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Electronic and optical gap renormalization in carbon nanotubes near a metallic surface
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Renormalization of quasiparticles and excitons in carbon nanotubes (CNTs) near a metallic surface has
been studied within a many-body formalism using an embedding approach newly implemented in the GW
and Bethe-Salpeter methods. The quasiparticle band-gap renormalization in semiconducting CNTs is found
to scale as −1/(2ha), with ha the apparent nanotube height, and it can exceed half an eV. Also, the binding
energy of excitons is reduced dramatically—by as much as 75%—near the surface. Compensation between
quasiparticle and excitonic effects results in small changes in the optical gap. The important role played by the
nanotube screening response in establishing these effects is emphasized and a simple electrostatic model with no
adjustable parameters explains the results of state-of-the-art calculations and generalizes them to a large variety
of CNTs.
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I. INTRODUCTION

Carbon nanotubes (CNTs) have attracted tremendous inter-
est for a number of applications and also for the breadth of new
scientific questions that they bring. The properties of isolated
CNTs have been extensively studied. In most situations,
however, these systems are subject to external perturbations,
which make their behavior deviate from the ideal, isolated
case. Examples include interaction with a substrate, other
nanostructures, polymers or DNA encapsulation, metallic
contacts, doping, applied electric or magnetic fields, applied
strain, alignment in periodic arrays, and so on.1 Both electronic
and optical properties of CNTs are expected to be altered by
such environmental and dimensionality effects.2–5

Predicting the changes in properties of CNTs due to a
substrate is important not only for the potential integration
of CNTs in functional devices but also from a fundamental
physics perspective. Consider a semiconducting CNT in a
field-effect transistor configuration. The alignment of elec-
tronic states at the metal/CNT interface is critical to the device
performance as it determines the activation energy necessary
to inject an electron from the metal contact.6 How do the metal
contacts or even the metallic gate affect the electronic states
of the CNT?

Recent experimental measurements of CNTs on a Au
substrate find that the quasiparticle (QP) band gaps of
semiconducting CNTs are renormalized appreciably by the
substrate, even for a nanotube-substrate separation as large
as 1 nm.7 The binding energy of excitons Eb is another
fundamental quantity important in optoelectronic and photonic
applications, as it directly affects critical parameters such as
exciton dissociation, electron-hole recombination, or radiative
decay rates. In isolated semiconducting CNTs excitons bind
with energies amounting to a large fraction of the QP band
gap.7,8 One question is whether Eb is also significantly altered
near a metal surface.

In this work I study the energy renormalization of QP and
excitons in semiconducting CNTs near a metallic surface.
I consider nanotube-surface separations ranging from weak
physisorption all the way to the isolated nanotube case. For
these separations hybridization and charge rearrangements
effects9 at the interface between the CNT and the metallic
surface can be neglected. Large separations can be realized

experimentally via a thin insulating spacer,10,11 which may
serve to prevent charge-transfer effects. Charge transfer can
take place in CNTs contacted by a metal surface;12 however,
in devices with top-contact geometry, the CNT-doping level is
controlled by the gate.13 Thus, in relevant applications, charge-
transfer effects can be disentangled from other effects and are
dropped from this work having considered them elsewhere.2,14

II. MANY-BODY FORMALISM

The theoretical approach is based on ab initio methods that
take into account many-electron correlation effects known to
play an important role in the electronic and optical properties
of CNTs,15–19 specifically the G0W0 approximation20 for the
electron self-energy and the Bethe-Salpeter (BS) equation21

for excitonic effects. The many-body Green’s function ap-
proach involves a perturbation expansion, to first order,
about the screened Coulomb interaction W = ε−1V , where
V is the bare Coulomb interaction. The dielectric function
ε = 1 − V P is evaluated from the irreducible polarizabil-
ity P within the random-phase approximation (RPA). The
one-particle Green’s function G is constructed from Kohn-
Sham eigenvalues and eigenfunctions obtained within density
functional theory (DFT) in the local density approximation
(LDA)22 using the Quantum ESPRESSO package.23

