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Coexistence of diffusive resistance and ballistic persistent current in disordered metallic
rings with rough edges: Possible origin of puzzling experimental values
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Typical persistent current (Ityp) in a mesoscopic normal metal ring with disorder due to rough edges and random
grain boundaries is calculated by use of a scattering matrix method. In addition, resistance of a corresponding
metallic wire is obtained from the Landauer formula and the electron mean free path (l) is determined. If disorder
is due to the rough edges, a ballistic persistent current Ityp � evF /L is found to coexist with the diffusive
resistance (∝L/l), where vF is the Fermi velocity and L � l is the ring length. This ballistic current is due
to a single electron that moves almost in parallel with the rough edges and thus hits them rarely (it is shown
that this parallel motion exists in the ring geometry due to the Hartree-Fock interaction). Our finding agrees
with a puzzling experimental result Ityp � evF /L, reported by Chandrasekhar et al. [Phys. Rev. Lett. 67, 3578
(1991)] for metallic rings of length L � 100l. If disorder is due to the grain boundaries, our data reproduce
the theoretical result Ityp � (evF /L)(l/L) that holds for the white-noise-like disorder and has been observed
in recent experiments. Thus, result Ityp � evF /L in a disordered metallic ring of length L � l is as normal as
result Ityp � (evF /L)(l/L). Which result is observed depends on the nature of disorder. Experiments that would
determine Ityp and l in correlation with the nature of disorder can be instructive.
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I. INTRODUCTION

It is known that a conducting ring pierced by magnetic flux
can support persistent electron current.1 Persistent currents
exist in superconducting rings,2 in mesoscopic resistive metal
rings,3,5–8 in ballistic metallic rings9, and in nanorings made
of band insulators.10

At zero temperature, the mesoscopic resistive metal ring
pierced by magnetic flux � supports the persistent current
I = ∑

∀Ej �EF
Ij , where Ij (�) = −dEj (�)/d� is the current

carried by the electron with eigenenergy Ej (�) and EF is
the Fermi level.3,4,9 Function I (�) is periodic with period
�0 ≡ h/e, which is an experimental signature of the persistent
current.4–9 If the ring is clean and possesses one conducting
channel, the sum

∑
Ij changes its sign whenever a new

occupied state j is added. Due to the sign cancellation,
mainly the electron at the Fermi level contributes to the sum,
and the amplitude of the current is I0 = evF /L,11 where vF

is the Fermi velocity and L the ring circumference. If the
ring is disordered, the size and sign of the current fluctuate
from sample to sample and a typical current per one ring is
Ityp = 〈I 2〉1/2, where 〈· · ·〉 means ensemble average.

The number of the conducting channels (Nc) in the disor-
dered metallic rings is usually large (Nc � 1) and the rings
obey the diffusive limit, l 	 L 	 ξ , where l is the electron
mean free path and ξ � Ncl is the localization length. To
estimate Ityp, assume again that mainly the electron at the
Fermi level contributes to the sum

∑
Ij . Since L � l, the

electron is expected to move around the ring by diffusion. Its
transit time is τD = L2/D, where D = vF l/d is the diffusion
coefficient and d is the sample dimensionality. So Ityp �
e/τD = (1/d)(evF /L)(l/L). A similar result follows from the
Green function theory12,13 which assumes the noninteracting
electrons and emulates disorder by a random potential V (r)
obeying the white-noise condition 〈V (r)V (r′)〉 ∝ δ(r − r′).
The theory12,13 gives

I theor
typ = 2 × (1.6/d)(evF /L)(l/L), l 	 L 	 ξ, (1)

where the factor of 2 is due to the electron spin, d = 1, 2, or
3, and the origin of the factor of 1.6 is explained in Ref. 14.

The first observation of the persistent current in a single
metallic ring was reported5 for three Au rings of size L ∼ 100l.
The measured currents showed the desired flux-periodicity �0,
but they were 10 to 100 times larger than result (1); they ranged
from ∼0.1evF /L to ∼evF /L. This huge discrepancy has not
been explained yet.15,16 Other Au rings showed6 the currents
slightly larger than the result (1) and recent experiments7,8

confirmed the result (1) well.
Why did the similar measurements of diffusive Au

rings5,7 show quite different results, Ityp � evF /L and Ityp �
(evF /L)(l/L)? A puzzle5 is why a multichannel disordered
ring of length L � l carries the current evF /L, typical for
a one-channel ballistic ring. These questions are known as
unresolved problems of mesoscopic physics.8,15,16

This paper answers both questions theoretically. It is
known16 that there is disorder due to polycrystalline grains
and rough edges even in a pure Au ring. Using a single-
particle scattering-matrix method,14,17 we calculate the typical
persistent currents in the Au rings with grains and rough
edges without the white-noise approximation. Another key
point of our single-particle approach is that our description
of the single-electron states in the ring captures an essential
effect of the Hartree-Fock interaction, the cancellation of the
centrifugal force by an opposite oriented Hartree-Fock field.

Our findings can be summarized as follows. If the disorder
is due to the polycrystalline grains, our results agree with the
white-noise-related formula (1) and experiments.7,8 However,
if the disorder is due to the rough edges, we find the ballistic-
like result Ityp � evF /L albeit the resistance is diffusive
(∝L/l) and L � l, like in the experiment.5 This ballistic
current is due to a single electron that moves (almost) in
parallel with the rough edges and thus hits them rarely. We
show that this parallel motion exists in the ring geometry due
to the Hartree-Fock interaction. Our major message reads as
follows: The result Ityp � evF /L in a metal ring of length
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L � l is as normal as result Ityp � (evF /L)(l/L). Which result
is observed depends on the nature of the disorder.

We note that we focus us on the typical current rather than
on the mean current 〈I 〉. The sign and amplitude of the mean
current measured in the experiment by Levy et al.4 is another
puzzling problem in the field. This problem has been addressed
in Reference 18 within the interacting electron model. On the
other hand, Reference 18 did not study the typical current. It
is tempting to think that the typical current is not affected by
electron-electron interaction; at least, experiments7,8 confirm
result Ityp � (evF /L)(l/L) which has been derived12,13 for
noninteracting electrons. We are thus motivated to study
the typical current within a single-particle model. However,
our single-particle model is not a truly noninteracting model
because it captures a key effect of the Hartree-Fock interaction.

Our paper is organized as follows. In Sec. II, resistance of
wires with rough edges and wires with grains is calculated by
means of the scattering-matrix approach.14,17,19–21 In Sec. III
we focus us on the single-particle states in clean metal rings.
We demonstrate the key role of the Hartree-Fock interaction
and we provide a simple intuitive argument about the existence
of ballistic current Ityp � evF /L in rings with rough edges.
Microscopic calculations of persistent currents are presented
in Sec. IV. Finally, in Sec. V a summary of our work is given
with a few concluding remarks.

II. RESISTANCE OF WIRES WITH GRAIN BOUNDARIES
AND WIRES WITH ROUGH EDGES

For simplicity, we study two-dimensional (2D) rings and
discuss the 3D effects briefly at the end of the paper.
Experimentally,4–9 persistent currents in rings were studied
together with the resistance of the codeposited wires in order
to determine the mean free path l. In this section we study the
wire resistance and mean free path. Sections II A and II B
describe our transport model and our results, respectively.
Of special importance is Sec. II C. It shows that our
edge-roughness model gives the transport results which are
universal, independent of the choice of the roughness model.

