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Interacting spin droplets and magnetic properties of a low-density two-dimensional electron gas
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We argue that the magnetic susceptibility data for the low-density two-dimensional (2D) silicon-based electron
gas indicate that magnetically active electrons are localized in spin droplets. The droplets exist in both the
insulating and metallic phases, and interact ferromagnetically, forming an effective 2D Heisenberg ferromagnet.
Comparing the data with analytical and numerical results for a 2D Heisenberg ferromagnet, we determine
parameters of the model and show that the value of the droplet spin is either S = 1/2 or S = 1 with very few
electrons in the droplet. We discuss the dependence of the magnetic susceptibility and the specific heat on the
external magnetic field, which follows from the model, and hence we suggest further experimental tests of the
model.
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I. INTRODUCTION

Studies of low density two-dimensional electron gas
(2DEG) systems attract great attention, because of the unusual
and rich properties of these systems. In the present work, we
consider the magnetic properties of a silicon based 2DEG
discovered in recent studies.1–3 Most likely the properties are
related to the metal-insulator phase transition (MIT), and, in
our opinion, understanding of these properties sheds some light
on the nature of the transition.

The MIT in a 2DEG has attracted protracted attention from
both experiment and theory, and remains a puzzling area
of research to date.4–20 It was once believed that a MIT in
such systems could not take place, because a true metallic
phase does not exist in a noninteracting 2DEG,8 although
extension of the scaling theory of localization to include
the effects of interaction9,10 suggested that a MIT may be
possible. Resistivity measurements in a silicon-based 2DEG
finally provided evidence for a true MIT,12 with numerous
works following thereafter and studying the transition.13–24

The mechanism for a MIT in a 2DEG remains unclear to this
date, but the existence of localized states on the insulator side
of a MIT is generally accepted.5,6,25–27

Intimately linked to the problem of the MIT is the nature of
the ground state of a 2DEG, which still remains an outstanding
problem.20,22–24 The ground state depends on electron density.
There is little doubt that at a sufficiently high density it is a
normal paramagnetic Fermi liquid.28 At a lower density, the
system might have a Stoner transition to a ferromagnetic Fermi
liquid,29 and ultimately at a very low density it must undergo
a transition to the Wigner crystal.30 These are scenarios for
a 2DEG without any extrinsic disorder; see Refs. 31–34.
Extrinsic disorder can further complicate the situation; see,
for instance, Refs. 35 and 36.

The magnetization and magnetic susceptibility of a silicon
based 2DEG in the electron density range below and above
a MIT have been studied recently.1–3,23 The experiments
have been performed with an in-plane magnetic field and so
only spin related magnetic properties have been measured.
There are three important outcomes of these measurements.
(i) Thermodynamic magnetic properties vary continuously
across the MIT. (ii) The zero-field magnetic susceptibility
diverges rapidly in the limit T → 0, χ0 ∝ 1/T 2.4, in both

the insulating and metallic phases. (iii) In the metallic phase
at T ∼ few K, the value of the susceptibility is by orders of
magnitude larger than the expected value of the ideal gas Pauli
susceptibility.

The authors of Refs. 1–3 explain their data through the
formation of electron droplets. Each droplet has a nonzero
spin. These droplets melt in the metallic phase with increasing
density and temperature, but continue to exist up to large
densities. At a fixed density of droplets, this picture would give
the usual Curie scaling of the susceptibility with temperature,
∝1/T . To explain the observed scaling, ∝1/T 2.4, Ref. 3
suggests that the density of droplets is decreasing when
temperature is increasing.

In the present work, we take a somewhat different view to
explain the magnetic data. We agree that the data practically
unambiguously indicate the formation of electron droplets
with nonzero spin. The droplets are probably formed due to
extrinsic disorder or extrinsic disorder assisted by the Coulomb
interaction. Pragmatically for our purposes, the exact mecha-
nism of their formation is not important. We only assume that
at low temperatures all the internal degrees of freedom of the
droplets are frozen and hence the only dynamical degree of
freedom is the spin of the droplet. The very steep temperature
dependence of the magnetic susceptibility, in our opinion,
indicates ferromagnetic instability.

