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A finite-element method is presented for calculating the quantum conductance of mesoscopic two-dimensional
electron devices of complex geometry attached to semi-infinite leads. For computational purposes, the leads
must be cut off at some finite length. To avoid spurious, unphysical reflections, this is modeled by transparent
boundary conditions. We introduce the Hardy space infinite-element technique from acoustic scattering as a way
of setting up transparent boundary conditions for transport computations spanning the range from the quantum
mechanical to the quasiclassical regime. These boundary conditions are exact even for wave packets and thus
are especially useful in the limit of high energies with many excited modes. Yet, they possess a memory-friendly
sparse matrix representation. In addition to unbounded domains, Hardy space elements allow us to truncate those
parts of the computational domain which are irrelevant for the calculation of the transport properties. Thus,
the computation can be done only on the region that is essential for a physically meaningful simulation of the
scattering states. The benefits of the method are demonstrated by three examples. The convergence properties
are tested on the transport through a quasi-one-dimensional quantum wire. It is shown that higher-order finite
elements considerably improve current conservation and establish the correct phase shift between the real and
the imaginary parts of the electron wave function. The Aharonov-Bohm effect demonstrates that characteristic
features of quantum interference can be assessed. A simulation of electron magnetic focusing exemplifies the
capability of the computational framework to study the crossover from quantum to quasiclassical behavior.
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I. INTRODUCTION

The theoretical understanding of low-temperature quantum
transport in mesoscopic electron devices has been pioneered
by Landauer1 and Büttiker.2 Their approach allows us to
understand the quantum interference in submicron Aharonov-
Bohm–(AB–) type geometries,3,4 quantization of the conduc-
tance of point contacts and Hall geometries,5–7 and other
phenomena such as reproducible (universal) conductance
fluctuations8 or signatures of quantum chaos in electron
transport through two-dimensional (2D) cavities.9

Quantitative calculations of the phenomena have been
carried out by using the Landauer relation between zero-
temperature direct-current electron conductance and quantum
transmission.10 In practice, this implies that the calculation
of the quantum coherent transport requires knowledge of
the quantum transmission amplitudes.11 These can be deter-
mined without knowing the space dependence of the wave
functions of the scattering states. However, a central result
of recent scanning probe microscopy experiments12–14 is a
spatially resolved picture of the electron flow through the
two-dimensional electron gas (2DEG) under the condition
of stationary current flow. These experimental recordings
have revealed caustic phenomena and current branching in
absence13–15 and in presence of magnetic fields.12

For a detailed comparison of theory, simulation, and
experiment, the computation of the scattering wave functions
is mandatory. It is the aim of this work to provide a tool for
the accurate prediction of the wave functions of scattering
states and the corresponding current densities in semi-infinite
systems with complex boundaries.

While a scanning probe microscopy experiment can only
give a detailed account of the system including the perturbation
due to the charged tip of the microscope, a simulation
can assess the properties of the unperturbed system and

additionally is able to model the experiments by including the
tip as a further contribution to the background potential. The
work of Szafran16 shows that the tip can be accurately modeled
as a Lorentzian and it is not necessary to take into account
interaction effects. As already done by Aidala,12 the fringes in
the local electron density obtained from the simulation can be
used to assess the interaction of the tip and the electron wave.

Neglecting the spin and apart from the electron wavelength,
three length scales characterize a 2DEG: the elastic mean-free
path due to disorder scattering, the coherence length due
to interaction-induced inelastic scattering, and the magnetic
length. In the ballistic regime, i.e., on length scales less than
the mean-free path between two scattering events, electrons
move almost unimpeded. At sufficiently low temperatures,
the coherence length due to interaction effects can be made
arbitrarily long leaving the elastic mean-free path due to
impurities, a material parameter, to set the length scale for the
dimensions of a 2DEG device to be ballistic. In such devices,
scattering occurs only at the walls and in the contacts.

At low temperatures and for high electron-mobility ma-
terials such as GaAs/AlGaAs heterostructures, the elastic
mean-free path of an electron can be of the order of several
tens of micrometers. Hence, the experimentally observed low-
temperature transport in micron-size semiconductor devices
can be considered as essentially ballistic. For this special case,
the quantum mechanical transport properties can be calculated
from the solution of the single-electron Schrödinger equation
using an appropriate effective mass in the kinetic energy, a
local potential which models the details of the device, and a
vector potential in case a magnetic field is applied.

In general, for complex geometries, the Schrödinger equa-
tion can not be solved analytically. For the vast majority
of potentials and geometries of complicated shape, e.g.,
an Aharonov-Bohm ring with some realistic contacts, the
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Schrödinger equation must be solved numerically by some
local discretization technique such as finite differences or
finite-element methods (FEM). The former is conceptually
simpler in that it just reverts derivatives to the difference
quotients they have been derived from. Finite elements have
their roots in computational fluid dynamics and provide a
well-established theoretical and practical framework for the
solution of nonlinear systems of partial differential equations
on complex geometries. Special types of finite elements can
be shown to be equivalent to particular finite differences.
For instance, on a regular Cartesian mesh subdivided into
triangles, linear Lagrange elements lead to the same matrix
representation of the Laplacian as nearest-neighbor finite dif-
ferences. The advantage of finite elements is that discretization
means integration. This considerably reduces the regularity
requirements for the solution of a partial differential equation
(PDE) and tremendously simplifies the proper treatment of
spatially varying coefficients. The electrostatic potential in the
Schrödinger equation is a good example for this, in particular,
when it models internal details of the shape of the 2DEG
device.

Lent and Kirkner17 were one of the first to apply finite
elements to current-carrying states in mesoscopic samples.
The scattering problem for 2D ballistic samples including the
effect of a perpendicular magnetic field has been studied by
Wang et al.18 and Ueta and Miyagawa.19 In one dimension
(1D), the convergence properties have been studied by Power
and Rawitcher.20 Including electron interaction, FEMs have
been adapted to finite-size scaling in three dimensions (3D)
and were employed to compute quantum critical parameters
for a two-electron atom by Antillon et al.21 Especially for
wave functions in the scattering region, the correct choice of
boundary conditions at some artificial boundary is essential. It
seems that the case where only a subset of the domain of the
2DEG is of physical interest and how the uninteresting part
can be properly truncated from the computational domain has
not been addressed, yet.

The main contribution of this work is the development of
a hybrid finite-element Hardy space infinite-element (HSE)
formulation for ballistic electron transport in spatially un-
bounded 2DEGs. HSE methods have been developed recently
to improve transparent boundary conditions (TBC) for FEM
for acoustic scattering.22–24 The particular feature of the HSEs
is that they lead to a formally exact TBC even for a multimodal
wave function.

Transparent boundaries allow us to truncate the physically
uninteresting parts from the 2DEG and the leads thus consider-
ably lowering the computational costs. In the leads, unphysical,
spurious reflections must be avoided which otherwise would
spoil the measured transport properties. The presentation of the
TBC in this work is independent of the spatial dimension and
the particular application. Thus, it applies to three-dimensional
wave phenomena as well.