A. Transport model

We consider a stripe-shaped 2D wire (Fig. 1) described by
Hamiltonian14,17

H = − h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ U (x,y) + V (x,y) , (2)

where m∗ is the electron effective mass, U is the grain
boundary potential, and V is the potential due to the wire
edges. To simulate the electron transport in wires with grain
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FIG. 1. Our models of disordered wires: (a) wire with grain
boundaries and (b) wire with rough edges. The meaning of all symbols
used in the figure is described in the main text.

boundaries, we will rely on the scattering matrix approach
developed in the works.17,19,20 Similarly, to simulate the
electron transport in wires with rough edges, we will rely
on the scattering matrix approach described in the works.14,21

Here we review both approaches briefly by means of Fig. 1.
Let d(x) and h(x) be the y coordinates of the edges. Then

V (x,y) =
{

0, d(x) < y < h(x)
∞, elsewhere . (3)

For smooth edges one has d(x) = 0 and h(x) = W , while in
the case of the rough edges d(x) and h(x) fluctuate randomly
in the intervals 〈−�,�〉 and 〈W − �,W + �〉, respectively.
It can be shown14 that the rms of such random fluctuations
(δ) is simply δ = �/

√
3. The fluctuations are assumed to

appear along the edges abruptly with a constant step �x which
plays (within this model) the role of the roughness correlation
length.14 The parameters of our roughness model are thus δ and
�x. The grain boundaries are modeled as a randomly oriented
mutually nonintersecting lines, where the angle between the
line and x axis is random.17 Each line consists of equidistant
repulsive dots (depicted by the plus signs) with potentials
γ δ(x − xi)δ(y − yi), where (xi , yi) is the position of the i-th
dot. Thus U (x,y) = ∑

∀iγ δ(x − xi)δ(y − yi). If the interdot
distance c approaches zero and the ratio γ /c is fixed, a
grain boundary scatters electrons as a structureless line-shaped
barrier independent of the choice of c. If a 2D electron
impinges on such a barrier perpendicularly with Fermi wave
vector kF , it is reflected with probability17

RG = (γ̄ /c)2
/[

k2
F + (γ̄ /c)2

]
, (4)

where γ̄ = m∗γ /h̄2. The parameters of our grain boundary
model are the reflection probability RG (typically22 RG ∼
0.1 − 0.8) and the mean interboundary distance dG.

We connect the wire to two ideal leads—clean long wires of
width W . The spectrum of the electron wave functions ψ(x,y)
and electron energies E in the leads is given by

ψ(x,y) = eikxχn(y), n = 1,2, . . . ∞, (5)

and

E = εn + h̄2

2m∗ k2, εn ≡ h̄2π2

2m∗W 2
n2, (6)

where k is the electron wave vector in the x direction, εn is the
eigenenergy of motion in the y direction, and

χn(y) =
{√

2
W

sin
(

πn
W

y
)
, 0 < y < W

0, elsewhere
(7)

is the wave function in direction y. Thus, in the leads we have
for the electron energy E a general wave function,14,17,23

ψ(x,y) =
N∑

n=1

[A+
n (x) + A−

n (x)] sin

(
nπy

W

)
, x � 0

(8)

ψ(x,y) =
N∑

n=1

[B+
n (x) + B−

n (x)] sin

(
nπy

W

)
, x � L

where N is the considered number of channels (ideally
N = ∞), A±

n (x) ≡ a±
n e±iknx , B±

n (x) ≡ b±
n e±iknx , and kn(E)

is the wave vector given by equation h̄2k2

2m∗ + h̄2π2n2

2m∗W 2 = E.
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Vectors A±(0) and B±(L) with components A±
n=1,...N (0) and

B±
n=1,...N (L) obey the matrix equation14,17,19–21,23(

A−(0)
B+(L)

)
=

[
r t ′
t r ′

](
A+(0)
B−(L)

)
, S ≡

[
r t ′
t r ′

]
, (9)

where S is the scattering matrix.23 Its elements t(E), r(E),
t ′(E), and r ′(E) are matrices with dimensions N × N . Ma-
trices t and t ′ are the transmission amplitudes of the waves
A+ and B−, respectively, and matrices r and r ′ are the
corresponding reflection amplitudes. In particular, the matrix
element tmn(E) is the transmission amplitude from channel n

in the left lead into the channel m in the right lead. We evaluate
S(E) for disorder in Fig. 1 by methods of Refs. 14 and 17.

At zero temperature, the wire conductance g (in units
2e2/h) is given by the Landauer formula g = ∑Nc

n=1 Tn, where

Tn(EF ) =
Nc∑

m=1

|tmn(EF )|2 km(EF )

kn(EF )
(10)

is the transmission probability of channel n. We evaluate tmn

for a large statistical ensemble of samples14,17 and obtain the
mean transmission 〈Tn〉 and mean resistance 〈ρ〉 = 〈1/g〉.

B. Transport results

Our results are shown in Fig. 2. Note that the wires with
grain boundaries exhibit the features typical of the white-noise-
like disorder. First, 〈ρ〉 follows the usual diffusive dependence
(the full line in the top left panel) in the form

〈ρ〉 = 1/Nc + (2/kF l)(L/W ), (11)

where 1/Nc is the fundamental contact resistance and the mean
free path l is a fitting parameter. Second, all 〈Tn〉 are equivalent
in the sense that 〈Tn〉 ∝ 1/L for all n.24

The wires with rough edges exhibit a fundamentally
different behavior. Specifically, the data for 〈ρ〉 follow the
diffusive dependence (the full line in the top right panel) in the
form

〈ρ〉 = 1/N eff
c + (2/kF l)(L/W ), (12)

where 1/N eff
c is the effective contact resistance due to the N eff

c

open channels and both l and N eff
c are the fitting parameters.

The obtained values of N eff
c are universal (�6 	 Nc) for large

Nc and small �x (see the discussion below). The existence
of the N eff

c open channels reflect also the transmissions in
the right panel of Fig. 2(b). Specifically, channel n = 1 is
almost ballistic (〈T1〉 � 1) even for L = 0.2ξ � 100l and a
few channels with low n show 〈Tn〉 ∼ 0.1. Unlike the open
channels, for all other channels one sees that 〈Tn〉 decays with
L rapidly; these channels are in the diffusive regime or even
in the localization regime.14,25

Figure 3 shows in detail how l and N eff
c in the wires with

rough edges depend on the roughness correlation length �x.
Indeed, the N eff

c versus �x dependence shows that N eff
c is

a universal (Nc-independent) number of the order of 10 for
small-enough �x and large-enough Nc. The universal N eff

c

has been discovered in Ref. 14, and here it is demonstrated
for Nc as large as 347. Further, the l versus �x dependence
shows clearly that the minimum mean free path due to the edge
roughness scattering is always a few times larger than the wire

0

0.2

0.4

0.6

0.8

1

<ρ
>

 -
 1

/N
C

 9    34    10   0.1   34
30  115   50   0.2   68
90  347  500  0.2  569
90  347  100  0.2  114

 9    34   0.5  0.87  21
20   77   2.0   1.9   65
70  270  5.0   6.1  287
90  347  5.0   8.7  351

0 0.1 0.2 0.3 0.4 0.5
L /ξ

10
-3

10
-2

10
-1

10
0

<T
n
>

0 0.1 0.2 0.3 0.4 0.5
L /ξ

W NC dG RG l
[nm]           [nm]          [nm]

n = 1

n = 347

n = 347

n = 1

W NC Δx δ l
[nm]          [nm]  [nm]  [nm]

ξ _~ 1.4 NC lξ _~ 0.9 NC l

Wire with grain boundaries Wire with rough edges
(a)

(b)

FIG. 2. Transport in disordered Au wires. Parameters of Au are
m∗ = 9.1 × 10−31kg and EF = 5.6 eV, other parameters are listed.
Not to affect the results, in our calculations N is usually kept larger
than Nc. (a) The mean resistance 〈ρ〉 versus L. Note that 〈ρ〉 is
reduced by resistance 1/Nc and L scaled by ξ . The localization
length ξ is obtained14,17 from numerical data for 〈ln g〉 by using the
fit 〈ln g〉 = −L/ξ at L � ξ . The full lines show the linear fit of the
diffusive regime (see text) from which we obtain the mean free path l

(the results for l are listed in the figure). In the right panel one should
see four slightly different full lines for different Nc; we show only one
of them for simplicity. (b) 〈Tn〉 versus L/ξ for parameters indicated
by bold arrows. For n = 1,2, . . . Nc the resulting curves are ordered
decreasingly.

width W . This means that the edge roughness alone cannot
explain the experimental5,7 observation l � W . We will return
to this point later on.
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FIG. 3. (a) The mean free path l and (b) effective number of
the open channels N eff

c in the wire with rough edges, both plotted in
dependence on the roughness correlation length �x for the parameters
as indicated. These data were extracted from the numerical data for
〈ρ〉 versus L by means of the fit 〈ρ〉 = 1/N eff

c + (2/kF l)(L/W ), as
it is explained in the text and in Fig. 2(a). For simplicity, ratio δ/W

is kept nearly the same (∼1/10) for each set of δ and W .
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C. Universality of the step-shaped-roughness model

Before we start to discuss the rings with rough edges (next
sections), we want to make an important remark. In this paper,
all our transport results for the wires/rings with rough edges
are obtained for the step-shaped-roughness model in Fig. 1(b).
We wish to point out that all these results would remain the
same also for models with a smoothly varying roughness. Any
smoothly varying roughness can be modeled by means of the
step-shaped roughness in Fig. 1(b) if the latter is applied as a
discretization scheme with very small and very dense steps.
Using this approach, all calculations presented in this paper
can be repeated in principle for any roughness model. We show
below that the obtained transport results would agree with the
results presented in this paper if they are compared at the same
value of L/ξ .