There has been an early analysis of magnetic susceptibility
data for 2DEG.37 The analysis was based on the model of ran-
dom antiferromagnetic interactions between localized spins. A
random antiferromagnetic interaction always results in a spin
glass state with magnetic susceptibility diverging at T → 0
slower than the Curie’s law, χ ∝ 1/T α , α < 1. This is true
for both classical38,39 and quantum40 spins. On the other hand
the data1–3 unambiguously indicate much stronger divergence
than the Curie’s law. The only possible, in theory, example with
stronger divergence is the 2D quantum ferromagnet which,
according to the Mermin-Wagner theorem,41 has zero Curie
temperature. Therefore we conjecture a random ferromagnetic
interaction between droplets and hence consider the system as
a quantum ferromagnetic Heisenberg model. On theoretical
side the ferromagnetic Heisenberg model is simpler than the
antiferromagnetic one. A random antiferromagnetic model is
always magnetically frustrated and this results in a complex
spin-glass state qualitatively different from the ground state
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of the nonrandom antiferromagnetic Heisenberg model.38–40

A random ferromagnetic model is unfrustrated and this results
in simple ferromagnetic ground state identical to that of the
nonrandom ferromagnetic Heisenberg model. The randomness
(disorder) is irrelevant.

Thus, the data indicate the ferromagnetic Heisenberg model
for the insulating phase and we also assume that the localized
droplets described by the Heisenberg model continue to exist in
the metallic phase. While in the metallic phase most electrons
go into itinerant states, these electrons are magnetically almost
idle and the main contribution to the magnetic susceptibility is
due to the relatively small fraction of electrons localized in the
droplets. The density of the droplets diminishes in the metallic
phase with increasing electron density.

We will show that there are only few electrons in the droplet
(maybe even one electron) and therefore the term “droplet” is
not quite suitable. Nevertheless, we use the term following
Refs. 1–3.

The structure of the paper is as follow. Section II reviews
known properties of the 2D quantum Heisenberg ferromagnet
at very low temperatures and we also derive some previously
unknown properties, which we need for the present work. In
Sec. III we analyze the high-temperature series expansions
for magnetic susceptibility and check that the intermediate-
high-temperature and the low-temperature descriptions are
consistent in the overlapping region. We also discuss here the
universality of series expansions. Comparison with experimen-
tal data is performed in Sec. IV. This allows us to determine
parameters of the droplets and their exchange interactions.
In Sec. V, we make predictions, which can be checked
experimentally. Finally, Sec. VI presents our conclusions.

II. 2D QUANTUM HEISENBERG FERROMAGNET
AT VERY LOW TEMPEARTURES

The Heisenberg model is defined by the Hamiltonian

HJ = −J
∑
〈ij〉

Si · Sj . (1)

In this section for simplicity we assume that the model is
defined on a square lattice. Summation in (1) is performed
over nearest sites and Si is the quantum spin at the site i. In
the ground state, all spins are aligned ferromagnetically along,
say, the z axis. Excitations are spin waves with the following
spectrum:42

εk = 2JS[2 − cos(kx) − cos(ky)] −−→
k�1

JSk2. (2)

Hereafter we set the Planck constant and the Boltzmann
constant equal to unity, h̄ = kB = 1.

Each spin-wave excitation carries spin �Sz = −1. The
excitations are bosons and therefore the magnetization at a
nonzero temperature is

〈Sz〉 = S −
∫

1

eεk/T − 1

d2k

(2π )2
. (3)

The integral is logarithmically diverging at small momenta.
This is a direct consequence of the Mermin-Wagner theorem,41

which claims that a long-range order is impossible in a 2D
system at a nonzero temperature. The ferromagnetic ordering
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FIG. 1. (Color online) Magnetic susceptibility per site obtained
in QMC simulations of S = 1 Heisenberg model (Ref. 45). Values
of the magnetic field are B = 0.005J (red circles) and B = 0.01J

(black squares). The blue dashed line shows the simple exponential
fit (10).

exists only within a correlation length ξ . To find value of ξ , one
has to set 〈Sz〉 = 0 and impose a lower limit in the integration
in (3), k > kmin ∼ 1/ξ . This gives the following correlation
length in the low-temperature limit:43

ξ ∝ e2πJS2/T . (4)

