈ −2.8, at which band crossing
occurs. These crossings of bands can be understood by the
independent Landau levels for the two local minimums of
the energy in the absence of a magnetic field (see Fig. 7).
Near the top of the energy the large gaps are indexed by
(sr ,tr ) = (4n0,−2),(4n0,−4),(4n0, − 6), . . . , which can be
understood by the fact that there are 4n0 bands and nearly
degenerate two local maxima of the energy in the absence of
a magnetic field.

A very interesting feature is seen near half-filling. Besides
the large gaps of (sr ,tr ) = (2n0,±2), many new gaps
become visible as α becomes small. For example, (sr ,tr ) =
(2n0 ± 2,0),(2n0 ± 2,±2), (2n0 ± 4,±2),(2n0 ± 6,±2), . . .
are seen in the lower figures in Figs. 4 and 5. These new
gaps are caused by a large supercell, which has 4n0 sites.
Since Hall conductance is given by tr , the band between the
gaps with the same tr [(2n0,2) and (2n0 − 2,2), for example]
does not contribute to the Hall conductance. Mathematically,
that band is a Cantor set and consists of narrower bands and

S

S/6

m1=2  m1=1  n0=7

FIG. 6. (Color online) Twisted bilayer graphene. When there
are only nearest-neighbor hoppings in each layer, an area enclosed
by hoppings is S (blue hexagon). When there are second-nearest-
neighbor or third-nearest-neighbor hoppings in each layer, areas
enclosed by hoppings are S/6 and its multiples (blue triangle). The
hoppings between layers make the area enclosed by hoppings an
irrational number times S (red triangles).

much smaller gaps. Each narrow band gives a finite Hall
conductance and the total contribution vanishes.

V. SUMMARY

We obtain the Hofstadter butterfly diagram for twisted
bilayer graphene. The use of the periodic Landau gauge is
crucial. Due to large number of sites (4n0) in a supercell,
a rich structure of the Hofstadter butterfly diagram appears,
especially near half-filling and for small rotation angle α.
The gaps are indexed by two integers sr and tr [Eq. (24)].
The Hall conductance is given by σxy = (e2/h)tr . While gaps
with sr = 0, 1, and 2 are large in single layer graphene, many
gaps with sr = 2n0,2n0 ± 2,2n0 ± 4, . . . become large as α

becomes small. Since a supercell becomes large as α → 0,
flux per supercell versus the flux quantum (�/φ0 = p/q)
can be a rational number with a small denominator q in
not an extremely strong magnetic field. For m1 = 12 and

k

E

FIG. 7. (Color online) Schematic band structure near the bottom
of the energy. There are two local minimums and nearly independent
Landau levels (dashed blue lines and solid red lines).
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m2 = 11, we obtain n0 = 392. In that case 100 T corresponds
to �/φ0 ≈ 1, which may be attained in experiment.

Near half-filling, there are many narrow bands, which
do not contribute to the Hall conductance when they are
completely filled. For example, the bands between the gaps
with (sr ,tr ) = (2n0 + 2,2), (2n0,2), (2n0 − 2,2), (2n0 − 4,2),
etc. at E/t ≈ 0.3–0.4 in the lower figure in Fig. 5 do not change
the quantized value of the Hall conductance tr = 2. Similarly,
the band between the gaps with (sr ,tr ) = (2n0 + 2,0) and
(2n0 − 2,0) at E/t ≈ 0.3 in the lower figure in Fig. 5 does not
change the quantized value of the Hall conductance tr = 0.
The narrow bands, in fact, consist of even narrower bands,
since an energy spectrum is a Cantor set. One can expect other
values of tr in the narrower band. It may be possible to observe
these phenomena experimentally.