It is known for the impurity disorder26,27 that a statis-
tical ensemble of the macroscopically identical mesoscopic
conductors with a microscopically different configuration of
impurities exhibits the conductance distribution which is the
same (for a given value of L/ξ ) for any choice of the impurity
disorder model. The weaker the disorder the better the accord
of the conductance distributions for various models.

A similar universality (the independence on the specific
model of disorder) seems to exist also when disorder is
due to the rough edges. The conductance calculations in
Ref. 25, performed for the same step-shaped-roughness model
as our model in Fig. 1(b), give a quite similar results
as the conductance calculations in paper,28 performed for
the smoothly varying roughness with Gaussian-correlation
function. Here we demonstrate this universality by means of
a direct comparison. We calculate the conductance for the
smoothly varying roughness with Gaussian correlation (model
of Ref. 28) and compare it with the conductance obtained for
the step-shaped-roughness model in Fig. 1(b).

In Fig. 4 we show a typical output of our comparative study
for two Au wires with the same number of the conducting
channels (Nc = 34), so one can compare directly the individual
channel transmission. It can be seen that the individual
transmissions for both roughness models are in a good
agreement. This illustrates the above-mentioned universality;
note that the individual transmissions for both roughness
models coincide albeit the values of the roughness rms and
roughness correlation length in considered roughness models
are (intentionally) not the same.

The universality exists also within the chosen roughness
model. Specifically, all results of this paper and paper,14

obtained for the step-shaped roughness, are the same for any
choice of δ and �x if they are plotted in dependence on L/ξ .

Finally, the main result of this paper [Fig. 10(b) in Sec. IV]
is that the ring with rough edges supports the ballistic persistent
current Ityp � evF /L in spite of L � l. This results is universal
simply due to its insensitivity to the edge roughness.

III. SINGLE-ELECTRON STATES IN CLEAN RINGS:
EFFECT OF HARTREE-FOCK INTERACTION

In this section we study the single-electron states in
clean metal rings. In Sec. III A we calculate the exact
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0

<
T n

>
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Gaussian correlations

n = 1

n = 10

(a)

(b)

(c)

step-shaped roughness

FIG. 4. (a) The top view on the 2D wire with the rough edges
generated numerically for two different roughness models. In this
numerical example the Au wire of width W = 9 nm is considered,
which implies that the number of the conducting channels (Nc) is 34.
For the step-shaped roughness we use the rms roughness amplitude
δ = 0.87 nm and roughness-correlation length �x = 0.5 nm. For the
roughness with the Gaussian correlation function we choose the rms
roughness amplitude of 0.5 nm and the roughness-correlation length
of 1.2 nm. In the former case we obtain the mean free path l = 21 nm
and localization length ξ � 1.4Ncl, and in the latter case we find
l = 20.8 nm and ξ � 1.49Ncl. (b) The mean resistance 〈ρ〉 versus
L/ξ ; a comparison for the roughness models specified above. (c) The
same comparative study as in (b), but for the channel transmissions
〈Tn〉; for clarity only the data for the first 10 conducting channels are
presented.

non-interacting-electron states. We point out that the ring
geometry produces the centrifugal force which pushes the
noninteracting states towards the outer ring edge and makes
them differ fundamentally from the states in the stripe
geometry. In Secs. III B, III C, and III D we consider the
Hartree-Fock interaction and we find that the non-interacting-
electron ring model fails. In particular, the Hartree-Fock
interaction eliminates the centrifugal force and ensures that
the true single-electron states in the ring are in fact similar to
those ones in the stripe.

This similarity has a serious implication. We have seen in
Sec. II that the stripe with rough edges possesses a ballistic
channel (channel n = 1) even if L � l. The same has to hold
for the corresponding ring. The ring with rough edges should
therefore support ballistic persistent current Ityp � evF /L for
L � l. This effect will be studied in Sec. IV.
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FIG. 5. The 2D ring with the inner radius R1 and outer radius R2.
The mean radius is R = (R2 + R1)/2, and the ring width W = R2 −
R1. The data in the next two figures are calculated for R1 = 6.64 nm
and R1 = 15.64 nm (the ring width W = 9 nm and the ring length
L = 2πR = 70 nm) and for m∗ equal to the free electron mass.

A. Clean ring with noninteracting electrons

Consider the 2D ring (Fig. 5) in the form of the annulus with
the inner radius R1 and outer radius R2. The noninteracting
electrons in the ring without magnetic flux are described by
the Schrodinger equation

H0ψ(r,ϕ) = Eψ(r,ϕ), (13)

where ψ is the wave function, E is the energy, and

H0 = − h̄2

2m∗

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)
+ V (r). (14)

Here r and ϕ are the polar electron coordinates (Fig. 5), and
V (r) is the confining potential

V (r) =
{

0, R1 < r < R2

∞, elsewhere . (15)

If one sets into Eq. (13) the wave function in the form

ψ(r,ϕ) = 1√
L

eimϕξ (r), m = 0,±1,±2, . . . , (16)

where ξ (r) is the radial wave function and m is the angular
quantum number, one obtains the radial Schrodinger equation[

− h̄2

2m∗

(
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2

)
+ V (r)

]
ξ (r) = Eξ (r). (17)

This equation determines the spectrum of energies En,m and
wave functions ξn,m(r), where n = 1,2, . . . . We obtain En,m

and ξn,m(r) exactly by solving Eq. (17) numerically.
Magnetic flux can be introduced roughly by applying the

substitution m → m + �/�0 in the Hamiltonian of Eq. (17),
where � is the magnetic flux through the area πR2. If we do so,
the wave functions ξn,m(r) and ξn,−m(r) are no longer degener-
ate. However, we find that the difference between them is small
and we therefore discuss only ξn,m(r) calculated for � = 0.

Figure 6 shows the wave functions ξn=1,m(r) calculated for
the ring in Fig. 5. They are compared with wave function
χn=1(r) = √

2/W sin[ π
W

(r − R1)] which holds for the stripe
geometry [Eq. (17) describes the stripe geometry if the term
1
r

∂
∂r

is skipped and the term −m2

r2 is replaced by −m2

R2 ].
The difference between the electron states in the ring and
electron states in the stripe is clearly visible: In the ring the
function ξn=1,m(r) is shifted towards the outer ring edge by the
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FIG. 6. The full lines show the exact wave functions ξn=1,m(r) of
the noninteracting electrons in the ring geometry (Fig. 5). These wave
functions are normalized as (2π/L)

∫ R2
R1

drr|ξn,m(r)|2 = 1. The dotted
lines show the electron wave function in the 2D stripe, χn=1(r) =√

2/W sin[ π

W
(r − R1)].

centrifugal potential ∝m2

r2 and towards the inner ring edge by
term 1

r
∂
∂r

. Evidently, the shift towards the outer edge dominates
for large |m|. This shift means that the electrons in channel
n = 1 increasingly hit the outer ring edge.

A similar finding has been reported in works29,30 where the
noninteracting electron states in metallic rings were analyzed
in terms of the semiclassical trajectories. In the noninteracting
model29,30 the electron wave functions are governed exclu-
sively by the straight-line trajectories. In the annular geometry
with L � W it is clear at first glance that any straight-line
trajectory has to hit the outer ring edge many times in order
to make one trip around the ring. In particular, the so-called
whispering gallery modes29,30 hit solely the outer edge, in
accord with our observation that ξn=1,m(r) tends to be localized
at r = R2. As a result, one finds30 in channel n = 1 the mean
free path l ∼ W when the ring edges are rough. We will see
that these findings, including l ∼ W for n = 1, are artifacts
of the noninteracting model: They fail in the presence of the
Hartree-Fock interaction.

