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Group-velocity slowdown in a double quantum dot molecule

Stephan Michael,1 Weng W. Chow,2 and Hans Christian Schneider1,*

1Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
2Semiconductor Materials and Device Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1086, USA

(Received 24 June 2013; published 13 September 2013)

The slowdown of optical pulses due to quantum-coherence effects is investigated theoretically for an “active
material” consisting of InGaAs-based double quantum dot molecules. These are designed to exhibit a long-
lived coherence between two electronic levels, which is an essential part of a quantum-coherence scheme
that makes use of electromagnetically induced transparency effects to achieve group-velocity slowdown. We
apply a many-particle approach based on realistic semiconductor parameters that allows us to calculate the
quantum dot material dynamics including microscopic carrier scattering and polarization dephasing dynamics.
The group-velocity reduction is characterized in the frequency domain by a quasiequilibrium slowdown factor
and in the time domain by the probe-pulse slowdown obtained from a calculation of the spatiotemporal material
dynamics coupled to the propagating optical field. The group-velocity slowdown in the quantum dot molecule is
shown to be substantially higher than what is achievable from similar transitions in typical InGaAs-based single
quantum dots. The dependencies of slowdown and shape of the propagating probe pulses on lattice temperature
and drive intensities are investigated.

DOI: 10.1103/PhysRevB.88.125305 PACS number(s): 78.67.Hc, 42.50.Gy

I. INTRODUCTION

Quantum-coherence effects encompass a variety of inter-
ference effects in the coherences, i.e., transition amplitudes,
between quantum states that are driven by laser light. In
quantum optics, they have been known for decades.1–6 In
particular, electromagnetically induced transparency (EIT) is
based on the quantum interference associated with a long-
lived coherence, which can make an optically thick medium
transparent for a probe field in the presence of a drive
field. Because the coherent effects also modify the dispersive
properties, a very small group velocity may occur for pulses,
which is usually referred to as slow light. Electromagnetically
induced transparency, group-velocity slowdown, and other
quantum-coherence effects have been intensively investigated
in atomic, molecular, and optical (AMO) physics; see, e.g.,
Refs. 1 and 7. There have been different proposals to realize
quantum-coherence effects in few-level systems in solid
state8–15 and especially semiconductors8,10,11,16–21 because of
the possible importance of these effects for optical information
processing, such as an optical delay line. Slow light has been
achieved in semiconductor quantum wells using setups that
employ coherent population oscillations of excitons instead
of the EIT-type processes in quantum dots (QDs) considered
in the present paper.12,22 Other approaches, for instance,
involving slow light in photonic crystals, are also being actively
pursued.23

Semiconductor QDs, which are arguably the closest real-
ization of a system with localized states and discrete energies
in semiconductors, are a natural candidate for the realization
of quantum-coherence processes24–28 in a material for which
extremely advanced growth and processing techniques exist.
However, for electron-hole transitions in semiconductors
typical dephasing times severely limit the achievable group-
velocity slowdown, even in QDs,28,29 where there is the small-
est “phase space” for scattering and dephasing processes. As it
is known from quantum optics, such a pronounced dephasing
is detrimental for quantum-coherence effects. Depending on

the levels that are connected by drive and probe fields, �, V

and ladder schemes can be realized, and these can be compared
directly as long as one applies an AMO model that assumes
dephasing constants for the various polarizations involved in
the respective schemes.28 For instance, it has been shown that
the structural QD parameters can generally be more easily
optimized for V schemes than for other schemes.27,30

We discuss in this paper only V -type schemes, as opposed
to the � schemes analyzed earlier by us,25,31,32 in which the
quantum coherence connected two hole states. In such a �

setup there is a sizable dephasing of the quantum coherence
from the hole states because they are closely spaced and
broadened by polaronic interaction effects. This problem can
partly be circumvented by using a short drive pulse,31,32 but the
time window, during which the probe pulse is slowed down, is
too short to be useful for applications.33

In this paper we make a theoretical proposal for a QD
molecule that is designed to lead to a long-lived coherence
between its lowest electronic levels. The proposed design
consists of two QDs of different sizes stacked in growth
direction, and should be within reach of current fabrication
techniques, as evidenced by recent investigations that have
shown how QD molecules can be fabricated with prescribed
properties.34–36 The lineup of the energy levels of the proposed
QD molecule are not qualitatively different from those of
a single InGaAs-based QD, for which quantum-coherence
effects have already been investigated.25,30–32 What sets the
molecule apart from the single QD is the “wave-function
engineering” that leads to dipole matrix elements and dephas-
ing rates that are favorable for group-velocity slowdown. We
demonstrate this by employing a model from semiconductor
many-particle physics rather than an AMO model. We stress
that, while an AMO model uses constant dephasing rates for
the individual levels and the dipole matrix elements as input,
our approach uses the relevant matrix elements from a sim-
plified QD electronic structure calculation and computes, in a
microscopic fashion, the dephasing and scattering processes
in QD molecules due to the Coulomb interaction between
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charged carriers and/or the carrier-phonon interaction. Based
on this approach, we characterize the slowdown factor of these
QD molecules in the frequency domain and explicitly calculate
the group-velocity slowdown of a probe pulse propagating in
a semiconductor host surrounding these model QD molecules.
For the dynamical calculation, we combine a determination of
the propagating optical fields, as in Refs. 28 and 29, with
a microscopic theory for the calculation of scattering and
dephasing processes along the lines of Refs. 37–42. Work
in this area has recently been comprehensively reviewed in
Ref. 43.

The paper is organized as follows. The design of the
asymmetric QD molecule is presented along with a calculation
of its electronic single-particle states and energies in Sec. II.
Results from the semiconductor Bloch equations including
many-particle scattering and dephasing effects as they apply
to QDs and from the treatment of pulse propagation in semi-
conductors are gathered in Sec. III. Using the semiconductor
Bloch equations, we first investigate the slowdown factor
and the slowdown-bandwidth product determined from the
spectral features for different lattice temperatures and cw
drive intensities in Sec. IV A. Next, in Sec. IV B we deter-
mine the slowdown factor and pulse characteristics directly
from the propagating probe field. We investigate the influence
of the probe-pulse shapes for different lattice temperatures,
and cw drive intensities. We compare these results with
the group-velocity slowdown determined from the spectral
features. The final discussion of Sec. V concerns the differ-
ences to quantum-coherence schemes in single semiconductor
QDs. The setup for the single QDs including electronic
single-particle states and energies is presented in Sec. V A.
The slowdown factor determined from the spectral features
for different lattice temperatures and cw drive intensities is
investigated in Sec. V B. These results are compared to the
QD molecule results from Sec. IV A in Sec. V C. We present
our conclusions in Sec. VI.