In contrast to standard recursive Green’s function ap-
proaches based on tight-binding models, we use higher-order
finite elements on irregular, problem-adapted meshes which
in general can not be obtained from Cartesian grids by
means of a single coordinate transformation.25 Moreover,
higher-order finite elements significantly reduce numerical
dispersion errors.26,27

The numerical accuracy of the method is demonstrated
by studying the quality of the current conservation in a
quasi-one-dimensional (quasi-1D) quantum wire. For a fixed
mesh width, the error in the current conservation converges
exponentially to zero with respect to the polynomial degree
of the finite elements as it can be expected from theory.22

The flexibility of the method to model geometries especially
with curvilinear boundaries is demonstrated by reproducing
features of the AB oscillations of the transmission through
a ring structure threaded by a δ-function-type magnetic flux
density.

The benefits of the method for simulating 2DEGs of
almost macroscopic extent are demonstrated by computing the
scattering states and their spatial electron density distributions
for magnetotransmission through the specimen discussed in
the thesis by Metzger.28 Beyond the reproduction of the
semiclassical magnetotransport properties, we have access to
the fine structure of the transmission properties due to the
wave nature of the electrons. The quantum-specific part of
the magneto-transport turns out to be very sensitive to subtle
changes in the details of the geometry.

The paper is organized as follows. Section II summarizes
the model and the finite-element method for ballistic electron
transport. Section III explains the Hardy space infinite-element
technique. In Sec. IV, the method is validated against the
analytically known transmission properties of the quantum
wire and the Aharonov-Bohm ring. Section V shows that the
Hardy space infinite-element method is capable of creating a
realistic model of a magnetic focusing device of which only
a small part accounts for the direct-current transport. In the
concluding Sec. VI, the main results are summarized and future
perspectives are indicated.

II. FEM FOR QUANTUM TRANSPORT

As a typical example for a quantum transport experiment, a
general, four-terminal setup is sketched in Fig. 1. The sample
region is denoted as � and comprises the perfect leads of
infinite length and the subdomain where the scattering occurs.

Electrons can enter and leave the scattering domain only via
the perfect leads, which by definition have constant widths.
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FIG. 1. Sketch of scattering experiment. The hatched areas
indicate regions containing scatters. �: sample region; ∂�S : source
contact; ∂�D: drain contacts.
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FIG. 2. (Color online) Sketch of outlet interface to exterior
domain. The dotted line separates the semifinite domain �int of the
interior problem from the infinite exterior domain �ext.

Any additional transverse potential in a lead is invariant
under longitudinal translations. Sections of the lead where the
potential varies in the longitudinal direction must be included
in the scattering domain.

The walls of the leads and the impenetrable part of the
boundary ∂� of the scattering domain are denoted as ∂�Hw.
The contacts between the leads and the scattering domain are
referred to as either ∂�S , for a source lead, or as ∂�D for
drain leads. In experiments, it is common practice to connect
leads to the sample by quantum point contacts (QPCs). These
are modeled as short narrow constrictions of the leads close to
∂�D and ∂�S (cf. Fig. 10).

In the following, we only consider geometries with two
leads. One acts as source and the other as drain. In the case of
the magnetic focusing simulations in Sec. V, finite sections of
the hard walls will be made transparent in order to simulate a
system with infinite extent in certain directions. This can be
considered as a generalization of the four-terminal setup in
Fig. 1.

We want to use finite elements for discretizing the
Schrödinger equation. Thus, we have to design a computa-
tional domain of finite extent. To do this, we subdivide the
domain � into a finite interior part �int consisting of the
scattering domain and the sections of the leads close to ∂�S

or ∂�D (cf. Fig. 2) and a part �ext containing the unbounded
exterior parts of the leads. The edge interfacing �int and �ext at
the cutoff is denoted as �. The finite-element computations are
done on �int, whereas the influence of the wave propagation
in �ext is put into suitable boundary conditions at �.

Within the leads, the coordinate x denotes the longitudinal
coordinate and points away from �int. The transverse coordi-
nate is y. The coordinates (x,y) in the leads are local ones, i.e.,
x = 0 denotes the interface to the scattering domain. We will
use this convention throughout this work as the meaning of x

and y is usually obvious from the context.
At zero temperature, in the absence of any interaction,

electron transport can be considered as quantum mechanically
coherent. In the linear limit, i.e., zero transport voltage, only
the electrons at the Fermi level with energy EF and wavelength
λF contribute to the current.

For these electrons, the contribution of an incident mode
ψp in the source to the wave function in a drain lead far away
from the scattering domain can be written as a superposition

of plane waves

�p =
∑

q

tpqψq, (1)

ψq = gq(y)eikqx, (2)

where q counts the occupied states in the drain. The contribu-
tions to the individual drain modes are measured by scattering
amplitudes tpq . For simplicity, we assume that the states in the
source and drain leads with respect to their local coordinate
systems are given by the same set of orthogonal functions
{ψp}p∈N .

The details of the transverse potential in the drain determine
the shape of the transverse profile gq(y) of the wave function
and the distribution of the energy levels

εq = EF − k2
q (3)

due to the transverse confinement. Current is carried only
by those modes for which longitudinal wave numbers kq =√

EF − εq are real.
The functions gq(y) solve the transverse eigenproblem in

a lead and are mutually orthogonal. Units are chosen such
that the effective mass of the electron, its charge, and Planck’s
constant are one (see Sec. II B). Normalization of the functions
gq is chosen such that∫

∂�X

|gq |2 = 1, X ∈ {S,D}. (4)

A. Quantum conductance

In a lead of finite width L, the net current density for an
arbitrary wave function � is given by the normal component
which can be obtained by computing the contribution flowing
in the direction of the outbound normal n of the channel cross
section

j(y) = h̄

m∗ Im(�∂n�
∗), (5)

where ∂n = n · ∇ is the normal derivative and m∗ is the
effective mass. Integrating over the lead’s cross section gives
the normal component of the current

J = h̄

m∗ Im

(∫ L

0
dy �(xout,y)∂n�

∗(xout,y)

)
, (6)

where xout is the longitudinal coordinate denoting the position
where the lead is cut off (see Fig. 2).

The wave function and thus the probability current in
Eq. (6) depend on the incoming mode p. Normalizing the
current with respect to the current of the incoming mode of
wave number kp = pπ , i.e., to divide the current by h̄kp/m∗,
gives the transmission probability

Tp(�p) = m∗

h̄
Jp/kp. (7)

The total transmission T is given by summing over p, i.e., the
contributions due to all open input modes

T =
∑

p

Tp(�p) = m∗

h̄

∑
p

Jp/kp. (8)
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The unknown amplitudes tpq ∈ C are determined by the details
of the scattering mechanism and the particular input mode ψp

in the source lead. Provided both leads have the same shape
and mode p is used as input, utilizing the decomposition given
in Eq. (1) the conductance between the source and one drain
lead is given by the well-known Landauer-Büttiker formula10

G = e2
0

2πh̄
T = e2

0

2πh̄

∑
p

∑
q

kq

kp

|tpq |2, (9)

where e0 is the elementary charge.