B. Hartree-Fock equation for clean ring

We still consider the single-electron states in the form

ψn,m(r,ϕ) = 1√
L

eimϕξn,m(r); (18)

however, they are now described by the Hartree-Fock equation

[H0 + H (r)]ψnm(r,ϕ) + Fnm(r,ϕ) = Enmψnm(r,ϕ), (19)

where H0 is the Hamiltonian of the noninteracting electrons
[Eq. (14)], H (r) is the Hartree interaction, and Fnm(r,ϕ) is the
Fock interaction. The Hartree interaction reads31

H (r) = − e

4πε

∫ 2π

0
dϕ

∫ R2

R1

dr ′r ′ ρ(r ′)√
r2 + r ′2 − 2rr ′ cos ϕ

,

(20)
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where ε is the permittivity of the metal and31

ρ(r) = −2
e

L

∑
n

∑
m

[|ξn,m(r)|2 − |χn(r)|2] (21)

is the space charge density. Here we sum over all occupied
states (n,m), the factor of 2 incorporates two spin orientations,
and

χn(r) =
√

2/W sin [nπ (r − R1) /W ] (22)

is the wave function in the stripe. The charge density (21)
is due to the ring geometry: If we skip in Eq. (17) the
term 1

r
∂
∂r

and replace the term −m2

r2 by −m2

R2 , we obtain the
stripe geometry with solution ξn,m(r) ≡ χn(r) and ρ(r) = 0.
In golden rings there are many occupied channels and the term
2 e

L

∑
n

∑
m |χn(r)|2 in Eq. (21) is equal to the charge density

of the positive ion background. Finally, the Fock interaction is
operative between the electrons of like spin. It reads

Fnm(ϕ,r)

= − e2

4πε

∫ R2

R1

dr ′r ′
∫ 2π

0
dϕ′ (1/

√
L)eimϕ′

ξnm(r ′)√
r2 + r ′2 − 2rr ′ cos(ϕ − ϕ′)

× 1

L

∑
n′

∑
m′

eim′(ϕ−ϕ′)ξn′m′ (r)ξn′m′(r ′), (23)

where we sum over all occupied states (n′,m′). Evidently,

Fnm(ϕ,r) = 1√
L

eimϕFnm(r), (24)

where Fnm(r) is the radial part of Fnm(ϕ,r),

Fnm(r)

= − e2

4πε

1

L

∫ R2

R1

dr ′r ′
∫ 2π

0
dθ

e−imθ ξnm(r ′)√
r2 + r ′2 − 2rr ′ cos(θ )

×
∑
n′

∑
m′

eim′θ ξn′m′(r)ξn′m′(r ′). (25)

If we set Eqs. (18) and (24) into Eq. (19), we obtain[
− h̄2

2m∗

(
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2

)
+ V (r) + H (r)

]
ξn,m(r)

+Fnm(r) = En,mξn,m(r). (26)

The last equation is the radial Hartree-Fock equation.
Equation (26) can be solved numerically by means of

the Hartree-Fock iterations. In the first iteration step, the
Hartree term [Eqs. (20) and (21)] and Fock term (25) are
calculated by setting for ξnm(r) the exact noninteracting ring
states and Eq. (26) is solved numerically. This gives a new
set of states ξnm(r). In the second iteration step, the Hartree
term and Fock term are calculated for ξnm(r) obtained in
the first iteration step and Eq. (26) is solved again. After
many iterations a self-consistent solution is achieved; the
wave functions ξnm(r) obtained in two successive steps show
a negligible difference. Since the self-consistent calculation
is computationally cost, in this paper we obtain the self-
consistent Hartree-Fock results only for rings with a single
occupied channel. For the multichannel rings we perform
either only the first Hartree-Fock iteration step or a so-called
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FIG. 7. Electron wave functions ξn=1,m(r) for the ring in Fig. 5.
The full lines show the results for the noninteracting electrons
(taken from the preceding figure) and the dotted lines show the
self-consistent results for the electrons that interact via the Hartree-
Fock interaction. These Hartree-Fock calculations were performed
for 34 electrons in the ground-state n = 1,m = 0,±1,±2, . . . ,±8;
each (n,m) is occupied by two electrons with opposite spins. The
permittivity ε is assumed to be equal to the permittivity of vacuum.

restricted self-consistent Hartree-Fock calculation. In spite of
these restrictions, we are able to draw a few key conclusions.

C. Hartree-Fock results: Failure of the noninteracting model

Figure 7 shows again the wave functions ξn=1,m(r) for the
ring in Fig. 5. The full lines show the exact noninteracting ring
states (taken from the preceding figure), and the dotted lines
show the self-consistent Hartree-Fock results. For simplicity,
in this Hartree-Fock calculation the electron number in the
ring is restricted to 34 in order to occupy only channel n = 1.
The results clearly illustrate why the noninteracting model
fails. As |m| increases, the noninteracting electron states (full
lines) are pushed by the centrifugal force towards the outer
ring edge. However, the Hartree-Fock interaction repels the
electrons back. The Hartree-Fock wave functions are almost
symmetric around the center of the ring cross section even
for large |m|. Furthermore, this symmetric shape is so narrow
that the wave-function tails do not reach the ring edges. This
implies that the electrons in channel n = 1 move around the
ring ballistically without collisions with the ring edges. This,
however, also means that channel n = 1 will be ballistic even
if the ring edges are rough, similarly as we have seen for the
stripe geometry (the bottom right panel of Fig. 2).

Figure 7 also suggests that the true single-electron states of
the clean ring, the Hartree-Fock states ξn=1,m(r), can be well
approximated by the non-interacting-electron wave function of
the clean stripe, χn=1(r) = √

2/W sin[ π
W

(r − R1)]. Clearly,
the function χn=1(r) captures the fact that the effect of the
ring curvature is compensated by the Hartree-Fock field.
Additionally, it is not as narrow as the Hartree-Fock states
ξn=1,m(r) and thus suppresses the collisions with the ring edges
less effectively (one does not need to worry that the suppression
is overestimated). Unlike χn=1(r), the exact noninteracting ring
states ξn=1,m(r) evidently fail to mimic the true single-electron
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FIG. 8. Electron wave functions ξn=1,m(r), ξn=2,m(r), ξn=3,m(r),
and ξn=4,m(r) for the ring in Fig. 5. The ring is filled by 228
electrons, these electrons occupy four channels, and each occupied
state (n,m) contains two electrons with opposite spins. Specifically,
in channel n = 1 there are 70 electrons in states m = 0,±1, . . . ,±17,
in channel n = 2 there are 66 electrons in states m = 0,±1, . . . ,±16,
channel n = 3 contains 54 electrons in states m = 0,±1, . . . ,±13,
and channel n = 4 contains 38 electrons in states m = 0,±1, . . . ,±9.
The figure shows the results for selected values of m. The full lines
are the results for the noninteracting electrons [obtained by solving
Eq. (17)]. The dotted lines are the Hartree-Fock results due the first
Hartree-Fock iteration step.

ring states. Now we show that these findings hold also for the
multichannel rings.

D. Hartree-Fock results continued: Multichannel rings

A golden 2D ring of size considered in Fig. 5 contains
about 1000 electrons which occupy about 30 channels n. A
self-consistent Hartree-Fock analysis of such a many-electron
ring is beyond our computational possibilities. However, useful
information can be obtained when only the first Hartree-Fock
iteration is performed for the ring with a few occupied
channels. Results of such calculation are shown in Fig. 8 for
the ring with four occupied channels. The full lines show the
exact noninteracting ring states and the dotted lines show the
Hartree-Fock states due to the first iteration. The following
features are worth noting.

As before, the exact noninteracting states are pushed
towards the outer ring edge by centrifugal force, while the
Hartree-Fock interaction repels the electrons in the opposite
direction. In particular, most of the Hartree-Fock wave

functions in channel n = 1 are now shifted towards the inner
edge rather than towards the outer edge. Thus, the key feature
of the exact noninteracting states (the strong shift towards the
outer edge by the centrifugal force) tends to diminish when the
states are subjected to their own Hartree-Fock field. This is a
clear sign that the exact noninteracting states fail to describe
the true single-electron states in metallic rings. This also means
that the modeling of the single-electron states in metallic rings
by means of the straight-line paths29 fails for real metal rings:
The electron paths in presence of the Hartree-Fock field cannot
be the straight lines.

Figure 8 also shows that the Hartree-Fock states approach
the noninteracting states as the channel number n increases.
Indeed, with the increase of n the centrifugal term ∝m2

becomes less important because the larger the number n

the smaller the occupied angular numbers m in channel n.
As a result, the exact noninteracting states approach the
stripe-geometry limit χn(r) = √

2/W sin[n π
W

(r − R1)] and
become robust against the Hartree-Fock field.

