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Quantum manipulation of valleys in bilayer graphene
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The valley pseudospin is an inherent electron degree of freedom in graphene. This work establishes a theory
for manipulation of valley pseudospins at the quantum level, in bilayer graphene. Two key mechanisms of
valley manipulation are proposed and valley-based quantum devices—qubits and field-effect transistors—are
implemented based on the mechanisms. This work provides a crucial step in paving the way for the experimental
realization (expansion) of valley-based quantum (classical) information processing.

DOI: 10.1103/PhysRevB.88.125422 PACS number(s): 73.22.Pr, 03.67.−a, 72.80.Vp, 85.35.−p

I. INTRODUCTION

Graphene is an atomically thin system of carbon atoms
with rich physics. Soon after its discovery,1 it was realized
that electrons in graphene behave as two-dimensional (2D)
Dirac fermions, leading to an unusual quantum Hall effect,
Klein tunneling, and confinement, as well as an immense
potential for various applications,1–6 including important ones
associated with the valley pseudospin graphene brings to the
field of electronics.7 As a novel type of information carrier,
this valley degree of freedom has opened up a new realm
of electronics—valleytronics—in addition to the charge- or
spin-based ones and has added great flexibility to advanced
electronic device design, especially in the area of information
processing.7–15

The valley pseudospin is an inherent property of graphene
or, more universally, of a 2D honeycomb crystal. It arises
because low-lying carrier states in graphene belong to the
two degenerate and independent energy valleys located at
inequivalent vertices (K and K ′) of the hexagonal Brillouin
zone, which go into each other under time-reversal-symmetry
transformation.6 This pseudospin is similar to the true physical
spin of a spin- 1

2 particle and in principle should be manip-
ulable at the quantum level (i.e., on an individual carrier
basis), leading, for example, to valley-based quantum com-
puting/communications, as well as the expansion of classical
information processing. Although this conjecture has been
around for some time, its implementation in an experimentally
accessible system has yet to be realized.

Generally, for quantum manipulation of electrons, it is
often desirable to localize electrons and then apply external
fields on them for the manipulation. From this point of
view, the gapped system of monolayer graphene grown on
hexagonal boron nitride (h-BN) (Ref. 16) has been considered
as an example material in the previous works of valley
manipulation,13,14 due to the possibility of opening a gap in
the system and providing a gap-caused quantum confinement
of carriers with electrical gates as is typically done in the
field of semiconductor nanodevices. These works have indeed
demonstrated the theoretical feasibility of quantum valley
manipulation in gapped graphene. In contrast, the actual
growth of gapped graphene/h-BN has yet to overcome the
issue in association with the small nevertheless nonvanishing
lattice mismatch (∼1.8%) between graphene and h-BN. Due
to this mismatch, a superstructure called the moiré pattern

appears in practical BN-grown graphene,17 which displays
alternating signs of an energy gap and a percolating zero energy
mode, hence rendering graphene/h-BN a gapless structure. In
order to open a finite gap in this system, certain nontrivial
measures, e.g., a biaxial strain, would have to be taken in
order to match the lattices and avoid the formation of a moiré
pattern.

Our work here addresses the issue of realizing quantum
valley manipulation in an alternative graphene system, with
the outline given below.

(a) An experimentally accessible material, bilayer
graphene (BLG),4 is utilized as the system.

(b) A theoretical framework, the effective Schrödinger
model, is developed and two key mechanisms for individual
valley manipulation are established.

(c) For applications, valley quantum devices, i.e., qubits
and field-effect transistors (FETs) in BLG, are demonstrated.

Bilayer graphene becomes gapped under a dc bias, which
produces a chemical potential difference between the two
layers4–6 and therefore can be utilized just like semiconductors
to make a confined structure, as experimentally demonstrated
recently with electrical gate technology.18,19 This makes it
well suited to the purpose of localizing electrons for quantum
control such as the application envisioned here.20 More im-
portantly, BLG as a hexagonal crystal shares with monolayer
graphene a crucial property required for valleytronics, e.g.,
the presence of a valley degree of freedom. However, major
differences exist between the two systems in the aspect of
valley-dependent physics. In the monolayer case, the physics
is underlain by the intralayer C-C hopping whereas that in BLG
is dominated by both the intra- and interlayer couplings. This
enriches, in the case of bilayer graphene, the valley-dependent
physics by providing two valuable parallel mechanisms for
valley manipulation—band structure warping and generalized
valley-orbit interaction (GVOI)—as derived and respectively
demonstrated with qubits and FETs below.