Commensurability constraints and large nanotube-surface
separations make full ab initio many-body calculations com-
putationally prohibitive. To make calculations feasible, it is
advisable to take advantage of the absence of hybridization ef-
fects and use an embedding approach that enables many-body
ab initio calculations on the nanotubes after integrating out the
electronic degrees of freedom of the surface. This approach can
be applied generally to the study of QPs and excitons of various
nanostructures in different complex environments, as long as
the electronic ground-state properties of the nanostructure are
not significantly altered by the surrounding environment.

A. Embedding approach for GW and BS calculations

To begin, note that the absence of hybridization effects
leads within LDA to substrate-independent nanotube states.
The RPA irreducible polarizability P of the combined
nanotube-metal system is then the sum of the RPA irreducible
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polarizabilities of the two subsystems P = P metal + P CNT,
which emerges from RPA calculations of the isolated
subsystems.24

I define the effective dielectric function as

ε̂ ≡ 1 − wP CNT (1)

and the effective screened Coulomb interaction as

Ŵ ≡ ε̂−1w, (2)

where w = (1 − V P metal)−1V is the screened Coulomb in-
teraction between electrons calculated for the metallic surface
alone. The effective quantities Ŵ ,ε̂−1 are by construction equal
to the “true” RPA ones in the nanotube region.

An important feature of the embedding approach is that
in order to obtain ε̂, ε̂−1, or Ŵ in the nanotube region, one
only needs w in the same region, i.e., outside the metal
surface. Here, the atomistic properties of the substrate are
less important and one can use a classical, local theory to
obtain w. Specifically, one models the metallic surface with
a semi-infinite electron gas, characterized by a dielectric
function which jumps from unity outside the metal (z > z0) to
the Drude function εD inside (z < z0).25,26 The location of the
“mirror plane” z0 with respect to the position of the atoms of
the real metal surface (see inset in Fig. 1) can be determined
separately for a given metal surface.27 Typically, z0 is about
half the interplanar spacing above the plane of surface atoms.28

Within this model, w takes the following form outside the
metal:

w(r,r ′,ω) = V (r − r ′) + g(ω)/|r − r̃ ′|, (3)

where g(ω) ≡ [1 − εD(ω)]/[1 + εD(ω)] is the surface-
response function29 and r̃ ′ is the reflection of r ′ across the

FIG. 1. (Color online) The change in the QP energy at VBM for
the (17,0) CNT, δE

QP
VBM ≡ E

QP
VBM(hc) − E

QP
VBM(∞), as function of the

inverse distance between the center-of-tube and the metal39 mirror
plane. The inset shows an illustration of a CNT on a metallic surface.
The apparent nanotube height ha is the distance from the top of the
CNT to the first metal layer. The distance between the nanotube center
and the metal mirror plane is denoted by hc and hb ≡ hc − R.

mirror plane. Accounting for the frequency dependence of w

is critical for the correct description of the renormalization
of individual (empty or occupied) QP CNT states; however,
the precise value of the corresponding metal surface plasmon
energy is less important for the results presented here. The
use of an ab initio determined z0 insures that w is correct
outside the metal to first order in the wave vector q.30 Small-q
corrections to g enter as O(z0q).29 I find that that only wave
vectors |q| � z−1

0 are important for the renormalization effects
presented here, suggesting that corrections to w beyond the
model can be neglected.

Next I include surface polarization effects into effective
G0W0/BS theories. The G0W0 electron self-energy contribu-
tion to CNT QP energies can readily be written as follows:

〈�nk|�|�mk〉 = 〈�nk|iGCNTŴ |�mk〉. (4)

where GCNT is the nanotube Green’s function and |�nk〉
the nanotube wave function31 for band n and momentum k.
According to Eq. (4), G0W0 calculations of QPs in a nanotube
near a metallic surface can be performed as in the isolated CNT
case except that V is formally replaced by w when evaluating
the nanotube screened Coulomb interaction.