In summary, the first Hartree-Fock iteration step in Fig. 8
shows that the exact noninteracting electron model fails to
describe the true single-electron states in a clean multichannel
metal ring. We have performed a similar first-iteration-step
calculation also for three other rings with the same size but
with a larger electron number: 6, 9, and 17 occupied channels.
We have seen a clear trend: the larger the electron number,
the stronger the shift of the noninteracting states towards
the outer ring edge and the larger the opposite-oriented shift
of the Hartree-Fock states. In other words, with increasing
Fermi energy the difference between the noninteracting states
and Hartree-Fock states increases and the failure of the
non-interacting-ring model is more pronounced.

What are the true self-consistent Hartree-Fock states in
multichannel rings? The multichannel self-consistent cal-
culation is too extensive; a feasible task is the restricted
self-consistent Hartree-Fock calculation. This means that we
calculate the wave functions ξn,m(r) self-consistently for one
selected channel (say channel n = 1) by assuming that the
electrons in channel n = 1 interact with the self-consistent
Hartree-Fock potential due to the electrons in channel n = 1
and with the non-self-consistent Hartree-Fock potential due
to the electrons in channels n = 2,3 . . . . Non-self-consistent
means that the Hartree-Fock potential due to channels n =
2,3, . . . is calculated by setting for ξn=2,m(r), ξn=3,m(r), . . .

the exact noninteracting states rather than the self-consistent
Hartree-Fock states.

In Fig. 9 we show again the noninteracting electron states
[Fig. 9(a)] and Hartree-Fock states from the first iteration step
[Fig. 9(b)], and we compare them with results of the restricted
self-consistent Hartree-Fock calculation [Fig. 9(c)]. Unlike
the noninteracting states in Fig. 9(a), the Hartree-Fock wave
functions in Fig. 9(c) are repelled back to the center. Moreover,
when compared with the wave functions in Figs. 9(a) and
9(b), the wave functions in Fig. 9(c) show a tendency to
be compressed to the same symmetric form. This tendency
suggests that the fully self-consistent Hartree-Fock procedure
would make the wave functions in Fig. 9(c) even more
symmetric and even closer to each other. Another support
for this suggestion is provided by the single-channel-ring
study in Fig. 7, where the (fully self-consistent) Hartree-
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FIG. 9. Electron wave functions ξn=1,m(r) with m =
0,±1, . . .±17 in the ring with four occupied channels, considered in
Fig. 8. Results from Fig. 8 are shown again in panels (a) and (b), where
panel (a) shows the exact noninteracting wave functions and panel (b)
shows the Hartree-Fock wave functions due to the first iteration step.
Panel (c) shows the results of the restricted self-consistent
Hartree-Fock calculation (see the main text). Panel (d) shows the
stripe-geometry solution χn=1(r) = √

2/W sin[ π

W
(r − R1)].

Fock states ξn=1,m(r) are indeed almost the same and almost
perfectly symmetric. So we believe that the stripe-geometry
limit χn=1(r) = √

2/W sin[ π
W

(r − R1)], proposed above for
the single-channel rings, also approximates well the true
single-electron states ξn=1,m(r) in multichannel rings.

Note that χn=1(r) approximates quite well already the (not
fully self-consistent) results in Fig. 9(c). First, it captures the
tendency of the Hartree-Fock interaction to compensate the
effect of the ring curvature. Second, one sees in Fig. 9(c)
that the wave function tails near the edge points R1 and R2

are mostly suppressed much more than the tails of χn=1(r).
Therefore, the Hartree-Fock states in Fig. 9(c) have to feel the
edge roughness (if any) less efficiently than in state χn=1(r).
Thus, approximation ξn=1,m(r) � χn=1(r) certainly does not
underestimate the edge roughness scattering in the ring.

Finally, approximation ξn=1,m(r) � χn=1(r) can be ex-
tended to all n as ξn,m(r) � χn(r), because the effect of
the centrifugal force diminishes with increasing n (Fig. 8).
In conclusion, the true single-electron states of the clean
metallic ring, the self-consistent Hartree-Fock states, can be
approximated by the noninteracting states of the clean metallic
stripe,

ψn,m(r,ϕ) � 1√
L

eimϕ

√
2

W
sin

[
n

π

W
(r − R1)

]
, (27)

of course, with eigenenergies

En,m � h̄2π2

2m∗W 2
n2 + h̄2

2m∗R2
m2. (28)

To add magnetic flux �, substitution m → (m + �/�0) has
to be used on the right-hand side of Eqs. (27) and (28).
Approximation ξn,m(r) � χn(r) captures the fact that the effect
of � on the numerically obtained ξn,m(r) is hardly visible.

We have seen in Sec. II that in the stripe with rough edges
the channel n = 1 is ballistic for L � l. Since ξn=1,m(r) �
χn=1(r), channel n = 1 has to be ballistic also in the ring with
rough edges, and such a ring should therefore support ballistic
persistent current Ityp � evF /L even if L � l. This ballistic
current is studied in the next section. In contrast to our result,
the noninteracting model predicts29,30 for channel n = 1 the
diffusive mean free path l ∼ W , whenever the ring with rough
edges is of size L � W . This prediction is an artifact of the
noninteracting model.

IV. PERSISTENT CURRENTS IN RINGS WITH GRAIN
BOUNDARIES AND ROUGH EDGES

Assume that the wires in Figs. 1(a) and 1(b) are circularly
shaped in the plane of the 2D gas and the wire ends are
connected. So we have a 2D ring with grain boundaries and a
2D ring with rough edges. What are the persistent currents in
such rings? In this section we answer the question by means
of simple intuitive arguments (Sec. IV A) and by means of
the first-principle simulation (Sec. IV B). Simulation results
for typical persistent currents are presented in Sec. IV C, and
Sec. IV D presents the sample-specific currents. In Sec. IV E
we simulate typical persistent currents in rings with combined
disorder due to the rough edges and grain boundaries,
compare them with experiment,5 and explain the anomalous
experimental data.

A. Intuitive arguments

For rings with random grain boundaries one can safely
expect the standard diffusive result Ityp � (evF /L)(l/L),
because the corresponding metallic stripe shows the standard
diffusive resistance (left panels of Fig. 2). This expectation
agrees with our microscopic results shown later. We note that
our grain-boundary model [Fig. 1(a)] is universal in the sense
that any other grain-boundary model with random boundaries
would give again the diffusive conductance and diffusive
persistent current. Indeed, diffusive transport is caused by the
random orientation and random positions of grain boundaries,
not by microscopic details of the individual boundary.

For the rings with rough edges the situation differs
markedly. We have seen in Sec. III that the electron states
in clean rings and clean stripes are similar, in particular
ξn=1,m(r) � χn=1(r). In addition, in Sec. II we have seen that
channel n = 1 in the stripe with rough edges possesses at
L � l the transmission 〈T1〉 � 1 [the right panel of Fig. 2(b)].
Since ξn=1,m(r) � χn=1(r), channel n = 1 has to be ballistic
also in the ring with rough edges and the persistent current
in such ring can be estimated as follows. Assume roughly
that 〈Tn〉 = 1 for n = 1 and 〈Tn〉 ∼ l/L for all other n. In
this model, channel n = 1 contributes by ballistic current
Ityp = evF /L while the total contribution from other channels
is diffusive, Ityp � (evF /L)(l/L), and negligible for L � l.
Thus, multichannel rings with rough edges should support at
L � l the typical currents Ityp � evF /L, expected to exist only
in ballistic single-channel rings.
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In terms of classical paths, the rough edges scatter all
electrons except for a small part of those that move (almost) in
parallel with the edges. This small part, mainly the electrons
that occupy channel n = 1, hits the edges rarely and thus moves
almost ballistically. We recall (see Sec. III) that the motion
parallel with the edges exists in the ring geometry due to the
Hartree-Fock interaction. It eliminates the effect of the ring
geometry and establishes the relation ξn=1,m(r) � χn=1(r).