There are N ∼ ξ 2 spins within the correlation length;
these spins act as a magnetic domain with total magnetic
moment M ∼ SN . The concentration of domains is nD ∼
1/N . All in all, this describes a superparamagnet with the
following magnetic susceptibility, χ ∝ nDM2 ∝ N ∝ ξ 2 ∝
e4πJS2/T . This simple logic does not give the prefactor before
the exponential. The renormalization group (RG) calculation
gives44

χRG = A
S

T

(
T

4πJS2

)3

e4πJS2/T , (5)

where A is a constant. Note that the third power of the semi-
classical parameter T

4πJS2 in the prefactor in (5) arises in the
two-loop approximation, while the single loop approximation
gives only the first power of the parameter.

Quantum Monte Carlo (QMC) simulation of the magnetic
susceptibility for S = 1/2 was performed in Ref. 44 and
for S = 1 in Ref. 45. In this section we refer to the results
of Ref. 45, because this simulation accounts for a nonzero
magnetic field. The susceptibility QMC data45 for the values
of magnetic field B = 0.005J and B = 0.01J are presented
in Fig. 1.

Interaction with uniform magnetic field is defined by the
Hamiltonian

HB = HJ − B
∑

i

Siz. (6)

Even a very small magnetic field significantly influences the
susceptibility at very low temperature. Equation (5) is valid
only at T � JS, but on the other hand, due to the presence
of a magnetic field, the temperature cannot be too low, T >

Tm. Here Tm is the temperature where the susceptibility is
maximum; see Fig. 1. The value of Tm depends on the magnetic
field. The very strong dependence of the susceptibility on the
magnetic field is related to the dimensionality of the system.
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To explain the dependence, we remind that at zero temperature
the magnon dispersion in a magnetic field at small k is42

εk = JSk2 + B. (7)

When deriving Eqs. (4) and (5), we substitute in (3) kmin ∼
1/ξ as the lower limit of integration. This is correct only if
JS/ξ 2 > B. From this condition, one immediately finds Tm

Tm ∼ 4πJS2

ln
(

4πJS2

B

) . (8)

The dependence on the magnetic field is logarithmic and
hence even a tiny magnetic field significantly influences the
susceptibility. The estimate (8) is valid only at asymptotically
small magnetic field. At higher fields one needs to use
numerics. According to Ref. 45 at B/J = 0.1 the value of
Tm is Tm ≈ 0.5J at S = 1/2 and Tm ≈ 1.6J at S = 1. As
soon as temperature is slightly larger than Tm, T > 1.1Tm the
susceptibility becomes independent of B. This is clearly seen
in Fig. 1 where data for different values of magnetic field are
significantly different for T < Tm and are practically identical
for T > 1.1Tm.

The RG expression (5) for magnetic susceptibility is valid
at low temperature, T � JS, as it follows from the dispersion
(2). On the other hand, the temperature must be higher than
Tm. So the region of validity of Eq. (5) is

Tm � T � JS. (9)

This shows that the magnetic field and hence the temperature
in the QMC data in Fig. 1 is not sufficiently small to compare
the data at T > Tm with RG formula (5). The data are nicely
fitted by the simple exponential formula

χ = 0.042e7.6J/T . (10)

The fit is shown in Fig. 1 by the blue dashed line. Since the
condition (9) is not fulfilled the exponent in (10) is different
from that predicted by RG, Eq. (5).

Formula (10) is valid in a rather narrow range of tem-
peratures; at T 	 J the formula gives the susceptibility
approaching a constant instead of expected Curie’s law,

χ = S(S + 1)/(3T ). The transition region between the expo-
nential behavior and the asymptotic Curie’s law is described
by expansion in series of J/T . This is exactly where
the experimental data1–3 are taken. We discuss the series
expansions in Sec. III.

The low temperature (T � JS) and zero magnetic field
specific heat per lattice site immediately follows from the
dispersion (2),

C = T

2πJS

∫ ∞

0

xdx

ex − 1
= π

12

T

JS
. (11)

Interestingly, the temperature dependence of the specific heat
is the same as that for a 2D Fermi gas, CF = π2

3
T
εF

, however,
the behavior in an external magnetic field is distinctly different
from that of a gas. The specific heat of the ferromagnet is
suppressed in the field B ∼ T , while the specific heat of the
Fermi gas is not very sensitive to the field.