B. Single-electron description

The wave function � describing our scattering state on �

is determined by the stationary Schrödinger equation

1

2m∗

[(
h̄

i
∇ − qA(x)

)2

+ V (x) − E

]
� = 0 (10)

of a single electron with effective mass m∗, charge q, and total
energy E in the presence of a vector potential A(x) giving
rise to a static magnetic field. In our applications, E is going
to be the Fermi energy EF . The model is completed by a
suitable set of boundary conditions to describe hard walls and
the semi-infiniteness of the leads.

For a constant magnetic field within the scattering do-
main � we use the Landau gauge A(x) = B(−y,0,0)T .
Throughout this work, B is considered as the primary
control parameter. Depending on the spatial scale a, the
dimensionless quantities (2m∗a2/h̄2)E → E, (qa/h̄)A → A,
a∇ → ∇, (2m∗a2/h̄2)qV → V lead to the final dimensionless
Schrödinger equation

[−∇2 + 2iA · ∇ + |A|2 + V − E]� = 0. (11)

The spatial scale a (corresponding to the lattice parameter in
tight-binding calculations) is assumed to be in the range 0.1
to 1 μm. As effective mass we can use the one of GaAs, i.e.,
m∗ = 0.067m0 at 0 K when measured in units of the mass of
a free electron m0.

At those parts ∂�Hw of the boundary ∂� where no leads
are attached to the scattering domain �int the wave function is
subject to perfectly hard walls, i.e., we have used homogeneous
Dirichlet conditions

�|∂�Hw
= 0. (12)

Especially for waveguides the choice of hard walls is not
optimal. To achieve a more realistic description of 2DEGs in
waveguides, one rather has to use a parabolic potential along
the transverse coordinate of a waveguide. Some distance away
from the waveguide, the parabolic potential would have to be
cut off at some finite value. Therefore, an accurate model of the
wave propagation transverse to the waveguide would require
transparent boundary conditions along the walls as well. This
poses no problem as such terms are simply incorporated into
the potential energy landscape V (x). It does not play a role for
the transparent boundary conditions either, as Eq. (30) shows.
The potential only enters the integral over the set of artificial
cutoffs {�c}c. The only restriction is that V (x) does not vary
with respect to the radial direction in the truncated part of the
domain.

In the leads, far away from the scattering domain the
scattered part of the electron’s wave function has to match
the free-particle behavior, i.e., it has to fulfill Sommerfeld’s
radiation condition

lim
x→∞ x

1
2 (∂x − ik) �|∂�D

= 0. (13)

C. Variational formulation

By construction, finite elements are only applicable to
bounded domains. Obviously, this contradicts leads of in-
finite length. The semi-infinite extent of the leads has to
be modeled by surrogate boundary conditions which allow
an outgoing wave to pass without any artificial reflections.
Sommerfeld’s radiation condition (13) essentially fulfills this,
but for numerical purposes its direct application is impractical.
Instead, we construct the boundary conditions from Hardy
space infinite elements23 which basically are a transformation
of Sommerfeld’s radiation condition to the unit circle. The
zero-Dirichlet boundary conditions modeling the hard walls
are directly built into the function space in which the solution
is sought. The weak form is obtained from multiplying both
sides of Eq. (11) with a test function � and integrating over
� = �int ∪ �ext:

−
∫

�

�∇2� + 2i

∫
�

�A · ∇�+
∫

�

�[|A|2 + V − E]� = 0.

(14)

For scalar products we introduce the shorthand notation

(u,v)D :=
∫

D

uv, (15)

where D is the domain of integration and u and v are some
functions defined on D. If D denotes a subset of the boundary,
u and v denote the restrictions to it.

The weak form is obtained by integrating by parts which
removes one derivative of the solution. To this end, we
explicitly write (·,·)� = (·,·)�int + (·,·)�ext and integrate on
both subdomains independently. In the arising boundary terms
(·,·)∂�int and (·,·)∂�ext , we denote by nint the outer normal of
the interior domain �int and by next the outer normal of the
exterior domain �ext. At the interfaces � where �int and �ext

have a common edge, both normals are opposite to each other
nint|� = −next|� . The test functions � are chosen such that
they vanish on ∂�Hw so that only the boundary terms at the
interfaces � remain. To emphasize that we are going to treat
interior and exterior differently, the integrals on the exterior
part will be given explicitly. Then, the weak form formally
reads as

(∇�,∇�)�int + (�,[|A|2 + V − E]�)�int

+ (�,2iA · ∇�)�int − (�,∂nint�)�

+
∫ ∞

0

∫
�

∇� · ∇� + 2i�A · ∇� + �[|A|2 + V − E]�

−
∫

�

�∂next� = 0. (16)
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To simplify notation, we define the bilinear forms a(·,·) for the
interior problem

a(�,�) := (∇�,∇�)�int + (�,[|A|2 + V − E]�)�int

+ (�,2iA · ∇�)�int (17)

and b(·,·) for the sum of the exterior problems in the truncated
part of the leads which eventually will give us the required
transparent boundary conditions

b(�,�) :=
∑

c

(∇�,∇�)�c×R+

+ (�,[|A|2 + V − E]�)�c×R+

+ (�,2iA · ∇�)�c×R+ . (18)

For the drain lead, the surface integrals in Eq. (16) cancel
each other. In the source lead, the wave function consists of
an incoming plane-wave part f and a contribution due to the
backscattering at the contact. As � describes the scattered part
of the wave function, the surface integrals do not cancel and
the surface integral over f remains. This yields the right-hand
side

f (�) := (�,∂nextf )�in , (19)

where �in is the interface to the source lead. The final form of
our variational problem is

find � ∈ X ⊂ H 1(�int) such that ∀ � ∈ X :

a(�,�) + b(�,�) = f (�). (20)

The terms due to the interior problem can be treated by standard
FEM. The details of how to set up the solution space X

is discussed in the thesis by Nannen.22 The space H 1(�int)
consists of all functions defined on �int which are square
integrable and whose partial derivatives are square integrable
as well.

All computations are based on the finite-element library
deal.II.29 As deal.II only works on meshes based on quadri-
lateral or hexahedral cells, all of its finite elements are
implemented as tensor products of univariate polynomials.
Throughout this paper, we use the standard Lagrange elements
which are based on polynomials of total degree p. In two
dimensions, these are defined as

Qp =
⎧⎨
⎩u(x,y) =

∑
0�i,j�p

aij x
iyj

⎫⎬
⎭ . (21)

The finite elements themselves are then given by all functions
u : � → R of which the restriction to a cell K is an element
of Qp.30 The power of deal.II lies in the fact that the rather
high-level and problem-adapted description as, e.g., given in
Eq. (17) suffices to reconstruct our implementation because
the evaluation of the underlying integrals is provided by the
library.

III. HARDY SPACE INFINITE ELEMENTS

For the exterior problem, we have to convert the integral
over the longitudinal coordinate into an integral over a finite
domain to make the integral exist in the sense of Lebesgue.