B. Microscopic model

We start with the clean ring. According to Sec. III, the
true single-electron states of the clean ring (the Hartree-Fock
states) can be approximated by the noninteracting electron
states of the clean stripe as shown in Eqs. (27) and (28). One
can define variables x and y by transformation Rϕ → x and
(r − R1) → y and rewrite equations (27) and (28) as

ψn,m(x,y) = 1√
L

eikmx

√
2

W
sin

[
n

π

W
y

]
(29)

and

En,m = h̄2π2

2m∗W 2
n2 + h̄2

2m∗L2
k2
m, (30)

where km = 2π
L

(m + �/�0). If we take the Hamiltonian of
the clean stripe [Hamiltonian (2) without disorder] and write
Schrodinger equation Hψ(x,y) = Eψ(x,y), the wave func-
tions (29) and eigenenergies (30) are evidently its solutions.
It is customary to view this approach as a quasi-1D approxi-
mation in which the non-interacting-electron states of the 2D
ring are naively mapped on the noninteracting electron states of
the straight stripe via transformation Rϕ → x, (r − R1) → y.
In fact, this mapping is not a quasi-1D approximation for
the noninteracting 2D states. The states mapped on the
noninteracting states of the stripe are the Hartree-Fock states
of the ring, and this mapping is due to the fact that the
Hartree-Fock interaction acts against the centrifugal force and
eliminates the effect of the ring geometry. If one uses this
mapping, one in fact captures the key effect of the Hartree-Fock
interaction without any Hartree-Fock calculation.

In case of disordered rings, the Hartree-Fock interaction
is expected to play a key role in the rings with rough edges
(see the discussion in Sec. III). In this case the Hartree-Fock
analysis would be even more tedious than for the clean rings.
Fortunately, the mapping approach is a reasonable and viable
alternative which can easy be extended to disordered rings.

We bend the disordered 2D stripe in Fig. 1 to form a
2D ring similar to the one in Fig. 5 but disordered. We
describe the electron states in the ring by Hamiltonian of the
constituting stripe by Hamiltonian (2). The ring is mapped on
the stripe by assuming that the x coordinate in Hamiltonian
(2) is the electron position along the ring circumference and
y is the position along the ring radius. We can thus apply
directly the scattering matrix calculation for the disordered
stripe (Sec. II). Of course, now this calculation has to be
supplemented by cyclic boundary conditions,12

ψ(0,y) = exp(−i2π�/�0)ψ(L,y),
(31)

∂ψ

∂x
(0,y) = exp(−i2π�/�0)

∂ψ

∂x
(L,y),

where the exponential factor is the Peierls phase. We set into
Eqs. (31) the expansion (8) and rewrite them as(

A−(0)
B+(L)

)
=

[
0 Q−1(φ)

Q(φ) 0

] (
A+(0)
B−(L)

)
, (32)

where Q is the N × N matrix with terms Qαβ = ei2π�/�0δαβ .
The scattering matrix equation (9) has to be fulfilled together
with cyclic conditions (32). This happens for discrete energies
E = Ej (�) which we find for a given ring numerically.17

Again, it is tempting to consider the above mapping
approach as a quasi-1D approximation12 and to think about
a truly-2D calculation for noninteracting electrons [with
disorder introduced in the 2D-ring Hamiltonian (14)]. We
recall that the truly-2D calculation without the Hartree-Fock
interaction fails to describe the true single-electron states in
clean rings and rings with rough edges. The mapping approach
captures the key effect of the Hartree-Fock interaction.

Once we know the ring spectrum Ej (�), we calculate the
sample-specific current I = −∑

∀Ej �EF
dEj/d� and eventu-

ally the typical current Ityp ≡ 〈I 2〉1/2, where 〈I 2〉 is averaged
over a small energy window at EF . Technical details of
averaging are explained in Ref. 17 and also in Sec. IV D.

C. Results for typical currents: A comparison for random grain
boundaries and rough edges

Figure 10 shows our main results. For the rings with grain
boundaries one can see that our data for Ityp agree (at large
L) with the diffusive result I theor

typ = 1.6(evF /L)(l/L). This
agrees with experiments,7,8 illustrates the universality (the
white-noise-like properties) of our random-grain-boundary
model, and confirms the intuitive expectations of Sec. IV A.

For the rings with rough edges, however, our data for Ityp

are systematically (not regarding the data fluctuations) close
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FIG. 10. Typical persistent current Ityp versus L/l in disordered
Au ring. The ring parameters are shown, � = −0.25h/e, l has been
obtained from the wire resistivity (Fig. 2). The arrows point the
parameters studied further in Fig. 12. Symbols are our data, and full
lines show the formula I theor

typ = 1.6(evF /L)(l/L).
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FIG. 11. Typical persistent current Ityp in the ring with rough
edges as a function of the total number of channels (N ) considered
in the simulation. The same parameters and symbols are used as in
Fig. 10(b), and the considered ring lengths are shown as L/l.

to the ballistic one-channel value I0 = evF /L, albeit L � l,
Nc � 1, and 〈ρ〉 ∝ L. All this agrees with experiment5,13

and this agreement is discussed in detail in Sec. IV E. In
the preceding text we have arrived at the result Ityp ∼ evF /L

intuitively by assuming that the electrons in channel n = 1
almost entirely avoid the scattering with rough edges and thus
carry the ballistic current ∼evF /L. Now we make this intuitive
argument more precise.

In Fig. 11 we show how the typical current in the ring
with rough edges depends on the number of channels (N )
considered in the simulation. It is (roughly) N independent
for N � 10, no matter how large Nc is. In other words, the
currents ∼I0 in rings with rough edges exist due to the open
channels n = 1,2, . . . ,N eff

c , where N eff
c ∼ 10 for any value

of Nc (see also Fig. 3). Since 〈T1〉 ∼ 1, our intuitive argument
invokes that the value Ityp ∼ I0 will survive also if one chooses
N as small as N = 1. Figure 11 shows that this is not the
case. For instance, in the ring with Nc = 347 and L/l = 120
the current for N → 1 is quite close to zero. This is easy
to understand: Once the channel n = 1 cannot communicate
with other channels, the transmission 〈T1〉 ∼ 1 tends to be
suppressed to zero by Anderson localization, present in any
sufficiently long 1D disordered system. Communication with
a few other channels is needed to restore 〈T1〉 ∼ 1 and to obtain
Ityp ∼ I0.

D. Sample-specific currents

To provide further insight, Fig. 12 shows the sample-
specific currents in two selected rings from Fig. 10 (bold
arrows) and in a clean ring. Figure 12(a) shows the dependence
Ij versus Ej , and Fig. 12(b) shows the total current I =∑

∀Ej �EF
Ij versus EF . Evidently, the ring with rough edges

exhibits remarkably larger currents than the ring with grain
boundaries, albeit both rings are of the same size and posses
the same value of l.

Figures 12(c) and 12(d) focus on a small energy window
below the Au Fermi level. One can see that Ij in the ring with
rough edges exhibits sharp peaks with the sign alternating
and oscillating with period �E = 2πh̄vF /L. This period is
twice the interlevel distance in the ballistic single-channel ring,
which suggests that the peaks are due to the quasiballistic
channel n = 1. [We recall that 〈T1〉 ∼ 1 also for L/l � 1,
as is shown in the right panel of Fig. 2(b).] However, the

FIG. 12. Persistent currents in a ring with grain boundaries, a ring
with rough edges, and a clean ring for the parameters marked by the
arrows in Fig. 10, for L = 375 nm, and for � = −0.25h/e. For both
disordered rings, the considered parameters ensure l(EF ) = 21 nm
at the Au Fermi level (EF = 5.6 eV). Figure (a) shows the single-
electron current Ij versus the eigen-energy Ej . Figure (b) shows the
total current I = ∑

∀Ej �EF
Ij obtained by summing the currents in

the figure (a) for EF varied from 0 to 5.6 eV. Figures (c) and (d)
show the same data as the figures (a) and (b), but for a small energy
window below the Au Fermi level. The data are scaled by I0 = evF /L,
the data points are connected by full lines which serve as a guide
for the eye, the bars depict the energy increment �E = 2πh̄vF /L.
Figure (e) shows the typical current Ityp ≡ 〈I 2〉1/2. Averaging over the
energy window in figure (d) gives the values shown by dashed lines:
Ityp/I0 � 1.6(l/L) for the ring with grain boundaries, Ityp/I0 � 0.5
for the ring with rough edges, and Ityp/I0 � √

Nc for the clean ring.32

The circles show the data obtained by varying the number of channels,
N , from N = 1 to N > Nc (here Nc = 34).

height of the peaks is affected also by other channels, because,
as discussed above, channel 1 cannot keep 〈T1〉 ∼ 1 without
communicating with a few other channels.