III. 2D QUANTUM HEISENBERG FERROMAGNET
AT INTERMEDIATE TEMPERATURES:

SERIES EXPANSIONS

The fifth-order temperature series for ferromagnetic
Heisenberg model (1) and (6) have been derived in Ref. 46 for
square and triangular lattices. We are not aware of higher-order
calculations; the fifth order is sufficient for our purposes. The
expansion is in powers of the parameter

x = ZS(S + 1)J

3T
, (12)

where Z is the number of nearest neighbors (the coordination
number). The magnetic susceptibility reads

χ = S(S + 1)

3T
F (13)

F = 1 + b1x + b2x
2 + b3x

3 + b4x
4 + b5x

5 + . . . .

Explicit analytic expressions for the coefficients bi are very
long. They are presented in the original paper.46 To illustrate
convergence we present below the series for S = 1/2 and
S = 1.

S = 1/2 :

{
Square lattice: F = 1 + x + 0.5x2 + 0.167x3 + 0.068x4 + 0.037x5 + . . .

Triangular lattice: F = 1 + x + 0.667x2 + 0.315x3 + 0.116x4 + 0.045x5 + . . .
(14)

S = 1 :

{
Square lattice: F = 1 + x + 0.656x2 + 0.375x3 + 0.188x4 + 0.087x5 + . . .

Triangular lattice: F = 1 + x + 0.771x2 + 0.500x3 + 0.288x4 + 0.154x5 + . . . .

A comparison of the series expansion (14) for S = 1 square
lattice with quantum Monte Carlo simulations45 (the same
QMC data as in Fig. 1) is shown in Fig. 2.

Note that here we compare theory with theory, just different
asymptotic representation of the same susceptibility. From
comparison of series with QMC we conclude that the used
series expansion for S = 1 is satisfactory at T/J > 1.6, i.e.,
at x < 1.65. So, the value x = 1.65 is the maximum value of
x where we can rely on the series. At this limit the accuracy
of series is about several percent. For S = 1/2 the maximum

value of x, assuming the same accuracy, is about x = 1.9. At
higher temperatures (smaller x) the series are very accurate.
In the same Fig. 2 we plot the exponential fit of QMC data
(10). The fit obviously does not give the right high-temperature
behavior.

Let us check how the type of lattice and value of spin
influence the function F (x). Since the system is not frustrated,
a priori we expect an almost universal behavior. The function
F is plotted in the top panel of Fig. 3 for square and for
triangular lattice Heisenberg models for spins S = 1/2,1,2.
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FIG. 2. (Color online) Magnetic susceptibility per site for S =
1 square lattice Heisenberg model. Results of QMC simulations
(Ref. 45) are shown by symbols. Values of the magnetic field
are B = 0.005J (red circles) and B = 0.01J (black squares). The
magenta solid line shows the series result (14). The dashed blue line
shows the exponential fit (10) of QMC data. The top and the bottom
panels show the same plot in different scales.

The plots confirm that the dependence of F on the type of
lattice and on the spin is very weak. Moreover, having in mind
that we will use F to fit experimental data with unknown values
of S, Z, and J we always can rescale the variable x, x → αx.
The plots of F (αx) vs 1/x are shown in the bottom panel of
Fig. 3. We chose the square lattice with S = 1 as the reference
lattice, so here α = 1. For other situations the rescaling factors
are as follows: square lattice with S = 1/2, α = 1.21; square
lattice with S = 2, α = 0.93; triangular lattice with S = 1,
α = 0.91. With the rescaling the curves for F collapse to the
almost universal function shown in the bottom panel.