II. ELECTRONIC STRUCTURE OF THE QD MOLECULE

The purpose of this section is to introduce the design of
an asymmetric QD molecule with an electronic structure that
is particularly well suited for quantum-coherence effects in a
V configuration. We do not aim at a comprehensive theory
of the electronic structure of QD molecules, which would
have to include the complicated alloy concentration and strain
fields of the QD molecule and the surrounding structure.
Rather, we describe here a numerically tractable model that
includes the geometry of the QD molecules under study as
well as static electric fields and works with a few meaningful
parameters that characterize the structure. In particular, we
compute the single-particle states, i.e., wave functions and
energies of the double QD molecules from the states of the
two underlying single QDs that make up the molecule. In
the following, we assume that the QD molecules are formed
from two vertically stacked QDs, separated by a spacer layer,
such as one of the three double layers sketched in Fig. 1. We
assume that the QD molecules are embedded in a quantum
well and take the QW continuum states as plane waves that are
orthogonalized to the localized states of the QD molecule; see
Ref. 44.

FIG. 1. Schematic drawing of setup for the calculation of group-
velocity slowdown with a V scheme formed by levels in the QD
molecules as shown in Fig. 2. For the determination of the slowdown
factor, the drive field is assumed to be cw; for the dynamical
calculation a “quasi-cw” drive pulse with duration much larger than
the probe pulse is used.

For the QDs we assume that they are grown on a wetting
layer embedded in a quantum well. We use the envelope-
function approximation and assume a cylindrical confinement
potential of finite depth which yields semianalytical results for
the wave functions and energies. This approach is described
in detail in Appendix A 1. We stress that, although no strain,
piezoelectric effects, or structural anisotropies are included
in the single QD model, its parameters are adjusted to more
accurate k · p QD calculations45,46 with material parameters
as used in Ref. 32.

We start with the description of the two separate QDs that
will be combined to the double-QD molecule. Since the QD
molecule should be asymmetric, we identify the single QDs as
the “small” and the “large” one. For the small QD, we assume
an In0.8Ga0.2As QD embedded in a GaAs quantum well on a
wetting layer of thickness 1 nm. The QD has a diameter of
10 nm and a height of 2 nm. For this QD geometry only the
lowest electron and hole states are confined. For the large QD,
we assume an In0.9Ga0.1As QD embedded in a GaAs quantum
well on a wetting layer of thickness 1 nm. The cylindrical QD
model has a diameter of 12 nm and a height of 3 nm. For this
structure three electron and three hole states are confined. The
different sized QDs have different energy spacings between
the levels. In particular, no energetic degeneracies between
levels of the small and the large QD occurs.

The states of the two cylindrical QDs described above
are the limiting case for a level structure of a QD molecule
composed of the individual QDs, but with a very large spatial
separation between the two. When the QDs are closer together
with a potential barrier between them, the levels of the original
QDs are mixed to form the single-particle states of the QD
molecule. The states of the QD molecule are obtained from a
linear combination of the orbitals of the QDs, as described in
Appendix A 2. In this approach, the effect of external static
electric fields is also included. The QD molecule is designed by
choosing a combination of an external field in growth direction
and a separation of the QDs, so that the lowest hole levels of
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TABLE I. Electron (e) and hole (h) energies of single-particle
states in the QD molecules. The bonding and antibonding states
formed from hole levels of the individual QDs are denoted by hb

and ha, respectively.

State Ee (meV) State Eh (meV)

e0 −194 hb
0 55

e1 −132 ha
1 47

e2/3 −56 h2/3 13

the two QDs are lined up without bringing the QDs too close
to together. We choose a static electric field in growth direction
of E⊥ = 1.5 mV/nm and a QD distance of 14 nm, placing the
QD molecule in the center of a 30-nm surrounding quantum
well. For the QD molecule we obtain four confined hole and
electron states whose energies are compiled in Table I. The
lineup of the levels is shown schematically together with a
sketch of the most important wave functions in Fig. 2. There is
only a very small overlap between wave functions of the lowest
electronic levels e0/1, which are only very weakly mixed states
that are mainly localized in the individual QDs. The lowest QD
hole levels, however, are bonding hb

0 and antibonding ha
1 states

formed from the lowest hole levels in the individual QDs.
Further, the transitions between the lowest bonding hole level
hb

0 and the electron levels e0 and e1 are dipole allowed with
dipole moments of 0.5e nm and 0.2e nm, respectively.

The design of the QD molecule thus leads to a level structure
and dipole moments that are especially well suited for a
V -configuration with probe and drive fields connecting the
hb

0 ↔ e1 and hb
0 ↔ e0 states as shown in Fig. 2. Quantum-

coherence effects in the V scheme are particularly pronounced
if the transition e0 ↔ e1 is long lived, i.e., exhibits only a
small polarization dephasing. This is the transition that is

FIG. 2. (Color online) Schematic picture of the lowest-level wave
functions and the geometry of the asymmetric double-QD molecule
described in the text. The resonant probe and drive fields in a V -type
quantum-coherence scheme are also shown.

“engineered” to connect electronic states of the QD molecule
that are more or less localized in the different individual
QDs and therefore have a very small wave-function overlap.
We refer to the accompanying polarization as the quantum
coherence.

III. SEMICONDUCTOR MAXWELL-BLOCH EQUATIONS

In this section, we summarize the equations for the prop-
agating optical fields and the coupling to the semiconductor
Bloch equations, which are used to describe the V scheme of
the QD system. The propagating optical field is written in the
form

�E(y,t) = 1
2 x̂[E(y,t)ei(ky−ωt) + E(y,t)e−i(ky−ωt)], (1)

where the propagation is in the y direction, x̂ is the polarization
unit vector in the x direction, k is the wave vector, and ω is
the frequency of the field �E. The corresponding macroscopic
polarization has the form

�P (y,t) = 1
2 x̂[P(y,t)ei(ky−ωt) + P∗(y,t)e−i(ky−ωt)], (2)

where P is the complex slowly varying envelope. Substituting
these forms into the wave equation and employing the slowly
varying envelope approximation, one obtains the slowly vary-
ing Maxwell equations.47,48 The substitution t ′ = t − nby/c,
where nb is the background refractive index, transforms
the partial differential equation into an ordinary differential
equation with respect to the scaled spatial variable y,

∂

∂y
E = i

nbω

2εc
P. (3)

This equation neglects the dependence on the transverse and
lateral coordinate of the fields. We assume in the following that
the lateral and transverse extension of the probe pulse, which
is propagated by Eq. (3) in our setup (see Fig. 1) is such that
this approximation is fulfilled.

The macroscopic polarization P is connected with the
microscopic polarization by

P = Nd

L

∑
α,β

μαβpαβ + c.c., (4)

where Nd is the density of QDs in the quantum well layer,
L is the thickness of the quantum well, in which the QDs
are embedded, μαβ are the dipole matrix elements, and the
summation index α or β refers to QD system electron or hole
states, respectively.