In Fig. 12(d) one can see that in the ring with rough edges
also the total current I (EF ) oscillates with period �E. The
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amplitudes of the total current are close to I0, and therefore
the typical currents of size ∼I0 appear in Fig. 10(b).

In fact, the data for the clean ring show I (EF ) oscillating
with period �E. However, the amplitude of I is ∼√

Nc2I0
32

and the amplitude of In is 2I0, where the factor of 2 is due to
the spin. Evidently, the rough edges reduce I from ∼√

Nc2I0

to ∼I0, but they do not change the oscillation period set by
the clean ring. Note that also the ring with grain boundaries
exhibits the oscillating persistent current. These oscillations
are chaotic and correlated with correlation length ∼ (l/L)�E,
predicted12,13 for the white-noise-like disorder.

Figure 12(e) shows the typical current. The dashed lines
show the values of Ityp obtained from the data in Fig. 12(d),
and the circles show Ityp in dependence on N . For all three
rings one sees that the circles approach with raising N the
N -independent value (the large N limit) represented by the
dashed line. It can be seen that a reliable estimate of Ityp in
the ring with grain boundaries requires N � Nc, while for the
ring with rough edges one only needs N ∼ 10 no matter how
large Nc is. This is due to the effective number N eff

c ∼ 10, as
has already been explained in the beginning of this section.

E. Combined effect of rough edges and random grains:
Comparison with experiment

In experiment5 the persistent current ∼I0 was observed in
the Au ring with L � 100l and W = 90 nm. Indeed, Fig. 10(b)
demonstrates Ityp ∼ I0 also for L/l � 100 and W = 90 nm.
The difference is that the work5 has reported l � W (l = 70 nm
for W = 90 nm) while our values of l in Fig. 10(b) [see also
Fig. 3(a)] are at least 2 times larger than W ; the edge roughness
alone cannot produce l � W . In reality, the edge roughness
coexists with other types of disorder. Reference 5 did not
specify disorder in measured samples, but Webb mentioned33

that the grains in the rings of work5 were much larger than
W (say, in Ref. 34, dG � 8W ). The grains with dG � W

are known as bamboolike grains.35–37 Of course, dG � W

and l � W 5 means l 	 dG, which suggests that the grain
boundaries were not the main source of scattering in work.5

If the random grain boundaries (or impurities) were the main
source of scattering, the measured persistent current5 would
be ∼(l/L)I0 rather than ∼I0 (cf. Fig. 10 and Ref. 17). What
remains is the edge roughness and it indeed explains the
mysterious coexistence of the results Ityp � I0, L/l � 1, and
〈ρ〉 ∝ L. What happens if one adds the bamboo-like grains?

Since dG � W , we fit RG to obtain l � W . Figure 13
shows such a study for the same W and similar L as in
Ref. 5. In Fig. 13(a) we see again the diffusive law 〈ρ〉 ∝ L/l

but now l � W , like in Ref. 5. Figure 13(b) shows that the
transmission through channels 1, 2, and a few more is still
large (between 1 and 0.1), though not as large as in the
wire with rough edges only [cf. the right panel of Fig. 2(b)].
A suppression of the transmission, caused by a combined
effect of the rough edges and bamboolike grains, is visible
for all 347 channels. Consequently, l � W . Similarly, the
typical currents in Figs. 13(c) and 13(d) are suppressed in
comparison with the pure edge-roughness case [Fig. 10(b)], but
they still grossly exceed the value I theor

typ = 1.6(evF /L)(l/L).
Figure 13(c) presents the maximum currents, because Ref. 5
in fact reported the current amplitudes rather than Ityp. These
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FIG. 13. Transport in Au wires and Au rings with rough edges
and bamboolike grains. The angle α of the grain boundary is chosen at
random from the interval (−α0,α0), where α0 is the parameter: α0 =
0 means the ideal bamboo shape with the boundary perpendicular
to the wire.35–37 The table shows all parameters and the resulting l

and ξ . (a) The mean resistance 〈ρ〉 versus L/l; (b) the transmission
〈Tn〉 versus L/l for α0 = 0. Open symbols in (c) show the typical
current Ityp/I0 versus L for various α0, and the full symbols show
the maximum currents. (d) The Ityp data from (c) normalized by
I theor

typ = 1.6(evF /L)(l/L) and plotted in dependence on L/l.

amplitudes were between ∼0.1I0 and ∼I0 and are essentially
the same as our data (the full symbols).

V. SUMMARY AND CONCLUDING REMARKS

A. Summary

In our paper, persistent currents in mesoscopic normal-
metal rings with disorder due to the rough edges and random
grain boundaries have been calculated by means of the single-
particle scattering-matrix method. In addition, the diffusive
resistance of corresponding metallic wires has been obtained
from the Landauer formula and the diffusive electron mean free
path has been determined. Our calculations capture two crucial
points. First, disorder is described microscopically; we do not
rely on the approximation of the spatially homogeneous white
noise. Second, our description of the single-electron states in
the ring captures the key effect of the Hartree-Fock interaction,
the cancellation of the centrifugal force by an opposite oriented
Hartree-Fock field.
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Our main results (Fig. 10) are the following. If disorder is
due to the random grain boundaries, our results for the typical
persistent current agree with the white-noise-related formula
Ityp � (evF /L)(l/L) and recent experiments.7,8 However, if
the disorder is due to the rough edges, we find the ballistic-like
current Ityp � evF /L albeit the resistance is diffusive (∝L/l)
and L � l. In other words, the multichannel disordered metal
ring of length L � l supports the current Ityp � evF /L,
expected to exist only in a single-channel disorder-free ring.
This finding agrees with experiment.5

Thus, Fig. 10 naturally explains the difference between
the experiment5 and experiments.7,8 It simply suggests that
disorder in samples of works7,8 was white-noise-like (most
likely mainly due to the random grain boundaries), while
disorder in samples of work5 was likely mainly due to the
rough edges. Ideally, the ballistic persistent current is inherent
to metallic rings with rough edges. However, according to our
data in Fig. 13, it survives (slightly suppressed) also when
the bamboo-like polycrystalline grains are added in order to
emulate the polycrystallinity of the real rings.5

The microscopic origin of the ballistic persistent current
in metallic rings with rough edges has been explained. The
ballistic current is mainly due to the electrons that occupy
channel n = 1. Classically speaking, these electrons move
(almost) in parallel with the ring edges and therefore avoid
the edge roughness scattering. The reason why they move in
parallel with the ring edges in spite of the ring geometry is
the Hartree-Fock interaction; it acts against the centrifugal
force and eliminates the effect of the ring geometry. In
terms of classical paths, the electron paths in presence of the
Hartree-Fock field are not the straight lines; the field deflects
them from the outer ring edge and the resulting electron wave
function is centered between the edges almost symmetrically.

Finally, we recall that all our results are universal. The
transport results obtained for the grain boundary model in
Fig. 1(a) hold for any other grain boundary model in which
the orientation and positions of the boundaries are random.
The transport results obtained for the step-shaped-roughness
model in Fig. 1(b) hold also for models with a smoothly varying
roughness (Sec. II C). The universality exists also within our
specific roughness model; all our results are robust against the
change of parameters δ, �x, Nc, l, and L, if they are plotted
in dependence on L/ξ . Therefore, a missing information on
the nature of disorder in measured samples5,7,8 is not crucial
for our conclusions. In any case, our values of δ and �x are
close to the real ones.38 In principle, we could attempt to
reproduce the measured values of Ityp and l exactly by fitting
the parameters of disorder. This should make sense if new
experiments determine Ityp and l together with the parameters
of disorder in measured samples.

B. Remark on robustness of the 2D results against 3D effects

Our results were obtained for the 2D model of Fig. 1, while
the experimental samples5,7,8 are three-dimensional. We want
to point out that the extension of our 2D study to 3D would
not change our results remarkably. The effect of 3D can be
estimated without an explicit calculation.

In our 2D wire [Fig. 1(b)] the roughness scattering is due
to the wire edges. In real 3D wires the roughness scattering

is in general due to the wire edges (side walls) as well as
due to the top and bottom surfaces. In spite of this difference
the 3D sample preserves the key feature of our 2D model.
Namely, the electrons in the ground 1D channel (now the
channel with quantum numbers ny = 1 and nz = 1, where z

is the vertical direction) still move almost in parallel with
the sample edges and sample surfaces and therefore avoid
the roughness scattering. Thus, the transmission through the
ground 1D channel has to be ballistic, similarly as we have seen
for the 2D wire (Fig. 2). Consequently, the 3D rings have to
carry for L/l � 1 the ballistic current Ityp � evF /L, similarly
as the 2D rings in Fig. 10(b).