Excitons can also be treated within the embedding ap-
proach. It can be shown (see Appendix A) that singlet excitons
in the CNT near a metallic surface obey the usual BS equation32

but with an effective electron-hole (e-h) interaction kernel
K̂ ≡ K̂d + K̂x . The effective direct term K̂d can be obtained
by taking the functional derivative of � with respect to GCNT.
Within the usual static approximation its matrix elements
between pairs of valence and conduction states read

K̂d
vck,v′c′k′ = −〈�∗

ck�c′k′ |Ŵ (ω = 0)|�vk�
∗
v′k′ 〉. (5)

A notable difference from the isolated CNT case is that the
effective exchange term K̂x is “screened” by w:

K̂x
vck,v′c′k′ = 2〈�∗

ck�vk|w(�)|�c′k′�∗
v′k′ 〉, (6)

where � is the exciton energy. In this work � ∼ 1 eV. At this
energy most metals (including Au) act as near-perfect mirrors
and in these cases one can replace w(�) by w(0) in Eq. (6).

The embedding approach has been implemented in a
modified version of the BERKELEYGW package.33 Calculations
at large nanotube-surface separations were made possible by
a new truncation scheme for w, described in Appendix C. The
G0W0 calculations are performed within a mixed technique14

in which self-energy effects for the isolated nanotube are
calculated within the generalized plasmon pole model (GPP)15

while changes in � upon the nanotube approaching the
metallic surface are calculated within full-frequency RPA.34

III. RESULTS

A. Quasiparticle renormalization effects

Quasiparticles are charged many-electron excitations in-
volving the addition or removal of one electron from the
system. When a unit point-charge is brought near/taken away
from a perfect conductor from/to infinity, its energy changes
by ±1/(4h) (I use atomic units, i.e., e2/(4πε0) = 1), where
h is the height relative to the metal surface. This classical
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image-charge picture turns out to describe the QP energy renor-
malization of molecular orbitals35–38 quite well. As discussed
below, a similar model can be extended to CNTs but only after
a proper definition of the nanotube-metal separation h.

I have studied the QP properties at the valence band
maximum (VBM) and conduction band minimum (CBM)
of two zig-zag semiconducting CNTs. I find that the renor-
malization of the nanotube inverse dielectric function is
not important, and the electron self-energy can be well
approximated as � ≈ iGCNTε−1

CNTw, where ε−1
CNT is the inverse

dielectric function calculated for the isolated CNT. Figure 1
shows (circles) the QP energy change δE

QP
VBM at the VBM

for the (17,0) CNT (diameter D = 1.32 nm), calculated39 as
function of the inverse distance hc between the center of the
nanotube and the mirror plane of the metallic surface (see
inset in Fig. 1). The change is significant, reaching more than
200 meV at the smallest separation (hb = 2.25 Å). A similar
renormalization (with opposite sign) is found for the state at
CBM. Extrapolating the image-charge model to nanotubes,
one would expect δE

QP
VBM ≈ 1/(4hc). As indicated by the

dashed line in Fig. 1, this model scaling is appropriate at large
separations but severely overestimates δE

QP
VBM at smaller ones.

One may raise two main issues about the applicability of
the image-charge picture to CNTs. First, it is not clear to what
extent QPs in a quasi-one-dimensional system can be likened
to point charges. Second, the image-charge model neglects the
screening response of the nanotube. This response is expected
to be important in systems with smaller QP band gap,40 as they
tend to have increased polarizability.