A. Converting
∫ ∞

0 to
∫ 2π

0

The inapplicability of finite-element methods to infinite
domains forces us to model the leads as finite stubs by
truncation at xout (see Fig. 2). To recover the infiniteness of the
domain, we employ so-called Hardy space infinite elements
as developed in the thesis by Nannen.22 In contrast to other
methods, Hardy space infinite elements are formally exact
and lead to a rather sparse matrix for the discretized boundary
conditions. Hardy spaces have been named in honor of Hardy’s
work31 on the mean value of the modulus of an analytic
function on the boundary of a circle which lays the functional
analytic foundation for considering them as boundary values
of functions defined only on the interior of a circle. For an
overview about the theory of Hardy spaces, see the monograph
by Duren.32

HSE map the longitudinal coordinate x of the unimpor-
tant exterior subdomain onto the unit circle so that

∫ ∞
0 is

transformed into
∫ 2π

0 . This is achieved by applying a Möbius
transformation Mκ0 to the Laplace transform û(s) of the wave
function u(x) with respect to the longitudinal coordinate

u(x)
L
−→ û(s)

Mκ0
−→ Û (z). (22)

The Laplace transform L maps the real axis to another straight
line through the origin in the complex plane and Mκ0 maps
the line onto the boundary of the unit disk. If there is no
ambiguity, we drop the index κ0 of M. Given a function u(x) :
R+ → C we will denote its ML transform as Û (z). Applied
to a univariate plane wave with wave number k and amplitude
u0 ∈ C, this chain of transformations looks as follows:

u0e
ikx L
−→ u0

s − ik

Mκ0
−→ −iu0

κ0(z + 1) − k(z − 1)
. (23)

This results in a finite-element formulation23 which for the
interior domain of interest keeps the usual notion of approx-
imating the wave function as a function of position in space,
whereas on those parts of the boundary representing the cutoff
cross sections of the leads a different set of tensor-product
polynomials is used. For the longitudinal direction, they may
be thought of as modeling the behavior in a generalized
frequency domain while keeping the spatial dependency for
the transverse direction.

The most important tool for converting the integrals over
the semi-infinite domain of the leads into integrals over some
finite domain is the following identity22 based on Cauchy’s
integral theorem:

(u,v)R+ =
∫ ∞

0
u(r)v(r)dr = 1

2πi

∫
κ0R

û(s)v̂(s)ds

= κ0

iπ

∫ 2π

0
Û (e−iθ )V̂ (eiθ )dθ = κ0

iπ
(Û ,V̂ )S1 . (24)

Mapping the tilted real axis to the unit circle S1 is achieved by
the Möbius transformation

ϕ(z) := iκ0
z + 1

z − 1
, z = e−iθ , Reκ0 > 0,

(25)

(Mf )(z) := 1

z − 1
f [ϕ(z)], f : κ0R → C.
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Due to the symmetry properties of the exterior domain �ext =
R+ × ∂�c = R+ × [0,1] we can use a separation ansatz
factoring out the longitudinal direction x,

�(x,y) = ψ(y)u(x), (26)

�(x,y) = φ(y)v(x), (27)

and apply the ML transform to the longitudinal direction

ML�(x,y) = ψ(y)(MLu)(z), (28)

ML�(x,y) = φ(y)(MLv)(z). (29)

Let us first apply the HSE method to a simplified case in
which there is no vector potential in the leads (independent of
the issue of how to realize this in an experiment). Due to the
separation ansatz and the fact that on �ext the potential only
depends on the local transverse coordinate y (cf. Fig. 2), the
scalar products factorize as

(∇�,∇�)�ext + (�,[V − E]�)�ext

= (φy,ψy)�(u,v)R+ + (φ,ψ)�(ux,vx)R+

+ (φ,[V − E]ψ)�(u,v)R+ .

Derivatives with respect to a coordinate are indicated by
indices. By applying Eqs. (28) and (29), we get as weak
formulation of the transparent boundary condition

iπ

κ0
b(�,�) =

∑
c∈{contacts}

[{(φy,ψy)�c
+ (φ,[V − E]ψ)�c

}(Û ,V̂ )S1

+ (φ,ψ)�c
(Ûx,V̂x)S1 ]. (30)

B. Test and ansatz functions

In order to use the standard FEM approach, we still need
to define a finite-dimensional subspace of the functions on the
unit circle. This is accomplished by using the span of a finite
set of complex trigonometric monomials restricted to the unit
circle:

{z0,z1, . . . ,znH }, z = eiθ , θ ∈ [0,2π ). (31)

For details of the arising matrices, see Refs. 23 and 24. The
number nH of degrees of freedom in the Hardy space has to
be chosen such that the results, i.e., the transmission values,
converge sufficiently well.

IV. TEST OF THE METHOD

To validate the HSE method, we consider a simple quantum
wire and study the different aspects of the quality of the
numerical solution. The capability of dealing with magnetic
fields is tested on the AB effect.

A. Dependence on HSE parameters

In all our calculations, we did not find any significant
effect of the HSE parameters κ0 and nH on the current
conservation, provided the method is correctly employed, that
is, κ0 defines a line that does not intersect with the spectrum
of the Hamiltonian. Especially, the simulations in Sec. V
show that even in the quasiclassical limit for high energies,
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FIG. 3. Higher-order FEM solution (solid line) vs linear elements
(dashed line). Contour lines represent electron density |�|2, EF = 28,
Lx = 6.9, nDoFs = 1026.

nH = O(1) to O(10) suffices. Therefore, in the following we
rather focus on the effects on the numerical error induced by
using different finite elements and mesh widths.

B. Perfect lead

Figure 3 shows a contour plot of the electron density |�|2
in a perfect lead for two different polynomial degrees of the
finite elements. Since the lead is empty, the analytic solution
for a wave incident from the left is �(x,y) ∝ sin(πy)eikx .
The electron density |�|2 ∝ sin2(πy) is translation invariant
with respect to the longitudinal coordinate x. For numerical
purposes, the normalization is such that �(x,0.5) = 1. We
choose Lx = 6.9 as length in the x direction and Ly = 1 as
width. For linear elements, the mesh widths are hx = 0.121
and hy = 0.125. For the quartic elements, hx = 0.484 and
hy = 0.5 are used. In both cases, we have 9 degrees of freedom
(DoFs) on the width of the lead and 1026 DoFs in total. As
Fig. 3 shows, at this resolution the linear elements still produce
some wiggling structure in the x direction whereas the quartic
elements produce a constant profile. Real and imaginary parts
of the wave function have the correct phase shift of π/2. It
is known26,27 that linear finite elements without further effort
concerning the stabilization of the numerical solution scheme
are not an optimal choice for the wave equation and that
they lead to considerable phase errors in Helmholtz problems.
As discussed in the recent review27 by Thompson, it is also
an accepted fact that higher-order elements are an effective
remedy against unphysical dispersion artifacts in the discrete
solution.