The presentation is organized as follows. In Sec. II we
describe the effective Schrödinger theory. In Sec. III we
present the structure of a valley-based qubit and discuss how to
electrically manipulate it. In Sec. IV we present the structure of
a valley FET and its principle of operation. In Sec. V we briefly
discuss the issue of valley coherence. In Sec. VI we summarize
this work. In the Appendix we provide a brief derivation of the
Schrödinger model.
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II. EFFECTIVE SCHRÖDINGER THEORY

The theory is based on the one-band Schrödinger model
of AB-stacked BLG explained below. We denote the four C
atoms in a unit cell as A1, B1 (in the first layer) and A2, B2

(in the second layer), with B2 sitting right on the top of A1.
A tight-binding model of AB-stacked BLG is characterized
by the parameters �, t , γ1, and γ3, where 2� is the dc bias
between the layers and t , γ1, and γ3 are, respectively, the
hopping between A1 and B1 (or A2 and B2), A1 and B2, and B1

and A2. The band structure4–6 is summarized below and shown
in Fig. 1. It consists of four bands and displays electron-hole
symmetry. An energy gap 2� is opened in the middle. Away
from the gap, two distant bands are located at ±(�2 + γ 2

1 )1/2.
In the limit where � � γ1, as assumed throughout this

work, the full tight-binding model can be reduced, by the
Schrieffer-Wolff-type transformation, to a two-band model4

(h̄ = 1) ∑
j=1,2

Hij (kx,ky)ϕj = Eϕi, i = 1,2,

which describes only the conduction and valence bands right
around the gap. Here the Hij denote Hamiltonian matrix
elements and (kx , ky) is the electron wave vector relative to the
K/K ′ point. See the Appendix for the explicit expressions of
Hij .

The preceding equation in the two-band model describes a
gapped symmetric band dispersion. This is closely analogous
to a massive Dirac equation in two dimensions with 2� being
the mass gap. By this analogy, it can further be reduced, in
the nonrelativistic limit where the electron energy |E| ∼ �,
to a Schrödinger-type equation. For E ∼ � (i.e., low-lying
electrons), this reduction gives

(E − �)ϕ ≈ [H0(τ ) + H1(τ )]ϕ,

H0(τ ) = −2�

γ 2
1

v2
f k2 + 1

2�

(
1

γ 2
1

v4
F k4 + v′2k2

)

+H
(warping)
0 (τ ) + V,

FIG. 1. (Color online) Schematic band structure of bilayer
graphene under a dc bias, showing the sombrero structure in the
bands and the relative positions of the four bands.

H1(τ ) = H
(warping)
1 (τ ) + H

(GVOI)
1 (τ ) + H ′

1,

H
(warping)
0 (τ ) = τ

v′v2
F

�γ1

(
3k2

xky − k3
y

)
,

H(warping)
1 (τ ) = τ

v′v2
F

�γ1

[
2v2

F

γ 2
1

k2 − 1

2�2

(
1

γ 2
1

v4
F k4 + v′2k2

)]

× (
3k2

xky − k3
y

)
,

H
(GVOI)
1 = 1

4�2
�τ {H21[V,H12]−},

H12 ≡ 1

γ1
v2

F k2
+ + iv′k−. (1)

Here we have included the presence of a weak slowly varying
external electric potential V and made the effective mass
approximation with (kx , ky) → (−i∂x , −i∂y). The above
derivation has taken the various relativistic effect ratios, e.g.,
|V/�| and |(E − �)/�|, to be much less than unity and
retained only the leading- and next-to-leading-order terms in
the equation. The armchair direction is taken to be aligned
along the x axis, with vF = 3ta/2 (where vF is the Fermi
velocity and a is the intralayer C-C distance), v′ = 3γ3a/2,
and k± ≡ kx ± iτky (where τ is the valley index and + and −
denote K and K ′, respectively). We set t = 2.8 eV, γ1 = 0.4 eV,
and γ3 = 0.3 eV. Here �τ denotes an operation acting upon
the expression following it, by retaining only the τ -dependent
terms in the expression.