It is straightforward to disentangle these two effects
within our embedding approach. To address the first, I set
to zero the nanotube polarizability P CNT and calculate the
resulting self-energy contribution to δEQP by evaluating
δ�0 ≡ iGCNT(w − V ) at the QP energy. This contribution is
indicated by triangles in Fig. 1 for the state at VBM, showing
good agreement with the image charge model prediction. This
can be best understood in terms of Wannier functions. In
zig-zag nanotubes these can be maximally localized along the
tube axis within the length of the unit cell l ≈ 0.4 nm < D.41

This implies that it is more appropriate to think of the shape of
the added charge as a ring rather than an elongated tubule. For
hc � D, the electric field due to rings and point charges is the
same and in this limit one can show that δ�0

VBM ≈ 1/(4hc); at
smaller distances, the delocalization of the Wannier functions
becomes relevant and yields the rather small deviation from
the 1/(4hc) scaling seen in Fig. 1.

Clearly, the screening response of the nanotube accounts for
most of the difference between the calculated δEQP and the
±1/(4hc) scaling. To understand this, note that QP energies at
CBM/VBM can be written in terms of differences between
the ground-state energy of the neutral (N electrons) and
charged (N ± 1 electrons) system: EQP = ±(EN±1

0 − EN
0 ).

Considering only the dominant interactions (e.g., neglecting
Van der Waals forces) between the nanotube and the surface, I
estimate δEQP within a simple electrostatic model for the term
δEN±1

0 , i.e., from the change in energy of the charged system
as one takes it from ∞ to near the surface.

More exactly, one replaces the nanotube with a cylindrical
tubule with radius R = D/2 and polarizability P̄ that yields the

same average (along radial direction) as P CNT.2,14 The charged
system is simulated by adding to the tubule an external unit
charge in the shape of a ring with same radius. The external
charge induces a charge distribution along the tubule,42,43

assumed for simplicity to be angular symmetric about the
tubule axis. Let h be the distance between the tubule axis and
the metal mirror plane and F (h) the attractive force between
the total charge on the tubule and its mirror image. The model
estimates δEN±1 from

∫ ∞
hc

F (h) dh, leading to the following
QP energy renormalization (see Appendix B):

δE
QP
model = ±1

2

∫
dq

2π

w̄(q) − V̄(q)

ε̄(q)ε̄0(q)
, (7)

where ε̄ = 1 − P̄w̄ and ε̄0 = 1 − P̄V̄ with V̄(q) =
2I0(Rq)K0(Rq) and w̄(q) − V̄ (q) = −2K0(2hcq) (I0

and K0 are the modified Bessel functions of the first and
second kind). The exponential decay of the integrand for
|q| > h−1

c implies that it is sufficient to consider only the
small q behavior (|q| � 2π/l) of P̄, i.e., one can set P̄ = αq2,
where α is the static polarizability of the nanotube.44 One
uses α = a0 + a1R

2 with a0 = 38.0 Å2 and a1 = 6.92, as
suggested by previous ab initio studies of a large variety
of semiconducting CNTs.45 Applied to the (17,0) CNT, the
electrostatic model yields a QP renormalization in very good
agreement with the ab initio results, as shown in Fig. 1.

QP band-gap renormalization (BGR) in semiconducting
CNTs has been recently studied via scanning tunneling
spectroscopy of a nanotube bundle on Au(111)7. The QP band
gap was found to vary inversely with the apparent nanotube
height, with the bundle playing the role of a spacer. Inspired by
these results, note in Fig. 2(a) the calculated QP band gap of the
of the (17,0) CNT as a function of the apparent nanotube height
ha , defined as the distance between the top of the nanotube and
the first layer of the metal surface (alternatively, one can think
of ha as the distance between the top of a π orbital at the top
of the tube and the metal mirror plane). I choose z0 = 1.5 Å as
appropriate for Au(111).46 Comparison with the dashed curve
shows that the change in QP band gap δEQP

gap is well described
by the −1/(2ha) scaling [as opposed to the −1/(2hc) scaling,
which does not reflect the nanotube screening response; see
the dotted curve]. This suggests that the image-charge model
can be extended to CNTs by incorporating the effect of the
nanotube screening response into an appropriate definition of
the CNT-surface distance, namely h ≡ ha .