C. Perfect lead with potential barrier

The quality of the current conservation in the presence
of a scatterer is studied next. Results are shown in Figs. 4
and 5. We use a simple step barrier of height U = 20 and
length L = 2.25 in a section of an infinite wire with domain
�int = [0,xout] × [0,1] with xout = 6 (see inset of Fig. 4).
From the transmission Tp and reflection probability Rp of
the different input modes ei

√
EF −ε1x sin(pπy), p = 1,2,3, . . . ,

we compute the conductance from Eq. (8). Together with the
corresponding error R0 + T0 − 1 of the current conservation
in the contribution of the ground-state mode, we plot T as
function of the Fermi energy in Fig. 4. We only show the error
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FIG. 4. (Color online) Transmission T (top) and current con-
servation R0 + T0 − 1 in the contribution of the ground-state mode
(bottom) vs energy E for various mesh widths h and finite elements
for a fixed total number of DoFs. Inset: Sketch of system.

of the ground-state mode because the total error is the sum of
the individual errors and apart from a shift along the energy
axis the behavior of the error with respect to the mesh width is
the same for all modes. The transmission shows the expected
quantization and oscillations near its jumps as it can be found
in standard textbooks. The steps in the conductance reflect
the number of open modes, whereas the oscillatory behavior
is related to the barrier length. To compare the quality of the
current conservation, three combinations of finite elements and
a number of mesh refinements are used, which all lead to the
same number of DoFs. The underlying coarse grid consists of
six cells of size 1 × 1. Since for two-dimensional computations
deal.II only provides quadrilateral cells, all finite elements are
constructed from tensor products. Thus, on a cell of the mesh,
an element of degree p can be represented by the polynomials
of total degree p as given in Eq. (21). For linear elements
(Q1), the mesh is refined five times so that the final mesh
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FIG. 5. (Color online) Consistent with finite-element theory,
the error of the current conservation scales like h4 for Q4 elements
[cf. Eq. (21)].

width is h = 1
32 . For quadratic elements (Q2) which (away

from the domain boundaries) have two degrees of freedom
per coordinate direction per cell, the mesh width is h = 1

16 .
Similarly, quartic elements (Q4) have 4 degrees of freedom per
coordinate direction per cell and require only h = 1

8 to obtain
the same number of DoFs. The lower part of Fig. 4 clearly
shows that higher-order elements pay off by two effects. On the
one hand, the error behavior for elements of even order is much
smoother than for elements of odd order, especially linear
ones. On the other hand, although Q4 elements are employed
on the coarsest grid, the error in the current conservation is by
almost two orders of magnitude smaller than for Q2 elements.
This can be understood by looking at the trace theorems
from finite-element theory33 which predict that the error in
Eq. (6) induced by replacing the exact wave function by the
numerically computed one should scale like hq where q is
the polynomial order of the element. Hence, in case of Q4

elements, a global refinement of the mesh by a factor of 2
should reduce the error by a factor of 16. This is highlighted
in Fig. 5 by choosing a log16 scale for the abscissa.

D. Aharonov-Bohm effect

The simulation setup for the AB effect is a thin ring
connected to two leads. The coarse grid prior to refinement
is shown in Fig. 6. We use the AB vector potential

AAB(x) = B

2π |x|2
(−y

x

)
, (32)

which produces a constant magnetic flux through the ring
irrespective of the ring diameter. The magnetic field in the
arms of the ring is zero.

In contrast to the other simulations presented in this paper,
the measuring process is perpendicular to the direction of
motion of the wave function. Waves in the ring propagate
azimuthally. Thus, incident waves can not be fed into the ring
parallel to the azimuthal direction. After injection, incident
waves have to be scattered from the radial direction into
the azimuthal direction. Similarly, measuring the flux at the
outlet can not be done parallel to the direction of motion
and the wave has to scatter from the azimuthal direction into
the radial direction in order to deliver a detectable signal.
We compare our results with the experiments by Cassé34 and
Hansen.35 Both show that for rings with arms of finite width
one may encounter period doubling and phase shifts in the AB
oscillations, depending on the value of the Fermi energy. The
coarse mesh of our model ring is shown in Fig. 6. It has an

FIG. 6. Coarse grid for the Aharonov-Bohm simulation.
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inner radius Ri = 4 and an outer one Ro = 5. These values are
chosen such that the geometry of the scattering domain in the
simulation resembles the one in Hansen’s experiment35 (cf.
the inset of its Fig. 1). To roughly reproduce the experimental
setup, we widen the cells forming the contacts with the ring so
that the leads locally get a funnel-like shape. For high energies
where several modes are active and the total transmission is
given by the sum in Eq. (8), the oscillation frequency and
phase may drastically change with energy as it selects which
modes have a dominant contribution.36 In the case of the AB
oscillations, we are rather interested in a proof of concept
and therefore use as Fermi energy EF = 10 to bring out
the quantum effects. Because of the way the coarse mesh is
generated, the cells close to the contacts may be asymmetric,
but after mesh refinement to the working resolution there are
always enough DoFs to fully resolve the wave nature of the
solution. We refine the mesh four times and use Q2 elements so
that there are 32 DoFs on the cross section of the contacting
leads and of the arms of the ring. The comparison with an
analytic solution of an infinitely thin ring requires that only
one mode is active in the lead. To improve the realism of the
boundary approximation, we use the isoparametric version of
the Q2 elements, i.e., both the wave function and the boundary
of the ring are approximated by quadratic polynomials. We
note in passing that the issue of a piecewise linear boundary
should be compared with Kokoreva et al.37 as corners might by
interpreted as pointlike scatterers. As Hardy space parameters
we use κ0 = 0.13 exp(0.2iπ ) and nH = 10. The reason for
this particular value of κ0 is that if we chose κ0 = √

E − π2

and nH = 0, the Hardy space elements would turn into the
first-order TBC

∂n� = ik�, (33)

which are exact for the monochromatic case if the wave number
k equals the wave number in the direction of motion, i.e.,
k =

√
EF − π2. As incident wave from the left we use the

same plane wave as in Sec. IV B. The solid line in Fig. 7 is
a manual fit to the AB oscillations for EF = 10.0 as function
of magnetic flux as predicted for a ring with one-dimensional
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arms

a0[1 + cos(νφ/φ0)] (34)

and just serve to guide the eye. As fitting parameters we use
a0 = 0.115 and ν = 1.01. In a perfect, one-dimensional ring,
the frequency should be ν = 1. Figure 8 shows that similar
to Fig. 4 in Hansen’s paper35 our transmission curves are
very sensitive to changes in the Fermi energy. Changes of
about 1% decide whether the effect of frequency doubling
appears, which is comparable to experimental findings. These
tests show that we are able to correctly reproduce the purely
quantum mechanical effect of Aharonov-Bohm oscillations. A
detailed study of the dependence on the shape of the contacts
of the transmission properties of an AB ring of finite width is
a project of its own which is beyond the scope this paper.

V. MAGNETIC FOCUSSING IN 2DEGS

To show the usefulness of the method for simulating quan-
tum transport, we use the magnetic focusing device previously
studied by Metzger28 as a nontrivial benchmark. He computed
the conductance from an ensemble of classical single-electron
trajectories by counting how many of them reach the drain
at a given magnetic field. At sufficiently high energies, the
magnetoconductance computed from the classical simulation
should coincide with the quantum mechanical results. Hence,
one has to take into account a, possibly large, number of
plane waves. Moreover, because of the size of the 2DEG
device, we restrict the computational domain to the lower
left corner where the actual scattering occurs. Truncation of
the noninteresting part of the sample introduces additional,
extended transparent boundaries. This is considerably different
from the previous examples of the quantum wire and the AB
device where only the leads had to be cut off at some finite
length. Electrons considered as classical particles of velocity v
in a (constant) magnetic field B are subject to the Lorentz force
FL = −e0(v × B). When entering the device from the source,
they move on trajectories forming circular arcs (cf. Fig. 9).
From the balance of centripetal and Lorentz force follows the
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source

drain

magnetic
field

FIG. 9. (Color online) Classical electron trajectories in a previ-
ously studied (Ref. 28) magnetic focusing device. Colors indicate
different strengths of the magnetic field.

classical cyclotron radius

Rc = m|v|
|e0B| . (35)

In the absence of a potential electrons of energy E = mv2/2
hit the drain for the first time if Rc = R (cf. Fig. 10), i.e., the
magnetic field strength has to be

B0 =
√

E

R
. (36)

For higher magnetic fields, transmission occurs whenever
Rc = R/N,N ∈ {1,2, . . .}. Due to the fact that electrons can
leave the source under different angles, there is a multitude
of classical trajectories which leads to a broadening of the
peaks similar to the one observed in a quantum mechanical
description and to the appearance of peaks at noninteger values
of N .