Equation (1) gives the Schrödinger Hamiltonian H0 and the
first-order relativistic effect H1. Further, H ′

1 (not explicitly
given above) is the first-order relativistic effect, which is
τ independent and irrelevant to the present work. Above
H

(warping)
0 and H

(warping)
1 produce band warping.4 In addition,

H
(GVOI)
1 is the GVOI, which reduces, for vF = 0, to τ v′2

4�2 ∇V ×
k, the simple form of VOI (Refs. 13,14, and 21) in monolayer
graphene, which is analogous to the spin-orbit interaction.
Note that H

(warping)
0 and H

(GVOI)
1 are both τ dependent and

as such constitute key mechanisms for valley manipulation.
Being valley conserving, they are well suited to valley
coherence-sensitive applications.

III. TWO-VALLEY QUBITS

Figure 2 shows a valley-based two-electron qubit, which
consists of a pair of laterally coupled quantum dots (QDs)
of comparable sizes lying along the x axis in AB-stacked
BLG, in the (1, 1) charge configuration. Here V�, VL, VR , and
VC are electrical gates, which may be arranged in a mirror-
symmetric fashion as suggested here (only those above the
graphene layers are explicitly shown). dc biases applied to
these gates open energy gaps in the bilayer system and define
the QDs.

The logical 0/1 states are represented by the two-valley
singlet/triplet S/T0 states

|S〉 = 1√
2

(|KLK ′
R〉 − |K ′

L KR〉),

|T0〉 = 1√
2

(|KLK ′
R〉 + |K ′

L KR〉),

|KLK ′
R〉 ≡ c+

KLc+
K ′R|V〉, |K ′

LKR〉 ≡ c+
K ′Lc+

KR|V〉.
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FIG. 2. (Color online) Valley pair qubit consisting of laterally
coupled QDs of comparable sizes lying along the x axis in AB-
stacked BLG. Here V�, VL, VR , and VC are electrical gates, which
may be arranged in a mirror-symmetric fashion as suggested here
(only those above the graphene layers are explicitly shown). dc biases
applied to these gates open energy gaps in the bilayer system and
define the QDs. ac biases applied to VL/VR generate Rx . The VC

controls the interdot tunneling t (or the exchange coupling J ) and
hence Rz.

Here c+ is the electron creation operator, V denotes vacuum,
and KL (K ′

L) and KR (K ′
R) denote the ground states of the

K (K ′) valleys in the left and right QDs, respectively. The
electron spins here are taken to be frozen in a triplet state
by initialization, as explained below. The initialization starts
with the one-QD two-electron state, e.g., |S1QD〉 ⊗ |Tspin〉
(where |S1QD〉 denotes the one-QD valley singlet and Tspin

the spin triplet) where |S1QD〉 ≡ |KRK ′
R〉 for example.22 Then

one can adjust the bias of the two QDs such that one of
the electrons tunnels into the other QD, transforming the
state into the two-QD |S〉 ⊗ |Tspin〉. Furthermore, because
the spin-orbit interaction in graphene is extremely weak,6

the spins in the qubit remain coherent for a long time and can
be taken to be approximately frozen in the triplet state during
qubit manipulation. We thus drop the spin degree of freedom
throughout the following discussion. The logical state space of
the qubit is isomorphic to the Hilbert space of a spin- 1

2 system,
with the correspondence

|S〉 ⇔ |↓〉, |T0〉 ⇔ |↑〉,
|KLK ′

R〉 ⇔ |→〉, |K ′
LKR〉 ⇔ |←〉,

where ↑, ↓, →, and ← denote up, down, left, and right spin
states quantized along the z and x axes of the spin system, re-
spectively. The qubit/spin isomorphism provides a convenient
framework to envision the qubit state transformation in terms
of an effective spin rotation.