To check the applicability of the −1/(2ha) scaling to QP
BGR in other CNTs, I have also studied the smaller diameter
(10,0) CNT (D = 0.78 nm). As shown in Fig. 2(b), the QP
band gap changes significantly by more than 0.6 eV from
1.72 eV in the isolated case to 1.10 eV at weak physisorption
distances. The scaling δEQP

gap ≈ −1/(2ha) holds for this tube
as well, suggesting its “universality” across semiconducting
nanotubes with different diameters. To test this assumption,
I use Eq. (7) to estimate QP BGR for a wide range of
CNT diameters. The agreement between the model and the
−1/(2ha) scaling is excellent for the (17,0) and (10,0) CNTs,
as shown in Fig. 2. In general, for any practical nanotube
diameter I find that the agreement is very good (with the
largest difference equal to ∼10% in the limit R → ∞) (see
Appendix B), in strong support of the above assumption.
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FIG. 2. (Color online) QP and optical band gaps of the (17,0)
CNT (a) and (10,0) CNT (b) near a metallic surface as function of the
inverse apparent nanotube height ha (z0 = 1.5 Å as appropriate for a
Au surface). Exciton binding energies are equal to the energy differ-
ences between the QP band gap (circles) and the optical gap (squares).

The (17,0) CNT has a similar diameter to those from
the experiment in Ref. 7. Its calculated EQP

gap ranges from
1.29 (isolated tube) to 0.83 eV (physisorbed tube). This can
be compared with the experimental values, namely 1.1 eV
(value extrapolated for nanotubes far away from the surface)
and 0.73 eV (for nanotubes in contact to the surface). The
difference between theory and experiment is explained by
additional environmental effects such as screening from other
nanotubes (including metallic ones).7

B. Exciton renormalization effects

Next I consider the renormalization of excitons in nanotubes
upon physisorption on a metallic surface. I consider the lowest
energy singlet local excitations induced by light polarized
along the nanotube axis. The attractive, direct term K̂D
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FIG. 3. Exciton wave function of the brightest lowest-energy
exciton in the (17,0) CNT far away from (a) and physisorbed on
(b) a metal surface.

dominates the e-h inteaction and is affected by the surface via
the change in the static effective screened Coulomb interaction
δŴ ≈ ε−1

CNT(w − V ). As the nanotube approaches the surface,
the coupling between e-h pairs decreases due to their induced
image in the metal surface and the exciton gets more delocal-
ized while its binding energy Eb diminishes accordingly.

Figure 3 shows the exciton wave function of the brightest
lowest-energy exciton in the (17,0) CNT, far away from
[Fig. 3(a)] and physisorbed on [Fig. 3(b)] a metal surface.
The plots show the probability of finding an electron at a
distance ze away from a hole, obtained by fixing the hole near
a carbon atom (the plots are insensitive to the location of the
carbon atom relative to the metal surface) after integrating out
the electron coordinates along directions perpendicular to the
tube axis. The size of the exciton (the root-mean-square of
exciton envelope function) changes by ∼35%, from ∼2 nm
for the isolated case to ∼2.7 nm in the physisorbed case.

For weak physisorption, excitons still bind but their binding
energy is about 75% smaller than in the isolated case: Eb

changes in the (17,0) CNT from 0.57 eV (isolated tube) to
0.15 eV (physisorbed tube), while for the (10,0) CNT these
values are 0.77 and 0.19 eV.