R

LAdecay

LAoff

source

drain

LAdecay

LAdecay

regauging

FIG. 10. (Color online) Coarse grid of the focusing device. Gray
arrows indicate inbound and outbound waves on the transparent
boundaries. Color gradients denote the areas where the vector
potential is turned off. In the drain this must be preceded by a
regauging step.

A. Details of simulation

Due to the size of the device, we only consider its physically
relevant part, i.e., the lower left corner of 4 × 4 μm. This
introduces two additional transparent boundaries in the north
and east of the domain, indicated by gray arrows in Fig. 10. To
directly compute the wave function, several technical issues
still have to be addressed.

1. Vector potential at transparent boundaries

At boundaries parallel to the vector field (cutoff of source
lead and eastern boundary), we turn off the vector potential
smoothly in a strip of width LAdecay (color gradient from blue
to white in Fig. 10) such that no artificial reflections occur.
Using the regauging method by Baranger et al.,38 we can
locally change the direction of the vector potential to align it
with the drain lead (color gradient from blue to red in Fig. 10).
After reorientation, we can proceed as in the source lead. This
does not alter the quantum mechanic flux through the leads’
cutoff boundaries where we measure and we may use the TBC
developed in Sec. III A for the Helmholtz case.

2. Model geometry for the contacts

Much of the experimental effort is spent on connecting
the leads by quantum point contacts (QPC) so that electrons
entering the device from the exterior reservoirs have a well-
defined electronic state and a very narrow distribution of their
direction of motion. The QPCs are modeled by narrowing the
leads to a third of their width where they are attached to the
bulk. To model the pointlike contacts between the 2DEG and
the wires, the boundary is shaped like a shallow funnel on the
side of the 2DEG.

3. Choice of Fermi energy

The electron density ne− in the devices studied by Metzger28

are 2.2 to 2.5×1011 cm−2. From ne− we can compute the
Fermi wavelength λF and estimate the required spatial reso-
lution of the computational mesh. In 2D, one state in k space
occupies a volume of 4π2/L2 where L2 is the area covered
by the 2DEG. The volume of the Fermi sphere in 2D is πk2

F .
Including spin degeneracy, the number of states in the Fermi
sphere is NkF

= 2πk2
F /(4π2/L2). Dividing by the sample size

gives the density ne− = NkF
/L2 = 2π/λ2

F . From this we get
λF = √

2π/ne− . In the experiments discussed by Metzger, the
distance R from the lower left corner to the centers of the QPCs
is 3 μm. For ne− = 2.2 × 1011 cm−2, this corresponds to 56
λF and 60 λF for ne− = 2.5 × 1011 cm−2. For R = 6.5a, a the
length scale from Sec. II, 1 cm corresponds to 104R/3. Thus, in
our units (up to ±10%) EF = k2

F = 2πne− (3 × 10−4/R)2 ≈
3000 and λF = 2π/

√
EF ≈ 0.12a or 4 wavelengths per coarse

grid cell.

4. Beam collimation

Additionally, we add a “door sill” potential Vds in the
constrictions to let only pass electrons with kinetic energy
in the direction of the lead (long straight arrow in the source
lead in Fig. 9). In the local coordinates of the leads, its shape is
Vds = αEF cos2(πx/2Lds), α ∈ [0,1), and Lds measures the
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width of the door sill. Typical choices are α ∈ [0.85,0.95] and
Lds = 0.25a. For |x| > Lds we set Vds ≡ 0. Electrons with
a finite amount of kinetic energy for a movement transverse
to the direction of a lead (zigzagging arrows in Fig. 9) are
reflected.

5. Choice of Hardy parameters

Before we can simulate the quantum mechanical properties
of the device by solving the Schrödinger equation (11), to get
the scattering states �p for the various input modes we have
to check whether physical results depend on the parameters of
the Hardy space transparent boundary conditions. As shown
elsewhere,39 the physical results do not particularly depend
on the choice of the Hardy space parameters. Even for Fermi
energies EF = O(103) a value of |κ0| ≈ 6 and nH ≈ 10 gave
good results, although theory22 would suggest to choose |κ0| ≈
kF . The coarse grid including the modifications to the vector
potential is shown in Fig. 10. For all simulations shown here
we use |κ0| = 5.5623, −i ln κ0 = 0.2π , nH = 11, total system
size L = R + 2.5, LAdecay = 0.75, LAoff = L − LAdecay , and Q2

Lagrange elements. The origin is in the lower left corner of
the geometry. The source lead is parallel to the x axis and the
drain parallel to the −y axis. In the source lead, the decay of the
vector potential starts at x = 0 and in the drain at y = −0.75.
The regauging zone in the drain starts at y = 0. The leads
always have a width L = 1.

6. Simulated systems

We use two different system sizes and Fermi energies. The
small device with R = 4.5 and EF = 557.6 (corresponding
to ne− = 2 × 1010 cm−2) serves to estimate the effect of the
door sill potentials in the QPCs. To do this, we plot the
electron density distribution for various characteristic peaks
in the magnetoconductance (cf. Figs. 11 and 12). Especially,
without door sill potentials (Fig. 11) a proper treatment of
the open boundaries is crucial as many modes have to be let
through at once. The large system with R = 6.5, EF = 1090.6
(ne− = 8.14 × 1010 cm−2), and door sill potentials of height
0.9EF shows that our simulation can be close to experiments.
For EF = 557.6 the coarse mesh is refined four times and for
EF = 1090.6 five times. This yields meshes sufficiently fine
to reliably compute the magnetoconductance up to the fourth
peak, i.e., for classical trajectories with Rc = R/4. A variation
in the length of the leads does not influence the transmission
properties.

B. Electron densities and conductance

The classical behavior can be inferred from the wave
functions �p computed independently for the different input
modes. Since there is no interaction between the electrons,
the total electron density is given by �(x,y) := ∑

p |�p|2. For
improved visualization we rather work with

√
� and choose

the plot range such that the electron flow in the bulk and in the
drain is well resolved.

When plotting
√

�(x,y) as in Figs. 11–13, the classical
trajectories should be recoverable from the ridges formed
by the local maximums. In areas without self-interference,

these ridges should be tangential and in areas of strong self-
interference orthogonal to the trajectories. This is particularly
evident for high magnetic fields which provide a sufficiently
strong focusing.