APPENDIX A: PERIODIC LANDAU GAUGE
IN SQUARE LATTICE

We explain the periodic Landau gauge in the square lattice.
A vector potential A gives a magnetic field

H = ∇ × A. (A1)

For a uniform magnetic field H = H ẑ, one can take the Landau
gauge

A(L) = Hxŷ, (A2)

where ŷ is the unit vector along the y direction and there is no
dependence on y. In this case, however, A(L)

y is not periodic in
the x direction as shown by the dashed line in Fig. 8. We can
obtain other vector potentials by gauge transformation, i.e.,
adding ∇χ (r) to A. It is crucial to have periodicity in a gauge
of twisted bilayer graphene. We take

χ (r) = −H
x�y, (A3)

and so,

A(pL) = H [xŷ − ∇(
x�y)]

= H

(
(x − 
x�)ŷ − y

∞∑
n=−∞

δ(x − n + ε)x̂

)
, (A4)

-2 -1 0 1 2 x
-2

-1

0

1

2

A
y / 

H

Ay
(L)

Ay
(pL)

FIG. 8. (Color online) y component of vector potentials for
Landau gauge (A(L)

y , dashed line) and periodic Landau gauge (A(pL)
y ,

thick blue line) for the square lattice.

where ε is an infinitesimal and 
x� is the floor function (largest
integer not greater than x), i.e., x − 
x� is the fractional part
of x. In this gauge, which we call the periodic Landau gauge,

FIG. 9. (Color online) (a) Numbers beside the arrows are the
phases in the usual Landau gauge for the square lattice with flux
(p/q)φ0 in a unit cell. The system is periodic in the x direction
with period q. (b) Sites are added at (n + γ1,m), (n,m + γ2), and
(n + γ1,m + γ2), where n and m are integers, 0 < γ1 < 1 and 0 <

γ2 < 1 (filled green circles). Blue letters are flux in rectangles. The
system is periodic only when γ2 is a rational number. (c) The phases
(beside arrows) and the flux through rectangles (blue letters) in the
periodic Landau gauge. The system is periodic in the x direction with
period 1 and in the y direction with period q.
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A
(pL)
y is periodic with respect to x with period 1, as shown in

Fig. 8. In order to make A
(pL)
y periodic in the x direction, A(pL)

y

is a discontinuous function of x as shown in Fig. 8 and A
(pL)
x is

the sum of δ functions. These singular functions do not cause
any problems. We have no ambiguity in the phase factor θij ,
since we have added the infinitesimal ε.9,27

Note that A
(pL)
x depends on y and it is not periodic in the

y direction. However, the dependence of y in A(pL) appears
always with the δ function, so exp(iθij ) is periodic in the y

direction, as we show below.
The difference of the usual Landau gauge and the periodic

Landau gauge is seen in Fig. 9 in which a uniform magnetic
field with (p/q)φ0 through a unit cell is applied to the square
lattice. If we take the usual Landau gauge, the phase factor
is zero except for vertical links, as shown in Fig. 9(a). The
phase factor for the vertical links at x = n is θij = 2πnp/q.
The periodicity in the x direction is q times larger than the
periodicity in the absence of a magnetic field. However, if
there are other sites in a unit cell, the periodicity of the system
is changed [this is the case in twisted bilayer graphene, where
there are 4n0 sites in the supercell (see Figs. 1 and 6)]. In
order to demonstrate it in the square lattice, we add sites at
(n + γ1,m), (n,m + γ2), and at (n + γ1,m + γ2), where n and
m are integers, 0 < γ1 < 1, and 0 < γ2 < 1, as shown by the
filled green circles in Fig. 9(b). The phase factors for the
links connecting neighbor sites are shown in Fig. 9(b). The
phase factor for the vertical link between ri = (n,m) and rj =
(n,m + γ2) is θij = 2πnγ2p/q. If γ2 is an irrational number,
exp(iθij ) cannot be periodic with respect to x.

The periodicity is recovered by taking the periodic Landau
gauge [Eq. (A4)]. The periodicity is 1 in the x direction,
since A(pL) is periodic in the x direction. The δ functions
in Eq. (A4) make the nonzero phases for the horizontal
links as shown by thick red horizontal arrows in Fig. 9(c).
The magnetic flux through each small rectangle is obtained
by the sum of the surrounding phases θij and it is proportional
to the area. The phase factor for the horizontal link between
ri = (n + γ1,m) and rj = (n + 1,m) is θij = −2πmp/q,
which does not depend on γ1. The periodicity in the y direction
is q times larger than that without magnetic field in the periodic
Landau gauge.