A. Semiconductor Bloch equations

The dynamics of the polarizations and carrier distributions
at the single-particle level are calculated in the framework
of the semiconductor Bloch equations for the reduced single-
particle density matrix. We denote in the following electron
and hole levels in the QD α and β, respectively. For the V

system of interest in this paper one obtains the following
equations of motion for the “interband” polarizations, pαβ ,
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and the “intra(electron-)band” polarizations pα′α′′ :

∂

∂t
pβα = −iωαβpβα − i�αβ

(
nc

α − nv
β

)
− i

∑
α′ �=α

�α′βpα′α + Sβα, (5)

∂

∂t
pα′α′′ = −iωα′′α′pα′α′′ − i�α′′α′

(
nc

α′′ − nc
α′
)

+ i
∑
β ′

(�α′′β ′pα′β ′ − �β ′α′pβ ′α′′ ) + Sα′α′′ . (6)

In particular, the polarization pe0e1 here is the quantum
coherence. For the time evolution of the conduction and
valence band populations, nc

α and nv
β , one obtains

∂

∂t
nc

α = i
∑
β ′

(�αβ ′pαβ ′ − �β ′αpβ ′α) + Sαα, (7)

∂

∂t
nv

β = i
∑
α′

(�βα′pβα′ − �α′βpα′β) + Sββ. (8)

The coherent contributions of the above equations contain
transition frequencies ωαβ and renormalized Rabi frequencies
�αβ = h̄−1μαβE (t) + �HF

αβ . Here, E(t) is the electric field
at the position of the QD and the excitation-dependent
Hartree-Fock (HF) contributions �HF result from the Coulomb
interaction, as discussed, e.g., in Refs. 25,31, and 32.

The correlation contributions are generally denoted by S

and contain the influence of electron-electron and electron-
phonon interactions beyond the Hartree-Fock level. In par-
ticular, Sα,α and Sβ,β describe scattering contributions in the
dynamical equations for the electron and hole distributions as
well as dephasing Sβα , Sα′α′′ in the dynamical equations for
the coherences.

B. Scattering/dephasing contributions

Dephasing processes are extremely important for the
description of pulse slowdown in semiconductors. From
quantum optics it is well known that the dephasing rate of the
quantum coherence has a decisive influence on the behavior
of quantum-coherence schemes. In fact, the engineering of
the QD molecule was done with the goal of realizing a
comparatively small dephasing rate for the quantum coherence
between the e0 and e1 levels. For short-pulse dynamics, also
the population dynamics play a role, and we therefore have
to examine both dephasing and scattering contributions to the
semiconductor-Bloch equations as they apply to our proposed
QD molecule. Scattering processes in the QDs connect discrete
levels so that the influence of level broadening is much more
pronounced than for scattering between continuum states in
quantum wells.

We are here concerned with a treatment of carrier relaxation
and polarization dephasing that captures the essential features
for the analysis of our quantum-coherence scheme. To begin
with, the broadening of QD levels is mainly provided by
the interaction of electrons with phonons and with other
electrons in the scattering continuum, which we assume to
be formed in the quantum well embedding the QDs. We
are only concerned with excitation conditions in which the
continuum states are not appreciably populated by carriers. In
this case of vanishing excitation of the continuum states, the

electron-phonon interaction has been shown to dominate over
the electron-electron interaction for scattering processes and
dephasing processes that can be associated with real scattering
transitions (as opposed to “pure-dephasing” processes). We
therefore consistently neglect electron-electron interactions
for both of these processes and describe first our treatment
of the electron-phonon interaction.

Since the broadening of the discrete levels is important for
QDs, it is more appropriate to work with polarons, i.e., quasi-
particles that include the effect of the coupling to phonons,
instead of the “naked” QD electronic levels. Qualitatively,
the polaron spectrum contains a peak at the “naked” electron
energy as well as sidebands due to coupling to the discrete LO
phonons. Coupling to a continuum, such as acoustic phonons,
adds an additional broadening to the peak and the sidebands.
In this case, the relaxation and dephasing contributions for the
carrier distributions and polarizations cannot easily be com-
puted using Fermi’s Golden Rule arguments because there is
no straightforward energy conservation for transitions between
polarons. Instead, we follow Refs. 38–40 and obtain the scat-
tering and dephasing contributions from the Keldysh Green’s
function technique. In particular, we employ the random-phase
approximation (RPA) for the electron-phonon interaction
contributions to the electron, or rather, polaron self-energy.

Our treatment of scattering and dephasing contributions
is described in Appendix B; here we only summarize our
approach. As shown in Ref. 39, the full polaronic dynamics is,
in principle, not determined by equations of the form (5)–(8),
but rather by coupled equations of motion for “spectral” and
“kinetic” Green’s functions depending on two time arguments
whose numerical solution is extremely demanding. We there-
fore follow the spirit of Ref. 40 and separate the spectral prop-
erties of the polarons in order to get equations of motion for
the dynamical distributions and polarizations as defined above.
This procedure yields scattering and dephasing contributions
of the form appearing in Eqs. (5)–(8) that still include memory
integrals with information about the polaronic spectrum.

In contrast to Ref. 40, we use a Markov approximation and
introduce an effective quasiparticle broadening in the memory
integrals. This finally yields the scattering and dephasing
contributions as employed in the following calculations. The
explicit expressions are given in Appendix B and contain
the effect of the electron-phonon interaction on the polaronic
spectrum in the form of complex renormalized energies of a
single-particle QD state λ,

ε̃λ = ελ + �ελ − i�λ, (9)

where �ε contains the real Hartree-Fock energy shift and a
small correlation contribution. The broadening �λ of the level
λ is entirely due to correlations. We use in the following a
constant level broadening � = 0.84 ps−1 for a lattice temper-
ature of TL = 300 K and � = 0.50 ps−1 for TL = 150 K,
respectively.33 Although the precise value of � does not affect
the numerical results for our quantum-coherence scheme, it
is important to get its order of magnitude right, and we
have determined these numerical values from single-pole
approximations to the zero-density QD polaronic spectral
functions, computed as in Refs. 38,40, and 49.

As mentioned above, we neglect the Coulomb-interaction
contribution to scattering and dephasing processes that involve
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continuum states. However, there are pure-dephasing contri-
butions from the Coulomb interaction between carrier states
in the QD, most notably processes in which two electrons
effectively exchange their single-particle states. We therefore
take the Coulomb interaction between states in the QD into
account, because the electron-phonon contribution to the
dephasing of the quantum coherence can be very inefficient,
especially for deep QDs, in which the energy conservation
between the widely spaced electronic levels and a LO phonon
cannot be fulfilled, even including the polaronic broadening.
As in the case of the carrier-phonon interaction, we follow
Refs. 40 and 41 for the treatment of the Coulomb interaction
contribution and employ the self-energy in second-order Born
approximation along with the Markov approximation in the
scattering kernels, as well as a single-pole approximation
for the polaronic spectral properties. Because the continuum
states are not appreciably populated by carriers we neglect,
in contrast to Ref. 40, the Coulomb-interaction contribution to
the effective quasiparticle broadening. The relevant equations,
including a statically screened Coulomb potential, have the
structure as shown in Appendix B.