The transmission probabilities are computed by applying
Eqs. (7) and (8) to the cross section of the drain lead where it
is cut off. The flux through the transparent boundaries in the
north and east of the domain could be measured in the same
way which would allow us to control the current conservation.
Since this has been done already extensively on the simpler
examples, this is ignored in the following.

Figures 11 and 12 show probability densities and magneto-
transmission spectra for the small system with Fermi energy
EF = 557.6 and two different contacts to the leads. In Fig. 11,
the contacts are just given by the narrowing of the leads,
whereas in Fig. 12 a door sill potential has been added to
further select which modes from the leads contribute to the
transmission. The comparison of Figs. 12 and 13 highlights the
effects of shortening the Fermi wavelength by approximately
doubling the Fermi energy while the contacts remain the same.

Similar to the classical trajectories only for selected values
of the magnetic field strength B, the wave function is able to
penetrate from the bulk into the drain. Rescaling B with 1/B0

removes the dependence on the system size and reveals the
universal behavior of the conductance as a function of B/B0

[Figs. 11(e), 12(e), 14, and 15]. These figures are obtained
by calculating the current [Eq. (6)] through the terminal
cross section of the drain for each input mode and plotting
the modal and total transmission [Eqs. (7) and (8)] against
B/B0. The dominant peaks correspond to the classical cy-
clotron trajectories and are mostly close to integer values of
B/B0. The fine structure present in the transmission spectra
is due to the wave nature of the electrons. One observes that
the current is mainly carried by modes 1 and 3 as they are
the only ones which fit through the constriction. Without door
sill potentials, there is also a contribution by modes 2 and
4 to the total transmission but their influence can almost be
completely eliminated by the door sill potentials as Figs. 12(e)
and 15 reveal. The comparison of Figs. 11(e) and 14 in
Sec. V B2 gives an account of the influence of the chamfered
corner.

1. General observations

There are several general observations which apply to all
of the electron density plots:

(i) There is always a strong reflection of the input modes at
the source contact. This is consistent with the ballistic electron
model which implies that scattering only occurs in contacts to
the leads and at hard walls.

(ii) The dispersion of the wave function shifts the peaks to
values of B/B0 lower than those expected classically.

(iii) At the artificially introduced boundaries, which are
not present in the real system but which are needed to
restrict the computational domain to the subregion of physical
importance, spurious reflections are avoided. This is revealed
in particular in the snapshots of the electron density for low
magnetic fields at the eastern boundary and in general in the
drain. Furthermore, the transmission curves agree well with
those obtained from semiclassical simulations.28 This would
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(a) B/B0 = 1.35 (b) B/B0 = 1.825

(c) B/B0 = 2 (d) B/B0 = 2.35
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FIG. 11. (Color online) Modulus of the wave function � at EF = 557.6 and R = 4.5. Distribution for the caustic peak at B/B0 = 1.35 (a),
split second classical peak at B/B0 = 1.825 (b) and B/B0 = 2 (c), broad peak at B/B0 = 2.35 (d), and third classical peak at B/B0 = 3 (f).
The total transmission and the contribution of the individual input modes are shown in (e).
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(a) B/B0 = 1 (b) B/B0 = 1.825

(c) B/B0 = 2 (d) B/B0 = 2.35
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(e) (f) B/B0 = 3

FIG. 12. (Color online) Modulus of the wave function � at EF = 557.6, R = 4.5, and door sill potentials with height 0.9EF . Subfigures
are as in Fig. 11 except for (a) which now shows the distribution for the first broad focusing peak. The strong beam collimation eliminates the
caustic peak and enhances the classical peak at B/B0 = 2.
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(a) B/B0 = 1 (b) B/B0 = 1.86

(c) B/B0 = 2 (d) B/B0 = 2.48

(e) B/B0 = 3 (f) B/B0 = 3.96

FIG. 13. (Color online) Modulus of the wave function � at EF = 1090.6, R = 6.5, and door sill potentials with height 0.9EF . As in
Fig. 11, selected electron distributions and the total transmission and the contribution of the individual input modes are shown. Due to the
shorter Fermi wavelength, it is much easier to identify the classical trajectories.
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FIG. 14. (Color online) Total transmission and contribution of
the individual input modes for the system shown in Fig. 11 but
without chamfered corner. Peaks related to classical trajectories, e.g.,
at B/B0 = 2, which require reflection in the corner are suppressed.

not be the case if the boundary conditions were not able to
correctly handle the multimodal case.

(iv) Even-numbered peaks (near B/B0 = 2 and 4) are
subject to higher-order caustic effects. Several “trajectories”
leave the corner in different directions yet they are recollimated
approximately at the same location at the wall or in the contact
to the drain. For the collimated beam emanating from the
source, the corner breaks the focusing and splits the beam [cf.
Figs. 12(c), 13(c), and 13(f)].

(v) Similar to Hall systems in the presence of a magnetic
field, the current flows mostly near the boundary in the drain.
Good examples for this are Figs. 11(f) and 13(f).

(vi) Similar to experiments,13,14 we observe branched elec-
tron flow although there is no weak disorder potential in our
model. In our case, the source of the branching is not the
scattering of the wave function at the ripples of the weak
disorder potential but rather at the various features of the
shape of the geometry. The branching is especially visible in
the drain where the vector potential still can focus the wave
function. If the lead was infinitely wide, the QPC would be
a pointlike source giving rise to a spherical wave. Yet, the
funnellike shape refocuses the transmitted wave in the outlet,
and the combination of reflections at the lateral walls of the
lead and the magnetic field induce several ridges in the electron
density similar to what is observed when the electron wave in
an extended system gets scattered at the ripples of the weak
disorder potential. Branching is also induced by scattering at
the chamfered corner and backscattering into the bulk at the
entrance to the drain lead. In this sense, the chamfered corner
and the drain contact can be considered as scattering centers.
In the corner device discussed here, the branching is clearly
caused by interference effects.

Figure 11 shows the electron densities associated with the
peaks at B/B0 = 1.35, 1.825, 2, 2.35, and 3. The absence of
the door sill potentials in the contacts allows the even modes
to contribute to the total transmission and as a result the peak
expected at B/B0 = 1 turns into a shoulder of the so-called
“caustic” peak at B/B0 = 1.35. Classically, the caustic peak
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FIG. 15. (Color online) Total transmission and contribution of the
individual input modes for the system with EF = 1090.6, R = 6.5,
and chamfered corner and door sill potentials with height 0.9EF . The
strong beam collimation eliminates almost all but the classical peaks.

corresponds to semicircular trajectories, the diameter of which
equals the distance between source and drain. The values of
B in Figs. 11(b)–11(d) and 11(f) are chosen such that we can
compare the quantum simulation with the classical trajectories
sketched in Fig. 9. Figure 11(d) is equivalent to a trajectory
leaving the source at an acute angle with the lead axis and
getting reflected twice before hitting the drain.