A. Warping-based two-valley manipulation

An arbitrary qubit (or effective spin) rotation can be
decomposed into two independent rotations, such as those
around the x and z axes. We denote them as Rx(θx) and Rz(θz),
respectively, where θx and θz are the angles of rotation. The
corresponding qubit state transformations are given by

|KLK ′
R〉→ eiθx/2|KLK ′

R〉, |K ′
LKR〉→ e−iθx/2|K ′

LKR〉 (2)

for Rx(θx) and

|T0〉 → eiθz/2|T0〉, |S〉 → e−iθz/2|S〉 (3)

for Rz(θz).

First, we discuss the generation of Rx(θx). As Eq. (2)
suggests, this may be enabled by introducing a valley-
contrasting state evolution in the left QD (or both of the
QDs),

|KL〉 → eiθx/2|KL〉, |K ′
L〉 → e−iθx/2|K ′

L〉. (2′)

The valley-contrasting phase θx in Eq. (2′) generally
vanishes because |KL〉 and |K ′

L〉 usually evolve with the
same phase due to the valley degeneracy. For a finite θx ,
the symmetry between |KL〉 and |K ′

L〉 must be broken. The
condition of breaking is discussed below.

1. Warping-based valley symmetry breaking

Valley symmetry breaking can be achieved by applying
through VL (or VR) to the QD an ac electric field εacsinwst in
the y direction as follows. We ignore the relativistic effect and
write the wave equation for the QD state ψ ,

H0(t ; τ )ψ(x,y,t ; τ ) = i∂tψ(x,y,t ; τ ),
(4)

V = VQD + eεacy sin wst.

Here VQD is the QD confinement potential and the time
dependence of H0 derives from the ac field. The introduction
of an ac field breaks time-reversal symmetry. However, the
presence of H

(warping)
0 in H0 is indispensable for the condition

of breaking. Without the term, H0 would be τ independent and
the states of τ = ±, e.g., |KL〉 and |K ′

L〉, would evolve in a
τ -independent fashion, giving a vanishing θx .

2. Valley-contrasting geometric phase

We apply Eq. (4) to the QD ground state. For εac = 0,
the ground-state solution of Eq. (4) is denoted by ψ0(x, y,
t ; τ ), with w0 the energy relative to the conduction band
edge. Note that ψ0(x, y, t ; + ) = |KL〉, ψ0(x, y, t ; −)
= |K ′

L〉, and w0 is τ independent due to time-reversal
symmetry. For εac �= 0, we consider the simple case where
VQD = 1

2mw2
0(x2 + y2) (m is a mass parameter) and the ac field

is weak and quasistatic with ws � w0. To the leading order in
εac, we write the total potential V ≈ VQD[x, y + y0(t)], which
describes a dynamical QD with −y0(t) ≡ −eεac sin wst/mw2

0
the dynamical equilibrium position. This admits the simple
adiabatic solution23

ψ(x,y,t ; τ ) ≈ ψ0[x,y + y0(t),t ; τ ]

× exp

(
−i

∫ t

GP
γ0(τ )dt ′

)
,

ψ0[x,y + y0(t),t ; τ ] = φ0[x,y + y0(t); τ ] (5)

× exp

(
−i

∫ t

DP
w0dt ′

)
,

γ0(τ ) ≈ ∂ty0(t)〈ϕ0(x,y; τ )|kyϕ0(x,y; τ )〉.
where GP denotes the geometric phase and DP the dynamical
phase.

An intuitive interpretation follows. It is the instantaneous
ground state ψ0 (with the spatial part ϕ0 and the temporal
part equal to the dynamical phase) observed at the moving
QD and transformed back to the laboratory reference frame.
The transformation produces an energy shift 〈∂ty0ky〉 (denoted
γ0), which generates the geometric phase. This phase (or γ0)
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is τ dependent, as will be shown in the following section, and
therefore is identified with θx/2 in Eq. (2′) or (2).