Compensation between self-energy and excitonic effects47

results in order of magnitude smaller renormalization of the
nanotube optical gap compared to QP BGR, as indicated by
red squares in Figs. 2(a) and 2(b). This is because the excitons
are neutral with no overall static dipole.36 The slight inhomo-
geneous charge distribution of the exciton3 gives rise to a small
(less than 50 meV) red shift in the optical gap for both (10,0)
and (17,0) CNTs. Similarly, I find that the metal surface in-
duces negligible renormalization of the local transition dipole
matrix element48 of the brightest lowest-energy CNT exciton.
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IV. SUMMARY

In conclusion, I have developed an embedding approach
that allows G0W0 or BS calculations to reach beyond the com-
putational limits of standard computations, making possible
the study of electronic and optical properties of nanostructures
near a metallic surface with relatively small computational
cost. Applied to the case of semiconducting CNTs it shows
that a metallic surface can induce strong renormalization of
QP and exciton binding energies. The renormalization scales
inverse proportionally to the nanotube apparent height, with
the nanotube screening response playing an important role in
establishing the effect. This addresses fundamental aspects of
the physics of the CNT/metal contact and should contribute
toward a better understanding of CNT-based devices. One
possible application is the realization of a heterojunction
superlattice within a nanotube by deposition on a surface
patterned with different dielectric properties.
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APPENDIX A: EFFECTIVE BETHE-SALPETER
EQUATION FOR EXCITONS

Here I derive the Bethe-Salpeter equation (BSE) for exci-
tons in the CNT near a metallic surface. Let us start from the
BSE for the two-particle correlation function L (generalized
coordinates denote space, time, and spin variables),32

L(1,2; 1′,2′) = G(1,2)G(1′,2′) +
∫

d(3456)G(1,4)

×G(1′,3)K(3,5; 4,6)L(6,2; 5,2′) (A1)

with K the electron-hole (e-h) interaction kernel,

K(1,2; 3,4) ≡ δ[VH (1,3) + �(1,3)]

δG(4,2)
, (A2)

where VH is the Hartree potential. Within the GW approxima-
tion for � and to first-order perturbation expansion about W ,
K is the sum between the usual exchange and direct terms,32

K(1,2; 3,4) = −iδ(1,3)δ(2,4)V (1,2)

+ iδ(1,4)δ(3,2)W (1+,2). (A3)

One is interested in renormalization effects induced by the
metallic surface on excitons in the CNT. It is possible to derive
in the reduced CNT space region an effective equation for the
polarizability χ (1,2) ≡= −iL(1,2; 1+,2+) with r1,r2 ∈ CNT.
This can be done in two steps as follows.

In the first step I write the BSE for the irreducible
two-particle correlation function L̃, which obeys32 a similar
equation as (A1) except that K replaced by the direct term Kd .

The BSE for L̃ then can be written in the reduced space of the
CNT region49 as

L̃(1,2; 1′,2′) = GCNT(1,2)GCNT(1′,2′) + i

∫
d(34)GCNT(1,4)

×GCNT(1′,3)Ŵ (3+,4)L̃(3,2; 4,2′). (A4)

The solution of Eq. (A4) yields the CNT irreducible polariz-
ability: χ̃ (1,2) ≡ −iL̃(1,2; 1+,2+).

In the second step I write the equation for the full
polarizability χ (1,2),32

χ (1,2) = χ̃ (1,2) +
∫

d(34)χ̃ (1,3)V (3,4)χ (4,2). (A5)

Note that the space integral in Eq. (A5) involving the r4

coordinate runs over both the CNT and the metal regions.
To arrive at an equation in the reduced CNT space, one
needs to integrate out the r4 coordinate over the metal region.
This is straightforward to achieve after safely assuming that
the irreducible polarizability in the metal surface region is
not renormalized appreciably by the presence of the CNT,
i.e., χ̃ (1,2) = χ̃metal(1,2) for r1,r2 ∈ metal where χ̃metal is the
irreducible polarizability of the isolated metal surface. For
r4 ∈ metal and r2 ∈ CNT one then can write

χ (4,2) =
∫

d(2′4′)χmetal(4,4′)V (4′,2′)χ (2′,2), (A6)

where the r2′ coordinate runs over the CNT region and χmetal

(the full polarizability of the isolated metal surface) is defined
by

χmetal(1,2) = χ̃metal(1,2) +
∫

d(34)χ̃metal(1,3)

×V (3,4)χmetal(4,2). (A7)

Combining (A5) and (A6) and using that w ≡ V + V χmetalV ,
one arrives at the following effective equation for χ in the
CNT region:

χ (1,2) = χ̃(1,2) +
∫

d(34)χ̃ (1,3)w(3,4)χ (4,2), (A8)

where all the spatial coordinates in Eq. (A8) are in the CNT
region.