IV. NUMERICAL RESULTS FOR THE QD MOLECULE

In this section we present numerical results with the
eventual aim to characterize the slowdown achievable in a
structure composed of a single layer of double QD molecules
for the geometry shown in Fig. 1. We assume a strong cw drive
field in the z direction and a weak cw or probe field in the y

direction. As we do not include propagation effects for the
drive field, our results also apply to multilayer QD molecule
structures, as already indicated in Fig. 1 as long as the layers
are stacked tightly enough in the z direction that propagation
effects are unimportant and if the propagating field is guided
such that it overlaps well with the QD active material.

Because of the drive-field-induced energy shifts of the
sharp and closely spaced resonances, it is advantageous to
first neglect propagation effects for the probe field and analyze
the spectral properties experienced by a weak cw probe field in
Sec. IV A. Although the measure of the achievable slowdown
that can be obtained from the spectra is not as accurate as the
slowdown for propagating probe pulses computed in Sec. IV B,
the spectra yield important information on the width of the
spectral region in which slowdown is possible and also on the
magnitude of the slowdown when studying the influence of
parameters, such as drive intensity or temperature. Further, the
spectral information is necessary to properly tune the probe
pulse in order to maximize the slowdown.

A. Spectra and slowdown factor

We first investigate the spectral features of the slowdown
factor and the spectral width over which slowdown can be
achieved. To this end, we solve the dynamical equations (5)–(8)
for a strong cw drive field with fixed angular frequency ωd and
a weak cw probe field with angular frequency ωp. From the
steady-state value of the polarization P we determine the gain
via

g(ωp) = − ωp

2ε0cnbEp

Im[P] (10)

FIG. 3. Gain g and slowdown S ′ versus probe detuning for T =
300 K, Id = 0.25 MW/cm2 (a),(b); T = 300 K, Id = 0.7 MW/cm2

(c),(d); and T = 150 K, Id = 0.25 MW/cm2 (e),(f). The unexcited
exciton transition energy is denoted by εx .

and refractive-index change

δn(ωp) = − 1

2ε0nbEp

Re[P], (11)

where nb is the background refractive index of the host
material. The group-velocity slowdown factor is defined by
S(ωp) = nb + ωp

d(δn)
dωp

≡ nb + S ′(ωp), but we consider only
the contribution from the index change,

S ′(ωp) = ωp

d (δn)

dωp

, (12)

in order to remove the static contribution, which describes
the change in group velocity due to the background refractive
index as compared to vacuum. For the numerical calculations
we assume a lattice temperature of T = 300 K and a cw
probe with a field intensity of Ip = 45 W/cm2. For a cw
drive intensity of Id = 0.25 MW/cm2 we obtain the spectra
shown in Figs. 3(a) and 3(b) and for a cw drive intensity of
Id = 0.7 MW/cm2 we obtain the ones shown in Figs. 3(c)
and 3(d). Before discussing these spectra in some detail, we
emphasize that the width of the spectral features in Fig. 3 is not
due to effective dephasing rates for the different polarizations
in the system. Instead, the spectral location and the width
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of the features is entirely due to the calculated dephasing
(and scattering) contributions, which are determined by the
electronic structure of the QD molecule and the excitation
conditions. Nevertheless, one can attempt to extract effective
dephasing rates for three-level systems for specified excitation
conditions. We defer this question to the end of Sec. IV B.

The HF corrections lead to renormalizations of the transi-
tion frequencies as well as of the generalized Rabi frequencies
when the excitation, i.e., the drive intensity, is increased. In
particular, excitation-dependent HF energy corrections lead to
an energy shift of approximately 4.2 meV in Figs. 3(a)–3(d).
Also a small asymmetry, more pronounced for the slowdown
factor and less pronounced for the gain, occurs due to the
influence of the HF corrections.

Figures 3(a)–3(d) show the typical signatures of EIT1,50: a
dip in the absorption profile and an increase of the slowdown
factor S ′ at the dip. For the sake of simplicity, we refer to the
existence of two transitions, which are “dressed” by the strong
coherent drive field, as Autler-Townes splitting. This splitting
is proportional to the drive intensity. The EIT signatures are
due to an additional quantum interference effect between
the Autler-Townes resonances. It is particularly important for
the existence of EIT that the dephasing rate of the quantum
coherence γnr be much smaller than the dephasing rate of
the polarization γprobe. An increased drive intensity of Id =
0.7 MW/cm2 leads to a larger separation of the Autler-Townes
resonances and a reduction of the peak slowdown factor S ′;
see Figs. 3(c) and 3(d). Also, an additional excitation-induced
broadening of the spectral features for higher drive intensities
occurs because the dephasing contributions depend on the level
occupations and the polarizations, so that the dephasing of a
particular transition depends on the drive pulse.

Keeping the drive intensity at Id = 0.25 MW/cm2, but
reducing the temperature to 150 K, leads to weaker dephasing
and thus a more pronounced effect of the quantum interference,
i.e., a more pronounced dip in Fig. 3(e) and higher peak
slowdown in Fig. 3(f) compared with Figs. 3(a) and 3(b),
respectively. Due to the different occupation of the states for
lower temperatures the HF shift of the probe transition energy
is around 3.9 meV for 150 K, instead of 4.2 meV for 300 K.
Also the asymmetry of the spectra induced by HF corrections
is more pronounced for lower temperatures.

The dependence on the drive intensity for the gain and the
peak slowdown is shown in Fig. 4 for lattice temperatures of

FIG. 4. Peak gain (a) and peak slowdown (b) versus drive
intensity for a lattice temperature of 300 K (dashed line) and 150 K
(solid line).

FIG. 5. Slowdown-bandwidth product versus drive intensity for
a lattice temperature of 300 K (dashed line) and 150 K (solid line).

150 K and 300 K. For small drive intensities the peak gain
and the peak slowdown increase with intensity because the
effectiveness of the interference between the dressed states
increases, which reduces the peak absorption. For drive intensi-
ties of about Id = 0.1 MW/cm2 and above the Autler-Townes
splitting increases and thus reduces the peak absorption. In
this case, the interference effects between the dressed states
become less pronounced and peak slowdown decreases with
increasing intensity. The peak gain still increases even when
the interference becomes less effective because the Autler-
Townes splitting continues to increase with intensity.