IV. COMPARISON WITH EXPERIMENTAL
MAGNETIC SUSCEPTIBILITY DATA

Experimental susceptibility data1 are presented in Fig. 4.
The MIT occurs at n = nMIT = 0.85, hereafter for densities
we use units 1011 cm−2. The data at densities close to MIT,
n = 0.55,0.88,1.43, we call the “upper set of data” and the data
deep inside the metallic phase, n = 4.3, we call the “lower set
of data”; see Fig. 4. To fit the data we use the high-temperature
Heisenberg model expansion

χ/n(μB/T ) = A
T0

T

F (x)

F (x0)
, (15)
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FIG. 3. (Color online) Top panel: Function F (x) vs 1/x for
four different Heisenberg models. Square lattice: S = 1/2 (double-
dashed–dotted magenta line), S = 1 (black solid line), and S = 2
(red dashed line). Triangular lattice S = 1 (green long-dashed line).
Bottom panel: Function F (αx) vs 1/x for the same models. The
scaling factor α is chosen to collapse all the curves to an almost
universal function.

where T0 = 1.7 K is the minimum temperature where the data
are available; Fig. 4. We already pointed out that F (x) is a
practically universal function which is almost insensitive to
spin and type of lattice. Changing spin/coordination number
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FIG. 4. (Color online) Experimental data (Ref. 1) for χ/n vs
temperature for various values of electron density n. Below values of
n are given in units 1011/cm2. Black circles correspond to n = 0.55,
red squares correspond to n = 0.88, green diamonds correspond to
n = 1.43, and blue triangles correspond to n = 4.3. Solid black lines
show the S = 1 square lattice Heisenberg model fit and the dashed
red lines show the S = 1/2 square lattice Heisenberg model fit.
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is equivalent to rescaling the variable x, i.e., rescaling the
exchange integral J . To demonstrate this again we fit the data
with square lattice. In Fig. 4 black solid lines correspond to
S = 1 and red dashed lines correspond to S = 1/2. The fitting
parameters are

upper set: S = 1, J = 1.05 K, A = 3.5

S = 1/2, J = 3 K, A = 2.76;

lower set: S = 1, J = 0.7 K, A = 0.73

S = 1/2, J = 2 K, A = 0.73. (16)

The maximum value of x with these parameters and with
T > 1.7 K is within the region of validity of series expansions
discussed in Sec. III. The fits presented in Fig. 4 are quite good.
We reiterate again that the fits are not sensitive to a particular
lattice geometry and spin. For example, we can assume
triangular lattice with spin S = 1. The fitting curves practically
coincide with the black solid lines presented in Fig. 4, however
the exchange integral is different, for example for the upper
set of data J ′ = 0.93 4

6J ≈ 0.65 K. The robustness of the be-
havior/fits is due to the unfrustrated character of ferromagnetic
interaction. So, fits of the temperature dependence of magnetic
susceptibility confirm validity of the Heisenberg model and
reliably determine the following combination of parameters:

upper set of data: ZS(S + 1)J ≈ 9 K;

lower set of data: ZS(S + 1)J ≈ 6 K. (17)

Since we deal with random droplets (random lattice) the
meaning of ZS(S + 1)J is

ZS(S + 1)J → S(S + 1)
∑
nn

Ji, (18)

where nn denotes nearest neighbors and the right-hand side
certainly assumes averaging over droplets.

In the insulating phase, n < nMIT , all electrons are local-
ized, so the total electron density n is equal to the density
of localized electrons nl . It is natural to assume that in the
metallic phase, n > nMIT , the density of localized electrons
is roughly independent of n and is equal to nl ≈ nMIT . With
account of this argument, the n = 4.3 data (the lower set) have
to be scaled up by a factor of n/nMIT = 4.3/0.85 ∼ 5. After
this scaling, the “lower set” is getting closer to the “upper set.”

In the insulating phase, n < nMIT , the separation between
droplets is increasing when the electron density is decreasing,
l ∝ 1/

√
n. The ferromagnetic exchange J has the usual

Hund-like origin and hence it depends exponentially on
the separation, J ∝ exp(−l/R), where R is the radius of
localization (radius of the droplet). At MIT R ∼ l and this
corresponds to the density n = 0.85. The minimum density
with available data is n = 0.55. So compared to MIT l is
changed by factor

√
0.85/0.55 ≈ 1.25. The variation is too

small to have a sizable effect on J and this is why we do not
see the variation in the data. To see a sizable effect one needs
to go to a significantly smaller density. We also discuss this
issue in Sec. V.