3. Qubit rotation rate

Since γ0 generates the geometric phase, the typical qubit
rotation rate is given by γ0. We derive γ0 with perturbation
theory, treating the warping term in H0 as a perturbation. To
leading order this yields24

γ0(τ ) ≈ [2∂ty0(t)]

×
∑

n

〈0|H (warping)
0 (τ )|2n + 1〉〈2n + 1|ky |0〉

w
(0)
0 − w

(0)
2n+1

,

H
(0)
0 |n〉 = w(0)

n |n〉, (6)

H
(0)
0 ≡ −2�

γ 2
1

v2
f k2 + 1

2�

(
1

γ 2
1

v4
F k4 + v′2k2

)
+ VQD.

Here H
(0)
0 is the QD Hamiltonian H0 with the warping

term removed. The above expression shows an explicit τ

dependence on γ0 that derives from the warping term. For an
order-of-magnitude estimate, we set the QD size L ∼ 300 Å,
� ∼ 5 meV, π/ws ∼ 0.1 ns, h̄w0 ∼ mw2

0L
2 ∼ O (meV), and

eεac/mw2
0 ∼ 0.3 L. This yields γ0 ∼ 1 GHz, leading to the

prospect of operating valley qubits in the GHz range.
The two-valley qubit is analogous to a two-spin qubit25 and

hence shares13 the advantages of the latter in several aspects,
summarized below. First, it has a decoherence-free logical
state space. This means that the qubit is noise resistant to long-
wavelength or low-frequency electric potential fluctuations.26

Second, Rz can be generated by utilizing the exchange
coupling (denoted J ) between the two localized electrons in
the qubit. With J ∼ 4t2/U (where t denotes interdot tunneling
and U on-site Coulomb repulsion), this gives a way to control
Rz, e.g., by tuning the interdot tunneling. Finally, two valley
qubits can be placed side by side to form a CPHASE gate;
Rx , Rz, and the CPHASE gate constitute universal quantum
computing.27–29

IV. VALLEY FETS

Figure 3(a) shows a valley FET in gapped AB-stacked
BLG. The source and drain are armchair graphene nanoribbons
(AGNRs) and the channel is a graphene quantum wire (QW)
aligned in the armchair direction and subject to the control of
a side gate bias. The bias produces in the channel an in-plane
electric field in the y direction.

In both the leads, the unique boundary condition in an
AGNR mixes K and K ′ valleys in a 50-50 ratio, giv-
ing the lead subband state as symbolically represented by
(|K〉+ S|K ′〉)/21/2,30 where S = ±1 is subband dependent.
This determines the specific valley polarization injected into
the channel and detected at the drain.

A. The GVOI-based valley precession

The GVOI in the channel provides a key mechanism to
switch on/off the FET with the gate bias as follows. Under
the bias, the energy subbands in the channel are valley split
due to the GVOI (as shown below), giving a wave-vector
difference k+ − k− between the states of τ = ±, as shown

FIG. 3. (a) Schematic plot of the valley FET in AB-stacked BLG,
with AGNR source and drain and a graphene QW channel (aligned
in the armchair direction) subject to the control of a side gate bias.
In order to define the QW, the side gates and/or vertical gates (such
as V� in Fig. 2, but not shown here) can be arranged in a mirror-
symmetric fashion, as in Fig. 2, with dc biases applied upon them.
Electron states in the various regions are also shown. (b) Under the
gate bias, energy subbands in the channel are valley split due to the
GVOI, giving a wave-vector difference k+ − k− between the states of
τ = ±.

in Fig. 3(b). Therefore, after a source electron is injected
into the channel, the two valley components in the electron
evolve with different phases, leading to the channel state
(eiϕ(x)|K〉+ S|K ′〉)/21/2. The phase difference ϕ(x) = (k+ −
k−)x here increases linearly with the distance x traveled. This
describes an electron precession in the valley space, with ϕ the
precession angle. At the end of the channel (x = L), depending
on ϕ = 2nπ [(2n+ 1)π ], the channel and drain polarizations
are parallel [orthogonal], admitting [blocking] the electron
into [off] the drain. The GVOI here plays a role similar to the
spin-orbit interaction (SOI) utilized in a spin FET,31 to achieve
the on-off switch function.