The slowdown-bandwidth product (SBP)51 is an impor-
tant characteristic for the usefulness of quantum-coherence
schemes to slow down pulses as already discussed in
Ref. 31. From spectra such as Fig. 3 we obtain the SBP
ω1/2nbdχr/dωp, where ω1/2 is the full width at half maximum
(FWHM) of the hb

0 ↔ e1 resonance and χr is the real part
of P/Ep. We investigate here the dependence of the SBP
on the drive intensity and the influence of the temperature
as shown in Fig. 5 for 300 K and 150 K. Because the
measurement of the bandwidth for slowdown is only useful, if
the Autler-Townes splitting of the resonance is clearly visible,
the product is not calculated for low drive intensities. The
increase of the Autler-Townes splitting with increasing drive
intensities leads to an increase of the SBP in a drive intensity
range in which the slowdown S ′ already decreases. For still
higher intensities the pronounced drop in S ′ wins over the
increasing broadening. Further, the smaller broadening of
spectral features for lower temperatures influences the result by
increasing the slowdown bandwidth. If the SBP is compared
to the one calculated in Ref. 31 for a � scheme, we have
a tremendous improvement. However, the improvement of
the SBP is even more pronounced for lower temperatures.
Encouraged by this promising result we investigated the
propagation of the probe pulse and calculated the slowdown
factor for various propagation conditions as presented in the
following section.

B. Slowdown factor due to pulse propagation

The analysis of the performance of the QD molecule
for slowing down light is extended by including the effects
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of propagation, because in experiments and applications the
important information is in the spatiotemporal dynamics of the
probe pulse. The drive field is taken as cw or, for numerical
reasons, as a pulse much longer than the probe. As shown in
Fig. 1 and explained in the following its reasonable to neglect
the propagation of the drive field in the growth direction while
accounting for propagation of the probe pulse in the plane of
the well: The quantum well considered here, which includes
the active region, has a width of 30 nm in the growth direction.
Even if we assume a structure composed of several quantum
wells to achieve an increased confinement factor for the probe
pulse, the total width of the active region stays far below
1 μm. Therefore, propagation effects for the drive pulse can
be neglected and we concentrate on the propagation of the
probe pulse. We assume a quantum well with an extension
of 250 μm in the y direction, in which the active region is
contained. Further, we assume a long drive pulse of duration
200 ps and a spot radius larger than 250 μm centered on the
quantum well. A probe pulse is initialized to occur in the
middle of the drive pulse; this defines the propagation distance
zero. The finite drive-pulse duration is only introduced for
numerical reasons. In an experiment it could be a cw drive.

We compare the propagation results for a cosh−2 probe
pulse with a FWHM of 17.6 and 35.3 ps with the results for
a cw probe field without propagation effects as described and
calculated in the previous section. The calculation of the gain
and the slowdown factor due to pulse propagation of the probe
pulses is discussed below. The FWHM is given for the field
amplitude and corresponds to a FWHM of 12.1 and 24.2 ps
for the field intensity, respectively. The calculation is done
for a lattice temperature of 300 K. We start the probe pulse at
0 μm with the relative time t ′0 = t0 (see time transformation for
slowly varying Maxwell equations) and propagate the probe
pulse in the relative time t ′. After a propagation length dP

we determine the distance in the relative time �t ′ between
the initial and the propagated probe-pulse peak maximum
and calculate the slowdown factor S − nb averaged over the
propagation distance. The difference between the initial and
the propagated peak maximum of the probe pulse can be used
to calculate the amplitude gain of the probe pulse averaged
over the propagation distance.

Figure 6 shows the gain and slowdown factor calculated
for different drive-pulse intensities and for a propagation
distance of dP = 1 μm. Figure 7 shows the same data for
a lattice temperature of 150 K; it will be discussed further
in connection with the 150 K results below. For the short
probe pulse compared to the long probe pulse and the cw
probe field, the drive-pulse intensity has to be higher to
reach a comparable transparency, so that the dependence of
the slowdown factor on the intensity is shifted and damped.
The reason for this behavior is that the polarization of the
probe pulse needs some time to build up the coherences
that lead to the steady-state Autler-Townes splitting and,
in turn, to EIT with slowdown. Additionally, the gain and
slowdown increase for longer propagation distances. This
can be explained with the increasing temporal broadening
of the probe pulse for longer propagation distances due to
small absorption effects: For the probe pulse with an initial
FWHM of 17.6 ps propagation effects lead to a slight temporal
broadening and a slightly smaller (temporal) gradient of the

FIG. 6. Gain (a) and slowdown (b) versus drive-pulse intensity
after a propagation distance of 1 μm for a cosh−2 probe pulse with
a FWHM of 17.6 ps (dashed line) and 35.3 ps (dotted line) and a
lattice temperature of 300 K. For comparison, the gain and slowdown
factor for a cw probe (black solid line) without propagation effects is
plotted.

pulse, resulting in higher gain and slowdown for the spatial
propagation. For a probe pulse with an initial FWHM of 35.3 ps
these effects are less pronounced due to the longer pulse with
a smaller (temporal) gradient of the field.

In Figs. 8–11, we compare the shape of the probe pulse
after different propagation distances for different drive-pulse
intensities and lattice temperatures. The temporal shape of the
probe pulse is shown in real time for propagation distances
of a few 100 μm. For comparison a reference pulse, i.e., a
propagated pulse shape without slowdown, is also plotted.
This reference pulse is obtained by propagating the probe
field in the host material with refractive index nb, but without
the QD molecules. A temporal shift of the probe-pulse peak
against the reference pulse peak to positive times after a
spatial propagation corresponds to a slowdown of the probe
pulse and a temporal shift to negative times corresponds
to a speedup of the probe pulse. Figure 8 contains results
for a drive-pulse intensity of 0.7 MW/cm2 and a maximum
propagation distance of 100 μm. The slowdown of the probe
pulse is clearly visible and the probe-pulse peak after a
propagation distance of 100 μm already has a noticeable
separation to the initial probe-pulse peak with a moderate loss
of amplitude and only a small distortion. Figure 9 changes the
drive-pulse intensity to 1.8 MW/cm2. In this case, a pulse
separation is reached for longer propagation distance, i.e.,
less efficient slowdown, but with a lower loss of amplitude
and a smaller distortion. Therefore, the shape of the probe
pulse is plotted for propagation distances up to 250 μm.

FIG. 7. Same plot as in Fig. 6 for a lattice temperature of 150 K.
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FIG. 8. Temporal shape of the probe-pulse field versus propa-
gation distance for a drive-pulse intensity of 0.7 MW cm−2. The
shape of the reference pulse versus propagation distance is plotted at
z = 0 μm, z = 50 μm, and z = 100 μm for comparison. The initial
shape of the probe and reference pulse is a cosh−2. The lattice
temperature is 300 K.

The lower loss of amplitude and the lower distortion is due
to the lower absorption at higher intensities already visible
in Fig. 6. Therefore, the absorption, i.e., distortion, and the
slowdown factor of the probe pulse have to be balanced to
obtain decent results for a slow-light application. Here, for
both drive-pulse intensities a separation between the initial
peak and the propagated peak of the probe pulse is possible
with a moderate loss of amplitude.