Eqs. (A4) and (A8) imply the following BSE with all
coordinates in the reduced CNT space:

L(1,2; 1+,2+) = GCNT(1,2)GCNT(1+,2+)

+
∫

d(3456)GCNT(1,4)GCNT(1′,3)

× K̂(3,5; 4,6)L(6,2; 5,2′), (A9)

where the effective e-h interaction kernel K̂ ≡ K̂x + K̂d is

K̂(1,2; 3,4) = −iδ(1,3)δ(2,4)w(1,2)

+ iδ(1,4)δ(3,2)Ŵ (1+,2). (A10)

The reduced BSE Eq. (A9) is solved within the usual Tamm-
Damcoff approximation. The result for singlet excitons in
the CNT near the metallic surface is an effective BSE with
an effective direct term written in Fourier space (within the
usual static approximation, valid when the binding energy of
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excitons is significantly smaller than the energy of plasmons),

K̂d (r1,r2; r3,r4) = iδ(r1,r4)δ(r3,r2)Ŵ (r1,r2,ω = 0) (A11)

and an effective exchange term “screened”50 by the metal
surface,

K̂x(r1,r2; r3,r4) = −2iδ(r1,r3)δ(r2,r4)w(r1,r2,�), (A12)

where � is the energy of the exciton. For � significantly
smaller than the metal surface plasmon energy, one can further
replace w(�) by w(0) in Eq. (A12).

The effective BSE (A11) and (A12) can be used for the
study of excitons in other nanostructures near a metal surface,
as long as the relevant electronic states of the nanostructure do
not overlap significantly with those of the metal surface.

APPENDIX B: ELECTROSTATIC MODEL
FOR QP RENORMALIZATION

Consider the case where an external ring-shaped unit charge
is added on a polarizable tubule with tube axis situated at a
distance h away from the mirror plane of a metal surface.
The electrostatic model assumes angular symmetry about the
tubule axis. The added unit charge ring induces on the tubule
a charge density:

nind(q) = P̄(q)Vtot(q), (B1)

where P̄ is the irreducible polarizability of the tubule and
Vtot is the total potential produced by the charged ring in
the presence of the metal surface. The induced charge shows
sign oscillations along the tube axis and for a semiconducting
nanotube it integrates to zero.51

The total potential is given by

Vtot(q) = w̄(q)/ε̄(q), (B2)

where ε̄ = 1 − P̄w̄ and w̄ is the Coulomb interaction produced
by the added external ring and its polarization on the metal
surface. Let us denote by V̄ the Coulomb interaction between
two unit charge rings on the tubule; its Fourier transform
has the usual form: V̄(q) = 2I0(qR)K0(qR). The remaining
interaction (w̄ − V̄) between a ring and the image of the other
ring can be approximated very well by the interaction between
two point charges, one at the center of one ring and another at
the center of the image of the other ring [for the (17,0) CNT,
this approximation affects the QP renormalization results by
∼1%]. The result is

w̄(q) − V̄(q) ≡ −
∫

dz
e−iqz√

z2 + (2h)2
= −2K0(2hq). (B3)

The polarization per unit tube length P̄ can be obtained
from the G = G′ = 0 components of the ab initio calculated
P CNT

GG′ (q) as in Ref. 2: P̄(q) = P CNT
00 (q)Auc, where Auc is the

cross-sectional area of the unit cell used in the ab initio
calculation.