We derive the GVOI-based valley splitting/precession in
the channel. In the present case, we write H

(GVOI)
1 in Eq. (1)

explicitly, with

H
(GVOI)
1 = iτ

v′2

4�2
kxkyV − iτ

v4
F

2�2γ 2
1

kx

(
k2
yV ky + kyV k2

)

+ τ
v′v2

F

4�2γ1

(
k3
yV + 2k2

yV ky

)
.

The underlined expressions in H
(GVOI)
1 are evaluated first. Here

kx is the electron wave vector along the channel and the
potential V is y dependent only, e.g., V = VQW(y) + eεyy,
with VQW(y) = 1

2mw2
0y

2 − Dy4 being the QW confinement
potential. Here εy is the gate field applied, w0 is the subband
edge, and the quartic term −Dy4 is introduced such that VQW

simulates a realistic, finite confinement potential that flattens
out at distant y. Without the quartic term, the gate field would
only shift VQW to a new equilibrium position without producing
any effect.
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The valley degeneracy is lifted by εy due to the GVOI. This
can be deduced by a symmetry argument based on H

(GVOI)
1 :

The odd-in-kx τ -dependent terms in H
(GVOI)
1 remove the valley

degeneracy at a given kx . For a quantitative estimate of the
splitting, we take H

(0)
0 and |n〉 in the qubit discussion (with

the replacement VQD → 1
2mw2

0y
2 for the QW confinement) as

the unperturbed Hamiltonian and eigenstates, respectively, and
eεyy, Dy4, and H

(GVOI)
1 as perturbations.32 This yields (with

m∗ the subband effective mass)

k+ − k− = −2m∗αvo

h̄2 , ϕ = −2m∗αvo

h̄2 L,

αvo/εy ≈ −ev4
F D

�2γ 2
1

∑
n

∑′〈0|k2
y |2n〉

× 〈2n|y4|0〉/(
w

(0)
0 − w

(0)
2n

)
+ 2eD

�2

∑
n

〈0|
[

2v4
F

γ 2
1

(
3iy2ky + y3k2

y

) + v′2y3

]

× |2n + 1〉〈2n + 1|y|0〉/(
w

(0)
0 − w

(0)
2n+1

)
, (7)

where αvo is the Rashba constant due to the GVOI. As
shown above, αvo is εy dependent, which permits the electric
control of valley precession angle. We estimate αvo using
the following parameters: the QW width W ∼ 300 Å, � ∼
5 meV, and h̄w0 ∼ mw2

0W
2 ∼ eεyW ∼ DW 4 ∼ O (meV).

This yields αvo in the range 10−12−10−11 eV m, comparable
to the large SOI-caused Rashba constant in InAs.33 By
analogy to spin FETs, valley FETs thus carry similar potential
advantages in building low-power high-density integrated
circuits.

V. VALLEY COHERENCE

Finally, we briefly note the issue of valley coherence
here. As it is primarily limited by the intervalley K ↔
K ′ scattering, an in-plane process in nature,34 we estimate
the valley coherence time in AB-stacked BLG with that in
monolayer graphene,13 due to similar in-plane properties in the
two cases. This gives, in a typical application, the coherence
time in the range of μs or longer, which is sufficiently long for
valley manipulation in AB-stacked BLG and makes it possible
to quantum control individual valleys for the realization
(expansion) of valley-based quantum (classical) information
processing.

VI. SUMMARY

We have established the theory for manipulation of valley
pseudospins at the quantum level, in bilayer graphene. We

have proposed two key mechanisms of valley manipulation,
which are based on the band-structure warping and the
generalized valley-orbit interaction, respectively. Quantum
valleytronic devices—qubits and FETs—are implemented
utilizing these mechanisms. This work provides a crucial
step in paving the way for the experimental realization
(expansion) of valley-based quantum (classical) information
processing.
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APPENDIX: DERIVATION OF THE SCHRÖDINGER
MODEL FOR BILAYER GRAPHENE

In this Appendix we derive the Schrödinger model, as
expressed in Eq. (1). We start with the two-band model for
the conduction band and the valence band around the band
gap, which has been derived in Ref. 4. We extend the model to
include the effect of an external slowly varying field V (x,y),
which modulates the band edges and leads to the Hamiltonian