We also calculated the propagation for a cosh−2 probe pulse
with a FWHM of 17.6 ps and a cosh−2 probe pulse with a
FWHM of 35.3 ps for a lattice temperature of 150 K. The gain
and slowdown factor are calculated for a set of drive-pulse
intensities and for a propagation distance of dP = 1 μm and
shown in Fig. 7. Furthermore the cw probe result is plotted
for comparison. We obtain for gain and slowdown factor plots
generally the same qualitative behavior as described for the
case of 300 K (see Fig. 6), but better results, i.e., less absorption
and more pronounced slowdown. This improvement is also
evident from the comparison of the probe-pulse shape between
different propagation distances in Figs. 10 and 11: For a drive-
pulse intensity of 0.7 MW/cm2 and 1.8 MW/cm2, the shape
of the probe pulses is plotted after propagation distances up

FIG. 9. Same as Fig. 8 for a drive-pulse intensity of 1.8 MW
cm−2. The reference pulse is shown for z = 0 μm, z = 100 μm, and
z = 200 μm.

FIG. 10. Temporal shape of the probe-pulse field versus prop-
agation distance for a drive-pulse intensity of 0.7 MW cm−2. The
shape of the reference pulse versus propagation distance is plotted at
z = 0 μm, z = 50 μm, and z = 100 μm for comparison. The initial
shape of the probe and reference pulse is a cosh−2. The lattice
temperature is 150 K.

to 100 and 250 μm, respectively. Again we obtain the same
qualitative behavior between the two drive-pulse intensities as
already analyzed for the case of 300 K. In addition, for a lattice
temperature of 150 K less absorption and higher slowdown
are obtained and thus a pulse separation with a smaller loss
of amplitude and a smaller pulse distortion can be realized. In
Fig. 12 the results of Fig. 11 are shown as a two-dimensional
graph, for better quantitative comparison. Now, the shape of
the probe pulse is shown vs relative time after a propagation
distance of 0, 100, 200, and 250 μm. Because the shape of the
probe pulse is plotted against the relative time, a temporal shift
of the probe-pulse peak to positive relative times after a spatial
propagation corresponds to a slowdown of the probe pulse
and a temporal shift to negative relative times corresponds to a
speedup of the probe pulse. Figure 12 shows that the separation
of the pulse peaks is about 29 ps after 250 μm with a small
loss of amplitude and negligible distortion. These numerical
values are promising for slow-light applications.

To conclude this section, we would like to give some num-
bers regarding effective dephasing rates for our QD molecule
system and setup. We determined polarization dephasing rates
for three transitions: the quantum coherence e0 ↔ e1, the

FIG. 11. Same as Fig. 10 for a drive-pulse intensity of 1.8 MW
cm−2. The reference pulse is shown for z = 0 μm, z = 100 μm, and
z = 200 μm.
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FIG. 12. Temporal field shape of the probe pulse for a drive-pulse
intensity of 1.8 MW/cm2 after propagation distance of 0 μm (solid),
100 μm (dashed), 200 μm (dashed-dotted), 250 μm (dotted). The
initial shape of the probe pulse is a cosh−2. The lattice temperature is
150 K.

probe transition h0 ↔ e1, and the drive transition h0 ↔ e0.
As in the calculations for Figs. 8–11, we used an extremely
long drive pulse, but also a long probe pulse to mimic cw
excitation conditions. The pulse frequencies ωd and ωp were
chosen to be resonant to the renormalized transition energies
corresponding to these excitation conditions. We then fit
polarization decay rates γe0,e1 , γh0,e1 , γh0,e0 to the polarization
dephasing contributions Se0,e1 , Sh0,e1 , and Sh0,e0 , respectively.
Typical values of the dephasing for the quantum coherence are
around γe0,e1 ≡ γnr ≈ 0.01 ps−1 and the dephasing on the drive
and probe transitions is generally on the order of γ ≈ 0.5 ps−1

for the range of drive intensities and temperatures (150 K
and 300 K) considered here. The dephasing rates of the
drive and probe transitions are typical of QDs, whereas the
comparatively small dephasing rate of the quantum coherence
is due to the design of the QD molecule and the chosen setup.
The dephasing of the quantum coherence in the QD molecule
obtained from our microscopic calculation at and above 150 K
is still quite a bit slower than the dephasing rate 0.125 ns−1

assumed in a recent AMO-like calculation of EIT-based
slow light in single QDs.28 Such a slow dephasing along
with lifetime-limited linewidths, which were also assumed in
Ref. 28, are generally realized only at very low temperatures.

V. COMPARISON TO A SINGLE QD

Here we wish to compare the results for pulse slowdown
in the optimized QD molecule with earlier results on QDs.
First, in the � schemes for an ensemble of single QDs, as
investigated in our earlier Refs. 25,31, and 32, the quantum
coherence connects two hole states and is therefore susceptible
to the same dephasing contributions as the drive or probe
(electron-hole) polarization, where the dominant contribution
of the dephasing comes from the hole states because they
are closely spaced, and because of the polaronic broadening
the electron-phonon interaction can efficiently couple them.
In this case, a short drive pulse is necessary to slow down
the probe pulse,31,32 but the time window during which the
probe pulse is slowed down is too short.33 To highlight the
slowdown achievable in QD molecules with cw drive fields

we would like to compare them with single QDs for the
same quantum-coherence scheme, namely a V scheme. Our
choice of V scheme is also supported by investigations of
quantum-coherence schemes in single QDs which found that
the structural QD parameters can generally be more easily
optimized for V schemes than for other schemes.27,30 In the
following we investigate the pulse slowdown for V schemes
using single QDs in the same manner as for the QD molecules.
For the purpose of this section, it is not necessary to design
novel QD molecule structures using finite model potentials
and wave functions that are checked against k · p calculations.
Instead, for simplicity, we work with a simpler QD model with
a harmonic oscillator confinement potential. This model was
used, e.g., in Ref. 25.

A. Single QD model for a V scheme

The QD model and the calculation of the pulse slowdown
for V schemes is similar between single QDs and QD
molecules. Here, we highlight only the differences. We assume
cylindrical single QDs described by the Hamiltonian (A1)
in envelope approximation, but without the finite potential
(A2). Instead, we replace the in-plane confinement potential
in Eq. (A14) with a harmonic oscillator confinement potential.
This is a good approximation, because measurements of the
dependence of the lowest bound states in a QD are also
in agreement with a spectrum of a harmonical oscillator.25

The in-plane Hamiltonian can be solved by separating the
radial and angular dependence using Hermite polynomials
as also described in Ref. 25. This approximation would be
inappropriate for QD molecules, because the determination of
wave functions and energy levels from a finite confinement
potential for each single QD is necessary to calculate the wave
functions and energy levels of the electronically coupled QDs
(i.e., QD molecules).