To estimate the spin of the droplet S and the number of
electrons in the droplet N we need to analyze the absolute
value of the magnetic susceptibility. We do this only in the
insulating phase where all electrons are localized (the upper set

of data). The number density of droplets is n/N . Equation (13)
gives the dimensionless theoretical magnetic susceptibility per
droplet. Restoring Bohr magneton and Boltzmann constant we
rewrite (13) in terms of surface susceptibility, χ/(n/N ) =
S(S+1)(gμB )2

3kBT
F (x). We will assume that the spin g factor is

g = 2. Equation (15) fits the experimental susceptibility per
electron, χ/n, presented in Fig. 4. The experimental value is
given in Bohr magnetons per one T per electron. Equating the
theoretical expression with fit of data,

χ

n
= 4

3

S(S + 1)

N

μ2
B

kBT
F (x)

→ 4

3

S(S + 1)

N

μBB0

kBT
F (x) = A

T0

T

F (x)

F (x0)
, (19)

we get the following relation:

S(S + 1)

N
= 3

4

kBT0

μBB0

A

F (x0)
. (20)

Here B0 = 1 T. The fitting parameters are given in Eq. (16).
From both S = 1 [x0 = 1.65, F (x0) = 8.58] and S = 1/2
[x0 = 1.76, F (x0) = 6.50] upper set fits we get

S(S + 1)

N
≈ 0.77. (21)

This is the value of the ratio determined from the measured
susceptibility.

The set S = 1/2, N = 1 perfectly fits the measured ratio.
Another possibility is S = 1, N = 4 which gives S(S +
1)/N = 0.5. According to Ref. 47 the N = 4 droplet can have
spin 1. One cannot exclude a possibility of S = 1/2 N = 3
droplet. In this case S(S + 1)/N = 0.25, but in the end the
ratio is determined from the prefactor and uncertainty about
factor 2–3 is probably possible. Higher values of S and N seem
unlikely; one needs extremely fine tuning with higher S and
N . Thus, we conclude that the combinations S = 1/2, N = 1;
S = 1, N = 4; and S = 1/2, N = 3 are the most likely. We
know that the experimental saturation spin magnetization in
the insulating phase is roughly ∼50% of the maximum possible
spin magnetization.1,23 This is approximately consistent with
all the combinations which we have pointed out above.

A small droplet with N = 1 or N = 3 electrons naturally
has spin S = 1/2. For N = 4 the value of spin can be either
S = 0 or S = 1 (S = 2 is practically impossible). Many-body
calculations for small 2D quantum dots47 show that the ground-
state spin of a four-electron dot is S = 1, already at a rather
moderate value of Coulomb repulsion. Note that in referring to
this we imply that the two-valley dispersion degeneracy in 2D
silicon is not relevant; the valley hybridization is sufficiently
large, at least 3–4 K. Due to the hybridization, electrons occupy
only the bonding combination of valleys and the droplet is
similar to the N = 4 quantum dot in GaAs.47 Without such
hybridization, the spin of the N = 4 quantum dot in silicon
would be S = 0, because two electrons with total spin S = 0
would occupy one valley and the other two electrons also with
S = 0 would occupy another valley.

At the lowest measured density, n ∼ 0.5, the linear de-
pendence of magnetization on magnetic field is observed
at gμBB � 0.1 K; see Fig. 1(c) in Ref. 3. The dependence
is strongly nonlinear at higher fields. Comparing this value
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with the low-density parameters in (16) (the “upper set”) one
concludes that the dimensionless magnetic field, gμBB/J , in
the linear regime is smaller than 0.1 in the case of S = 1 and
smaller than 0.03 in the S = 1/2 case. Hence Tm < 1.6 K for
S = 1 and Tm < 1.2 K for S = 1/2; see discussion in Sec. II.
This proves that the analysis of data in Fig. 4 at T > 1.7 K
with field-independent susceptibility is self-consistent.