Further, the roughness scattering in 3D does not modify the
mean free path l remarkably in comparison with 2D. Indeed,
in real 3D wires the roughness amplitude (rms) of the top and
bottom surfaces is usually of the order of one lattice constant
(∼ 0.5 nm; see e.g. the paper39), which is far less than the
roughness amplitude at the edges (rms ∼5 nm–10 nm; see
the experiment38 and our present paper). Since the roughness-
limited mean free path is proportional to the square of the
rms,14 the effect of the top and bottom surfaces on the mean
free path has to be two orders of magnitude weaker than the
effect of the edges. It is thus very likely that the roughness
scattering in the 3D wires of Ref. 5 is mainly due to the wire
edges.

Finally, unlike the 2D wire in Fig. 1, the edges of the 3D
wire are the side walls and the edge roughness at such side
walls in general scatters the electrons also in the vertical (z)
direction. In comparison with our purely 2D scattering, this
may decrease the roughness-limited mean free path say by a
few tens of percentage points. However, this cannot affect the
ballistic-like motion in the ground 1D channel, responsible for
the ballistic current Ityp � evF /L at L/l � 1.

C. Remark on an angle dependence of roughness scattering

In the non-interacting-electron model of the 2D ring the
wave functions are dominated by the straight-line electron
paths.29,30 To incorporate the edge roughness scattering in that
model, it was assumed30 that any straight-line path which
hits the ring edge is reflected diffusively no matter what
is the incidence angle (the angle between the path and the
edge). However, a realistic probability of diffusive reflection,
derived by Ziman and Soffer40,41 for a free wave impinging
the surface with uncorrelated roughness, strongly depends
on the incidence angle. It is equal to unity for perpendicular
incidence but approaches zero for small incidence angles.
Note that the realistic angle dependence of the edge roughness
scattering is inherent to our scattering matrix method.

Indeed, the tendency to a specular reflection at small
angles is manifested by the channel transmission Tn. Let us
look at the right panel of Fig. 2(b) in detail. Classically,
the channel number n corresponds to the angle between the
classical trajectory and edge, and n = 1 corresponds to the
smallest nonzero classical angle allowed by the quantum
confinement. Consider, say, L � 0.25ξ � 120l. In case of the
diffusive reflection assumed by work,30 for L/l = 120 we
should observe Tn ∼ l/L ∼ 1/120 for all n including n = 1.
However, this is not the case; the right panel of Fig. 2(b) shows
that Tn is between 1 and 0.1 for n = 1,2, . . . ,6. Evidently, the
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electron motion in these channels is much more ballistic than
diffusive. When this realistic angle dependence is combined
with the Hartree-Fock interaction, the metallic rings with rough
edges support for L � l the ballistic current Ityp � evF /L.

D. T = 1 as a general feature of any diffusive wire and Tn=1 � 1
in the wire with rough edges: Two different things

We note that the transmission Tn=1 � 1 in the wire with
rough edges [right panel of Fig. 2(b)] has nothing in common
with the well-known bimodal distribution 1/

√
(1 − T )T 2,

which exists in any diffusive conductor24 and diverges for
T = 1. Transmissions T in the bimodal distribution are the
eigenvalues of the t+t matrix24, and our Tn = ∑NC

m=1 |tn,m|2 are
the diagonal elements of the t+t matrix. In other words, the
channels corresponding to the eigenvalues T in the distribution
1/

√
(1 − T )T 2 are the eigenstates of the t+t matrix and the

channels corresponding to our diagonal elements Tn are the
plane-wave states. This difference deserves a few remarks.

The bimodal distribution 1/
√

(1 − T )T 2 as a general
property of any diffusive conductor with white-noise-like
disorder24 coexists with the diffusive persistent current Ityp �
(evF /L)(l/L) in the corresponding disordered ring.12 This
means that the eigenvalues T = 1 in the bimodal distribution
do not cause any ballistic persistent current. The reason why
the current is diffusive in spite of T = 1 is most likely
that the eigenvalue T = 1 does not necessarily mean the

ballistic transmission (a well-known example is the perfect
transmission in case of resonant tunneling).

For disorder due to rough edges the situation differs
fundamentally. In this case the eigenvalues T still follow
the bimodal distribution 1/

√
(1 − T )T 2; however, this has

nothing in common with the ballistic-like persistent current
we found. The ballistic-like current is due to the appearance
of the diagonal element Tn=1 � 1. Specifically, any wire in
the statistical ensemble of wires with rough edges exhibits the
diagonal element Tn=1 � 1 independently on the choice of the
Fermi energy and wire length. It is easy to check for any of
our simulated wires, whereby the electron plane wave which
enters the wire in channel n = 1 remains (almost) unscattered
between any two successive scatterers inside the disordered
region. As a result, the ring made of such a wire supports
the persistent current dominated by the ballistic channel
n = 1, that is, Ityp � evF /L. In summary, the reason for the
appearance of Ityp � evF /L is the ballistic behavior of the
diagonal element Tn=1; the fact that the bimodal distribution
shows eigenvalues T = 1 is irrelevant.

ACKNOWLEDGMENTS

We thank the Texas Advanced Computing Center (TACC) at
the University of Texas at Austin for providing grid resources.
Support from Grant No. VEGA 2/0206/11 is acknowledged.

*martin.mosko@savba.sk
1Y. Imry, Introduction to Mesoscopic Physics (Oxford University
Press, Oxford, 2002).

2B. S. Deaver, Jr. and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).
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31E. Šimánek, Phys. Lett. A 250, 425 (1998), estimated in a linear

approximation the Hartree field in the one-channel ring.
32H. F. Cheung, Y. Gefen, and E. K. Riedel, IBM J. Res. Dev. 32, 359

(1988).
33G. Kirczenow, J. Phys.: Condens. Matter 7, 2021 (1995).

125424-13

http://dx.doi.org/10.1103/PhysRevLett.7.43
http://dx.doi.org/10.1016/0375-9601(83)90011-7
http://dx.doi.org/10.1103/PhysRevLett.64.2074
http://dx.doi.org/10.1103/PhysRevLett.64.2074
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.86.1594
http://dx.doi.org/10.1103/PhysRevLett.102.136802
http://dx.doi.org/10.1126/science.1178139
http://dx.doi.org/10.1126/science.1178139
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1002/pssb.201248066
http://dx.doi.org/10.1002/pssb.201248066
http://dx.doi.org/10.1103/PhysRevB.37.6050
http://dx.doi.org/10.1103/PhysRevB.37.6050
http://dx.doi.org/10.1103/PhysRevLett.62.587
http://dx.doi.org/10.1103/PhysRevLett.62.587
http://dx.doi.org/10.1103/PhysRevB.47.15449
http://dx.doi.org/10.1103/PhysRevB.83.245328
http://dx.doi.org/10.1103/PhysRevB.84.085454
http://dx.doi.org/10.1103/PhysRevLett.101.057001
http://dx.doi.org/10.1103/PhysRevLett.101.057001
http://dx.doi.org/10.1103/PhysRevB.44.1792
http://dx.doi.org/10.1103/PhysRevB.37.10125
http://dx.doi.org/10.1103/PhysRevB.37.10125
http://dx.doi.org/10.1143/JPSJ.73.2182
http://dx.doi.org/10.1063/1.1473868
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1080/17455030500053211
http://dx.doi.org/10.1080/17455030500053211
http://dx.doi.org/10.1103/PhysRevB.67.165316
http://dx.doi.org/10.1103/PhysRevB.67.165316
http://dx.doi.org/10.1103/PhysRevB.59.5915
http://dx.doi.org/10.1016/0039-6028(96)00503-1
http://dx.doi.org/10.1016/0039-6028(96)00503-1
http://dx.doi.org/10.1103/PhysRevB.60.1511
http://dx.doi.org/10.1016/S0375-9601(98)00759-2
http://dx.doi.org/10.1016/S0375-9601(98)00759-2
http://dx.doi.org/10.1147/rd.323.0359
http://dx.doi.org/10.1147/rd.323.0359
http://dx.doi.org/10.1088/0953-8984/7/10/010
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