We assume an ensemble of InGaAs-based QDs embedded
in a GaAs quantum well with a width of 16 nm, which leads
to three confined electron and hole states. Thus, we have one
doubly degenerate excited state and one ground state with
the energy values in Table II. The lineup of the levels is
shown schematically in Fig. 13. Using an analytical model of
cylindrical QDs only diagonal transitions are dipole allowed
because of symmetry considerations. However, to realize
a V scheme one needs off-diagonal interband transitions.
We achieve this by including a symmetry-breaking static
electric field. To make off-diagonal dipole matrix elements
appreciable, we use an external electric field in the plane of
the quantum well with a field strength of 4.0 mV nm−1. The
calculated dipole matrix elements make a V scheme with a
drive pulse between the electron and hole ground state and a
probe pulse between the hole ground state and the excited
electron states possible. The quantum coherence of the V

TABLE II. Electron (e) and hole (h) energies of single-particle
states in the single QD.

State Ee (meV) State Eh(meV)

e0 −150 h0 50
e1/2 −60 h1/2 20
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FIG. 13. Schematic picture of the geometry of the single QD
described in the text. The resonant probe and drive fields in a V -type
quantum-coherence scheme are also shown.

scheme is between the electron ground and the excited electron
states. The energy gap between the electron and hole ground
state is taken to be 1.2 eV.

As shown in Table II, we assume a deep confinement of
the QD states. This choice is necessary to obtain noticeable
slowdown in our single QD V -scheme setup: As already
explained in Sec. III B the dominant dephasing processes
of our single QD V scheme setup are those carrier-phonon
dephasing processes which are associated with real carrier-
phonon scattering transitions. For a shallow confinement of the
QD states the hole-intersubband and the electron-intersubband
contributions would be of equal size due to the small energy
spacing of the hole and the electron states.33 For a deep
confinement of the QD states the energy spacing of the electron
states is high enough to suppress the electron-intersubband
contribution. Thus, the carrier-phonon dephasing of the
quantum coherence is small compared to the carrier-phonon
dephasing of the probe polarization for a deep QD, but for a
shallow QD the two carrier-phonon dephasing rates would be
of equal size.

B. Numerical results for the single QD V scheme

For the single QD we first investigate peak gain and peak
slowdown as done in Fig. 4 by comparing a lattice temperature
of 150 K with a lattice temperature of 300 K. For the calculation
of the gain and the slowdown factor, we use the semiconductor
Bloch equations (5)–(8) including a microscopic scattering
and dephasing contribution as described in Sec. III B. The
peak gain and peak slowdown vs drive intensity are shown in
Fig. 14. Below a drive intensity of 0.1 MW/cm2 we find a
significant peak absorption without peak slowdown for both
lattice temperatures. Above a drive intensity of 0.1 MW/cm2

the peak slowdown factor for similar peak absorption values
is higher for lower temperatures. This result again is obtained
because the average phonon occupation is reduced for lower
temperatures, and a smaller carrier-phonon dephasing rate

FIG. 14. Peak gain (a) and peak slowdown (b) versus drive
intensity for a lattice temperature of 150 K (solid line) and 300 K
(dashed line) for a deep single QD.

results for all polarizations. This reduction is proportion-
ally less pronounced for the interband and proportionally
more pronounced for the quantum coherence. The dephasing
processes of the quantum coherence which are associated
with real carrier-phonon scattering transitions are significantly
reduced. These processes no longer dominate over carrier-
carrier and pure-dephasing carrier-phonon processes of the
quantum coherence. However, an effectively long dephasing
time for (realistic) slow-light applications is still not reached.

C. Comparison between a V scheme in a single
QD and a QD molecule

Finally, we compare the results of the QD molecule and
the deep single QD for a lattice temperature of 150 K.
In Fig. 15 the peak gain and peak slowdown versus drive
intensity is plotted for both setups. A tremendous improvement
of the peak slowdown factor for similar peak absorptions
values for the QD molecule compared to the deep single
QD is visible. This improvement can be explained in the
following way: The negligible wave-function overlap between
the states of the e0 ↔ e1 transition of the V system in the
QD molecule has a huge influence on the electron-phonon
and electron-electron dephasing contributions of the quantum
coherence. This influence reduces the dephasing rate of the
quantum coherence much more than the dephasing rate of
the interband probe polarization. Therefore, the comparison
between the results of single QDs and QD molecules shows

FIG. 15. Peak gain (a) and peak slowdown (b) versus drive
intensity for the QD molecule (solid line) and the deep single QD.
The lattice temperature is 150 K.
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that an effectively long dephasing time can be engineered only
by using suitable QD molecules.

VI. CONCLUSION

In this paper we presented a microscopic analysis of
quantum-coherence schemes, in particular EIT and group-
velocity slowdown, in a special double-QD molecule design.
We incorporated scattering and dephasing effects, including
polaronic effects in QDs, into the equations of motion for
the relevant polarizations and distribution functions. We used
a quasianalytic model for QD single-particle states with
parameters adjusted to the results of k · p calculations for
a realistic InGaAs-based QD. The design of the double-QD
molecule was geared towards achieving a long-lived quantum
coherence in a V scheme involving two electronic levels
localized at the individual QDs and a delocalized hole level.
Starting from the quasianalytic QD model we constructed
the states of the QD molecule and used these as input in
the equations of motion for polarizations and distribution
functions. Choosing probe and drive fields suitable for a V

scheme consisting of the delocalized hole level and the two
localized electron levels, we found cw slowdown factors and
SBPs of the QD molecule that are far better than our previous
results on � schemes or results achieved by V schemes in
single QDs as presented in Sec. V. We further combined the
microscopic material equations with a numerical calculation of
the propagating probe pulse and showed that a clear separation
of the slowed-down pulse with a reference pulse can be
achieved over distances of a few μm with acceptable pulse
distortion and absorption. We emphasized that this result was
made possible by the design of the QD molecule that yields a
comparatively long dephasing time on the quantum coherence.
Importantly, the dephasing contributions that largely determine
the figures of merit for the slowdown were not taken as
constant rates, but arose from the microscopic treatment of
the underlying interaction processes for a sufficiently realistic
QD model.
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APPENDIX A: ELECTRONIC STRUCTURE
OF QD MOLECULES

This appendix gives details of our calculation of the
wave functions and energies of QD molecules. Since we are
interested in the qualitative properties of QD molecules, and
wish to be able to easily describe the structural parameters (i.e.,
different QD sizes and distances between the two QDs), we use
a simple and semianalytical approximation for the description
of the QDs contained in the QD molecules. We stress that no
band-mixing due to strain or piezoelectric effects are included,
but the parameters used in the model have been chosen to
compare well to a QD calculated by k · p theory.