Concluding this section we summarize the main points.
(i) The experimental data demonstrate a very singular behavior
of the susceptibility as T → 0 in the insulating phase. The
singularity is much stronger than the Curie one. In our opinion,
this indicates a 2D quantum Heisenberg ferromagnet. This is
our major observation. Very good fits of experimental data
obtained using high-temperature series expansions confirm
validity of this conjecture. (ii) The random Heisenberg
ferromagnet is magnetically unfrustrated and this is why
we can use the analysis results obtained for nonrandom
Heisenberg ferromagnets. (iii) Since the system is unfrustrated
the ground state is the usual ferromagnet; there is no spin-glass
behavior. (iv) Usage of high-temperature series expansions in
the analysis allows us to reliably determine the prefactor in
the susceptibility and hence find the spin and the number of
electrons in the droplet. The most likely combinations are
S = 1/2, N = 1,3 and S = 1, N = 4.

V. HOW TO FURTHER CHECK THE
HEISENBERG MODEL PICTURE?

The low-temperature exponential divergence of the mag-
netic susceptibility in the 2D ferromagnetic Heisenberg model
is necessarily accompanied by high sensitivity to the magnetic
field. The dependence is clearly demonstrated in Fig. 1,
where it manifests itself as Tm(B) with two distinct behaviors
for T < Tm and T > Tm. Alternatively, one can consider
the susceptibility (or magnetization) as a function of the
magnetic field at a fixed temperature. This will also have two
distinct regimes, one with approximately linear dependence
of the magnetization on the magnetic field when B < B∗ and
one with very slow increase/saturation of magnetization at
B > B∗. There are indications of such behavior in existing
experimental data.1,2 Further measurements and comparison
with results of series expansions and Monte Carlo simulations
can shed more light on this problem.

Another possibility to test the model is to measure the
specific heat in a magnetic field in the insulating phase.
We already pointed out in Sec. II that the magnetic field
significantly and predictably modifies the specific heat. Again,
a comparison with the results of series expansions and
Monte Carlo simulations for the Heisenberg model would
be very useful. An order of magnitude estimate of the effect
immediately follows from Eq. (11) which gives the specific
heat per site. Hence per unit area the specific heat is

C = π

12

nl

N

T

JS
. (22)

We remind that nl is density of localized electrons and
N is the number of electrons per droplet. At T ∼ J ∼ 1 K the
specific heat is about ∼ 0.1kB per electron, where kB is the
Boltzmann constant. A magnetic field of about few T must
suppress this specific heat to zero.

It is known that there are two mechanisms for interaction
between localized spins: (i) the usual Hund-like exchange
and (ii) superexchange.48 The exchange mechanism leads
to the ferromagnetic interaction, while superexchange leads
to the antiferromagnetic one. We remind that we denote
by R the radius of localization (radius of the droplet) and
by l the separation between droplets. Obviously R < l.
Usually at R ∼ l, exchange wins and this, in our opinion,
describes the present situation. On the other hand, at R � l ∝
1/

√
n, superexchange always wins,49 leading to the random

antiferromagnetic interaction. We already pointed out that
a random antiferromagnetic interaction results in magnetic
frustration and hence it results in a spin-glass state.38–40

So, at a sufficiently low electron density below MIT we
predict a density driven transition from the ferromagnetic
state considered in the present work to a spin-glass state.
Unfortunately we cannot quantitatively predict the critical
density for the onset of the spin-glass state. Experimental
indication for the transition (crossover) is a change in the
temperature dependence of the magnetic susceptibility from
the very singular, ∝ exp(const/T ), in the ferromagnetic state
to a much less singular, ∝ 1/T α , α < 1, in the spin-glass
state.

VI. CONCLUSIONS

We suggest the quantum Heisenberg ferromagnet model
to explain the anomalous magnetic properties observed in
the vicinity of the metal-insulator transition in a low-density
two-dimensional silicon-based electron gas. The ferromagnet
is composed of electron-spin droplets. The observed very
steep temperature dependence of the magnetic susceptibility
is associated with the intrinsic exponential divergence in the
Heisenberg model. By comparing the experimental data with
known analytical and numerical results for the 2D Heisenberg
ferromagnet, we determine the parameters of the model,
ZS(S + 1)J ≈ 9 K, where Z is the effective coordination
number, S is the spin of the droplet, and J is the ferromagnetic
exchange constant between droplets. We further argue that
most likely S = 1/2 or S = 1 with 1–4 electrons occupying
each droplet on average. The 2D Heisenberg ferromagnet is
strongly and distinctly influenced by magnetic field. Based on
these properties, we suggest further experiments to test the
model.
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