2. Influence of the chamfered corner

To assess the influence of the chamfered corner, compare
Figs. 11(e) and 14. In its presence, the wiggles in the Tp

curves between the main peaks are more pronounced. The
wiggles can be explained by self-interference effects of the
spherical wave emanating from the source with its reflections
at the hard walls. From the classical trajectories, one would
expect that only peaks belonging to even multiples of B/B0

would be affected which is consistent with the first peak around
B/B0 ≈ 1 not being influenced. Yet, the shape of the curve at
B/B0 ≈ 2.4 shows that the details of the corner can have a
significant impact on the transmission. The chamfered corner
enhances the contributions of the odd modes (1,3,5,7) near
B/B0 ≈ 2 and partly eliminates the double-peak structure in
the contribution of the even modes (2,4) in the vicinity of
B/B0 ≈ 1.7.

A purely quantum mechanical feature of the T curves are
the small wiggles between the main peaks. The wiggles are
caused by the small local maximums in the electron density
close to the hard walls which get pushed into the drain one
after another when B is increased. Another interesting feature
is observed when analyzing the contributions of the different
modes. Consider the first structure for B/B0 between 0.5 and
about 1.5. In analogy to geometric optics, the peak at B/B0 ≈
1.35 has been interpreted as a caustic peak on the basis of the
trajectory sampling by Metzger.28 The quantum mechanical
treatment in this paper provides an interpretation in the sense
of wave optics. From the data shown in Figs. 11(e) and 14, one
notes that the contributions of the odd modes (1,3,5,7) have
broad maxima at B/B0 ≈ 1, while the even modes (2,4,6)
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contribute a split peak with a broad maximum at B/B0 ≈ 0.5
and a sharp peak near B/B0 ≈ 1.35. This is due to the fact
that in the middle of the drain contact the densities of the odd
modes are maximal which is not the case for the even modes.
Therefore, odd modes produce a collimated beam propagating
in the direction of the lead, whereas even modes produce a
split beam with its two parts leaving the source under a finite
angle with the lead axis. As a result of this beam splitting, one
part moves on a more direct way and hits the drain already
for much smaller values of B/B0. The superposition of all of
the modes smears out the already broad peak at B/B0 = 1 and
turns it into a shoulderlike structure of the sharp caustic peak
at B/B0 ≈ 1.35.

3. Electron beam collimation in the contacts

Adding local barrier potentials in the QPCs collimates the
electron beam and suppresses the caustic peak located near
1.35B0 and other peaks. By varying the height of the door sill
potentials, it can be figured out which peaks are mostly due to
electrons leaving the source under a finite angle with respect
to the lead axis.

Figure 12 shows the electron densities associated with the
peaks at B/B0 = 1, 1.825, 2, 2.35, and 3 when a door sill
potential of height 0.9EF is present and eliminates the even
modes. The first observation is that the total transmission
is substantially reduced. Since the caustic peak is removed
from the total transmission, we instead show the electron
density of the first focusing peak at B/B0 = 1 in Fig. 12(a).
Its rather large half-width of approximately �(B/B0) = 0.5
can be explained by the broad charge distribution of the
electron density in front of the drain contact. Without door
sill potentials, the first focusing peak could only be noticed
by looking at the contributions of the individual modes in
Fig. 11(e). The suppression of the caustic peak agrees with the
results from semiclassical methods28 and was studied in more
detail elsewhere.39

Figure 13 shows the electron densities associated with the
peaks at B/B0 = 1, 1.86, 2, 2.48, 3, and 3.96 in Fig. 15 for
the system with EF = 1090.6, R = 6.5, and with door sill
potentials of height 0.9EF . Compared to Fig. 12, the electron
densities are even closer to the classical regime due to the
shorter wavelength.

As in the case of the smaller system for barrier heights
close to EF , the current is carried by the first and third
modes which can be seen in Fig. 15. Almost all “nonclassical”
peaks are gone due to the beam collimation. The double
peak at B/B0 ≈ 2 is a characteristic feature of the chamfered
corner.

VI. CONCLUSION

We have successfully applied the Hardy space infinite-
element method to the problem of calculating the single-
electron scattering wave function in quantum wires, Aharonov-
Bohm rings, and in semiopen, two-dimensional electron
systems. The Hardy space method is a recent development
and is a novel form of transparent boundary conditions for
finite-element computations in acoustic scattering.24 This type
of boundary condition allows us to truncate uninteresting

parts of extended systems. Thus, we can do a full quantum
mechanical calculation of the stationary scattering states in
complex geometries at comparatively low computational costs.

It is possible to pair the transparent boundary conditions
presented in this work with methods for solving the time-
dependent Schrödinger equation.39 This would allow us to
simulate chemical reaction probabilities40 or the transmission
properties of dielectric media.41

With direct access to the wave function, the scattering
matrix can be obtained as a function of the magnetic field,
and the zero-temperature direct-current conductivity can be
computed using the Landauer-Büttiker relation between quan-
tum transmission and conductance. This provides a complete
description of the quantum mechanical features of ballistic
transport in a device including the local electron density.
Hence, we can compare our simulation not only to conductance
measurements but also to the experimentally imaged electron
flows. Although not done here, given the wave function it
is straightforward to compute the current density within the
device.

Since the charged tip of a scanning probe microscope can be
modeled as an additional term in the background potential,16

it is also possible to simulate the experiments12,13 and similar
ones. The additional output of such simulations would be the
local electron density and the local current density.

The benchmark tests for the quantum wire show that using
higher-order finite elements drastically improves the quality
of the numerical current conservation because of the improved
phase accuracy of the numerical solution.

The Aharonov-Bohm test case demonstrates that the
method is able to reproduce purely quantum mechanical
interference patterns for which an accurate reproduction of
the phase of the electron’s wave function is crucial. In
particular, we are able to work on geometries with smooth
boundaries which are a much more realistic representation
of the experimental setup than computational domains with
piecewise linear boundaries.

The nontrivial example of the scattering states in a 2D
corner device shows that, despite its complexity, the Hardy
space infinite-element technique is worth the effort to im-
plement it. It is possible to compute the wave functions for
energies up to values representative for the classical limit
and for electron densities typically used in experiments.
Furthermore, we have studied the influence of the details
of the contacts and of the shape of the sample on the
transmission properties in a mode-resolved manner. We can di-
rectly establish the relationship between the individual modes
and which features in the magnetoconductance curves they
cause.

Considering the discussion of the problem of numeri-
cal dispersion errors in the mathematical literature, e.g.,
Refs. 26 and 27, it is certainly worthwhile to assess the ap-
proximation properties of different combinations of variational
formulations, finite-element spaces, and rules for numerical
quadrature. Especially for simulating Aharonov-Bohm–type
effects, an accurate approximation of the phase information is
crucial. Since increasing the strength of the magnetic field
confines the wave propagation to smaller portions of the
computational domain, we should also look into local mesh
adaption.
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Beyond these technical topics, a systematic study of various
geometric effects due to the details of the shape of the boundary
and the contacts should give further insight into the nature
of the wave functions in the corner device when subject
to a magnetic field. In a similar way, we may investigate
the magnetoconductance and the electron distribution in the
presence of a tunneling tip or the weak disorder potential due
to the donor layer beneath the two-dimensional electron gas by
a suitable choice of the potential in the Schrödinger equation.
Especially, we are able to study quantitatively the crossover
from the quantum mechanical to the classical behavior of
electrons by varying the Fermi energy.
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