APPENDIX B: PERIODIC LANDAU GAUGE
IN NONSQUARE LATTICE

The periodic Landau gauge discussed in Appendix A is
generalized to nonsquare two-dimensional lattices, which have
primitive vectors of the supercell L1 and L2, which are not
orthogonal. The reciprocal lattice vectors are

F1 = 2π
L2 × ẑ

(L1 × L2) · ẑ
(B1)

and

F2 = 2π
ẑ × L1

(L1 × L2) · ẑ
. (B2)

We define the oblique coordinate system (ξ1,ξ2) by

r =
(

x

y

)
= ξ1L1 + ξ2L2, (B3)

where x and y are the coordinates in an orthogonal system.
For twisted bilayer graphene we have

ξ1 = 1

n0

(√
3

3
(m1 + 2m2)x − m1y

)
, (B4)

ξ2 = 1

n0

(√
3

3
(m1 − m2)x + (m1 + m2)y

)
. (B5)

The reciprocal vectors are

F1 = m1 + m2

n0
G1 + m2

n0
G2 (B6)

and

F2 = −m2

n0
G1 + m1

n0
G2. (B7)

The Landau gauge for the oblique coordinate system is

A(L,nsq) = SH

2π
ξ1F2, (B8)

which is a generalization of Eq. (A2) to the nonsquare lattice.
To make the vector potential periodic with respect to ξ1, we
take the periodic Landau gauge as

A(pL,nsq) = SH

2π

(
(ξ1 − 
ξ1�)F2 − ξ2

∞∑
n=−∞

δ(ξ1 − n+ ε)F1

)
.

(B9)

In Fig. 10 we show an example of θij between the nearest
neighbor sites in the first layer for m1 = 2, m2 = 1 (n0 = 7),
and the flux through a supercell is φ0 (p/q = 1/1). Note that
the phase factor θij crossing the line ξ1 = n (red numbers in
Fig. 10) is not periodic in the L2 direction but exp(iθij ) is
periodic.
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FIG. 10. (Color online) First layer of twisted bilayer graphene
with (m1,m2) = (2,1) (n0 = 7). The numbers on the links between
the nearest neighbor sites show the phase θij in the first layer in
units of 2π/(18n2

0) = 2π/882 when the flux per supercell is φ0, i.e.,
the flux per unit hexagon is φ0/n0. (We obtain [4 − (−35) + 424 −
34 − (−155) − 148] × 2π/882 = 2π/7, for example.) We take the
periodic Landau gauge [Eq. (B9)]. The contribution from the δ

function in Eq. (B9) is finite for the red numbers, while it is zero
for the blue numbers.
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The advantage of taking the periodic Landau gauge is that
the vector potential A is periodic in ξ1 with period 1. This
ensures the periodicity of the system in the L1 direction. The
system has a periodicity in the L2 direction if the flux per
supercell is a rational number times φ0.

If the flux per supercell is a rational number p/q with
integers p and q, i.e.,

� = n0φ = SH = p

q
φ0, (B10)

the phase factor θij in Eq. (18) with the periodic Landau gauge
[Eq. (B9)] has the same value when ri and rj are translated
by L1. It has also the same value when ri and rj are translated
by L2 if the link connecting ri and rj does not cross the line
ξ1 = n, where n is an integer. If the link connecting ri and
rj crosses the line ξ1 = n, θij increases by ±2πp/q when
ri and rj are translated by L2 (± depends on the sign of
F1 · d�). Therefore, periodicity must be q times larger in the
L2 direction.

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jaing, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
3S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Phys.
Rev. B 81, 165105 (2010).

4K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

5Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

6Y. Hasegawa and M. Kohmoto, Phys. Rev. B 74, 155415 (2006).
7Y. Hatsugai, T. Fukui, and H. Aoki, Phys. Rev. B 74, 205414
(2006).
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