The attractive force F (h) between the charged tubule and
its mirror image can be written

F (h) =
∫

dq

2π
λ(q)2 d

d(2h)
[w̄(q) − V̄(q)], (B4)

where the total charge distribution on the tubule is λ ≡ 1 +
nind = 1/ε̄. Integrating the force from hc to ∞ leads to

δE
QP
model = ±1

2

∫
dq

2π

∫ ∞

hc

dh
1

ε̄(q)2

d

dh
w̄(q). (B5)

The integral over h can be written as (w̄ ≡ w̄ h=hc
)

∫ V̄

w̄
dw̄

1

(1 − P̄w̄)2
= w̄ − V̄

(1 − P̄w̄)(1 − P̄V̄)
(B6)

and one finally obtains

δE
QP
model = ±1

2

∫
dq

2π

w̄(q) − V̄(q)

[1 − P̄(q)w̄(q)][1 − P̄(q)V̄(q)]
, (B7)

which is the same as Eq. (7) of the main text.
The fast decay of the integrand [K0(2hcq) ∼ exp(−2hc|q|)]

for |q| > h−1
c implies that it is sufficient to consider only the

small q behavior (|q| � 2π/l) of P̄, i.e., one can set P̄ =
αq2 where α is the static polarizability of the nanotube44 for
electric field parallel to the tube axis. I use α = a0 + a1R

2 with
a0 = 38.0 Å2 and a1 = 6.92 independent of tube chirality, as
suggested by previous ab initio studies of a large variety of
semiconducting CNTs45 (and in very good agreement with
my ab initio calculation of α for the two nanotubes studied).

I find numerically that within less than 10%, δE
QP
model ≈

±1/(4ha) for any practical R > 0.25 nm. In particular, for
large diameter CNTs the model predicts δE

QP
model

∼= ± 0.94
4ha

for

a nanotube near the surface (hc
∼= R).52

APPENDIX C: TRUNCATION SCHEME FOR
THE SCREENED COULOMB INTERACTION

OF THE METAL SURFACE w

The bare Coulomb interaction V has been truncated around
the nanotube as usual53,54 and I have used the following
rectangular truncation scheme for w − V (the nanotube axis is
parallel to the x axis and the metal surface is perpendicular to
the z axis; z coordinates are measured from the mirror plane):

1

|r − r̃ ′| → f1(x,x ′)f2(y,y ′)f3(z,z̃′)√
(x − x ′)2 + (y − y ′)2 + (z − z̃′)2

(C1)

with

f1(x,x ′) = θ (NkL1/2 − |x − x ′|)θ (L1 − |x + x ′|)
f2(y,y ′) = θ (L2/2 − |y − y ′|)θ (L2 − |y + y ′|) (C2)

f3(z,z̃′) = θ (L3 − |z − z̃′|)θ (z − z̃′)θ (L3/2 − |z + z̃′|),
where θ is the step function; Nk is the number of k points used
to sample the one-dimensional Brillouin zone; and L1, L2, and
L3 are the dimensions of the unit cell along the x, y, and z axes,
respectively. The truncation scheme assumes that the nanotube
region is situated between z = 0 and z = L3/2. I have used
L1 = l = 0.42 nm, L2 = 1.8,2.8 nm and L3 = 2.5, 3.7 nm for
the (10,0), (17,0) CNTs respectively. A change of variables has
been applied at large nanotube-surface separations hb, shifting
the z, z′ coordinates by an appropriate distance d � hb.

The above truncation scheme reduces the computation of
the six-dimensional (6D) Fourier transform to the numerical
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evaluation of three real-space integrals (the other three are ana-
lytical) and requires a relatively large L3 > L2. An alternative
scheme is to truncate 1/|r − r̃ ′| separately along each of the z,

z′ coordinates; this scheme requires a significantly smaller L3

but four real-space integrals need to be numerically evaluated
for the 6D Fourier transform.
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13A. W. Cummings and F. Léonard, ACS Nano 6, 4494 (2012).
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