H =
(−� + V + 2�

γ 2
1
v2

f |k|2 1
γ1

v2
F k2

+ + iv′k−
1
γ1

v2
F k2

− − iv′k+ � + V − 2�

γ 2
1
v2

f |k|2
)

. (A1)

This model has the corresponding eigenvalue equations(
−� + V + 2�

γ 2
1

v2
f |k|2 − E

)
ϕB

+
(

1

γ1
v2

F k2
+ + iv′k−

)
ϕA = 0, (A2)

(
1

γ1
v2

F k2
− − iv′k+

)
ϕB

+
(

� + V − 2�

γ 2
1

v2
f |k|2 − E

)
ϕA = 0. (A3)

We take E ∼ � (i.e., the electron case) and solve (A2) in the
nonrelativistic limit where ‖V/�‖�1, 2�

γ 2
1
v2

f |k|2/� � 1, and
|(E − �)/�| � 1. This gives

ϕB ≈ 1

2�

[
1 + 1

2�

(
2�

γ 2
1

v2
f |k|2 + V − E + �

)]

×
(

1

γ1
v2

F k2
+ + iv′k−

)
ϕA, (A4)

which includes the relativistic effect up to first order. Substi-
tuting (A4) into (A3) yields

(E − �)ϕA ≈
(

1

γ1
v2

F k2
− − iv′k+

)
1

2�

[
1 + 1

2�

(
2�

γ 2
1

v2
f |k|2 + V

)](
1

γ1
v2

F k2
+ + iv′k−

)
ϕA

+
(

1

γ1
v2

F k2
− − iv′k+

)
1

2�

[
1

2�
(−E + �)

](
1

γ1
v2

F k2
+ + iv′k−

)
ϕA − 2�

γ 2
1

v2
f |k|2ϕA + V ϕA. (A5)
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In order to eliminate the energy −E + � on the right-hand side, we iterate the preceding expression and obtain

(E − �)ϕA ≈
(

1

γ1
v2

F k2
− − iv′k+

)
1

2�

[
1 + 1

2�

(
2�

γ 2
1

v2
f k2 + V

)](
1

γ1
v2

F k2
+ + iv′k−

)
ϕA

− 1

8�3

(
1

γ1
v2

F k2
− − iv′k+

) (
1

γ1
v2

F k2
+ + iv′k−

) (
1

γ1
v2

F k2
− − iv′k+

) (
1

γ1
v2

F k2
+ + iv′k−

)
ϕA

− 1

4�2

(
1

γ1
v2

F k2
− − iv′k+

) (
1

γ1
v2

F k2
+ + iv′k−

) (
−2�

γ 2
1

v2
f k2 + V

)
ϕA − 2�

γ 2
1

v2
f k2ϕA + V ϕA. (A6)

Equation (A6) provides the Schrödinger description of
conduction-band states with E ∼ �. However, we note that the
corresponding Hamiltonian (denoted by H ′

eff) defined in (A6)
is non-Hermitian and care would have to be taken if H ′

eff is used
in a calculation. For example, in a perturbative calculation, the
perturbation theory for a non-Hermitian Hamiltonian system
would have to be employed. Instead of taking the foregoing
approach, we construct from H ′

eff a Hamiltonian of Hermitian
form for the Schrödinger model and use the Hermitian one for
all calculations in this work. This construction is based on a
method similar to that discussed in Appendix A of Ref. 13.
Without going into mathematical details, we simply state that
the Hermitian form of the Hamiltonian is given by (H ′

eff +
H

′†
eff)/2, which can further be organized into the form H0 + H1

shown in Eq. (1), with H0 being the nonrelativistic part and

H1 the first-order relativistic correction. This completes the
derivation of the Schrödinger model for bilayer graphene.

We note that the Schrödinger model provides an accurate
description for electron states near the gap and is valid in the
vicinity of K and K ′ points. We estimate the range of wave
vectors where the model is valid. We require the leading-
order kinetic energy ‖H0 − V‖��. According to Eq. (1), this
leads to

−2�

γ 2
1

v2
f k2 + 1

2�

(
1

γ 2
1

v4
F k4 + v′2k2

)

+ τ
v′v2

F

�γ1

(
3k2

xky − k3
y

) � �,

which specifies the range.
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