1. Electronic structure of a cylindrical QD

We assume a cylindrical QD with a confinement potential of
depth. For the Hamiltonian of the cylindrical QD in envelope
approximation we use

H = − h̄2

2m
∇2 + V (r,z), (A1)

where the Laplacian ∇2 and

V (r,z) =
{

0 for |z| > a or |r| > b,

−V0 for |z| < a and |r| < b,
(A2)

are expressed in cylindrical coordinates. The heights of the
QD in z direction is h = 2a, the diameter is 2b, and V0 is the
depth of the confinement potential. The wave function �3D of
the Schrödinger equation

H�3D = E�3D (A3)

has to be understood as an envelope function and m as an
effective mass.

We assume that the height is much smaller than the
diameter of the QD. Therefore, the electrons and holes are
strongly localized in the growth direction z. If we assume
the separability of the wave function for the in-plane and the z

direction, the three-dimensional Schrödinger equation reduces
to a two- and a one-dimensional problem. Thus, we can write
for the wave function

�3D(r,ϕ,z) = N �‖(r,ϕ)�⊥(z), (A4)

where N is a normalization constant. Furthermore, we used in
the z direction

∫
�∗

⊥(z)V (r,z)�⊥(z)dz ≈ −V0�(b − |r|) and
the corresponding approximation for the in-plane direction to
obtain a self-consistent set of equations.

For the Schrödinger equation in the z direction we have[
− h̄2

2m

∂2

∂z2
+ Ṽ⊥ �(a − |z|)

]
�⊥(z) = E⊥�⊥(z). (A5)

Here, Ṽ⊥ = −V0 + T‖ is an effective one-dimensional poten-
tial that contains the in-plane kinetic energy T‖ = Ṽ‖ − E‖
which, in turn, depends on the in-plane eigenenergy E‖. Since
these kinetic energies T‖ are not known, we use an iteration
procedure to calculate the in-plane and z eigenenergies. We
start the iteration by setting Ṽ⊥ equal to −V0. For the solution
we obtain for the symmetric eigenstates,

�S
⊥,n(z) = B�(|z| − a) cos(kna)eκn(a−|z|)

+B�(a − |z|) cos(knz), (A6)

and for the antisymmetric eigenstates,

�A
⊥,n(z) = C�(|z| − a)sgn(z) sin(kna)eκn(a−|z|)

+C�(a − |z|) sin(knz). (A7)

Here B and C are normalization constants and we have defined

κn =
√

2m|E⊥,n|
h̄

, (A8)

kn =
√

2m(|Ṽ⊥| − |E⊥,n|)
h̄

. (A9)
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The eigenvalues E⊥,n can be determined by the intersection
sn = kna of the curves

f (ka) = tan(ka), (A10)

gS(ka) =
√

(k0a)2 − (ka)2

(ka)
, (A11)

or

gA(ka) = −(ka)√
(k0a)2 − (ka)2

, (A12)

where k0 =
√

2m|Ṽ⊥|/h̄. We obtain the eigenvalues

E⊥,n = h̄2s2
n

2ma2
− |Ṽ⊥|. (A13)

For the Schrödinger equation in the in-plane direction we
have{

− h̄2

2m

[
1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂ϕ2

]
+ Ṽ‖�(b − r)

}
�‖(r,ϕ)

= E‖�‖(r,ϕ). (A14)

The effective potential Ṽ‖ = −V0 + T⊥ again includes a
contribution from the kinetic energy in the growth direction,
which depends on the solution of the eigenvalue problem in the
z direction, T⊥ = Ṽ⊥ − E⊥. We start the iteration by setting Ṽ‖
equal to −V0. Because of the symmetry of the potential around
the growth direction, the Hamiltonian commutes with the
components of the angular momentum operator ([H,lz] = 0).
Therefore, the two-dimensional Schrödinger equation for the
angular momentum projection quantum number ml reduces to
an effective one-dimensional Schrödinger equation. Resorting
the terms we obtain[

− h̄2

2m

(
1

r

∂

∂r
+ ∂2

∂r2

)
+ Ṽ‖�(b − r) + h̄2

2m

m2
l

r2

]
�̃‖(r)

= E‖�̃(r), (A15)

where

�‖(r,ϕ) = 1√
2π

eimϕ�̃‖,m(ϕ) (A16)

This equation can be cast into the form of a Bessel differential
equation. A solution of this differential equation inside the
QD is the Bessel function in mth order of the first kind Jm(kr).
Therefore, we obtain inside the QD

�̃‖,m(r) = AJm(kr). (A17)

A solution outside the QD is the modified Bessel function
Km(κrr). Therefore, we obtain outside the QD

�̃‖,m(r) = BKm(κrr). (A18)

At r = b, the wave functions � ′
‖ and �‖ have to be contin-

uous. With k2
0 = 2m

h̄2 (−Ṽ‖) and κr =
√

k2
0 − k2, the continuity

condition yields

N (k) = J ′
m(kR)

Jm(kR)
−

K ′
m

(√
k2

0 − k2R
)

Km

(√
k2

0 − k2R
) = 0. (A19)

All kn between 0 and k0 with N (k) = 0 are allowed. For the
eigenvalues of the two-dimensional problem we obtain

E‖,n = h̄2
(
k2
n − k2

0

)
2m

. (A20)

In summary, we have energy levels E‖,n,m and wave functions
�‖,n,m with the quantum numbers n and m. The states with
different m and the same n are degenerate.

For the approximate solution of the three-dimensional
problem we have to solve the one- and two-dimensional eigen-
values in a self-consistent fashion by determining the updated
potentials for the next iteration step from the eigenenergies
of the previous iteration. The procedure is quite efficient,
and one obtains converged eigenvalues Enznrm and wave
functions �nznrm for the pillbox-shaped QD after only a few
iteration steps. The resulting energies and wave functions,
obtained using optimized effective parameters, have been
checked against k · p calculations,45,46 which include strain
and piezoelectric effects.

2. Electronic structure of a QD molecule

After introducing the pillbox model for the electronic
structure of QDs, we now couple these QDs to molecules.
For this purpose we introduce an ansatz similar to the linear
combination of atomic orbitals.

For a detailed description of the calculation we assume a
QD molecule consisting of two QDs, labeled 1 and 2. For QD 1
and 2 we assume N and M bound states, respectively. Further,
for the uncoupled QDs, we label the wave functions �n

1 and
�m

2 , the eigenvalues εn
1 and εm

2 , and the potential Va and Vb,
respectively. To determine the envelope wave functions �, and
the corresponding eigenvalues E, of the electronically coupled
QDs we use a superposition of the following form:

� =
∑

n

cn
1�

n
1 +

∑
m

cm
2 �m

2 . (A21)

With the Hamiltonian

(H0 + Va + Vb)� = E�, (A22)

we can apply a multiplication of (�j

1)∗ and a multiplication of
(�k

2)∗, respectively. Therefore, we obtain in matrix notation(
M

jn

1 M
jm

2

Mkn
3 Mkm

4

)(
cn

1

cm
2

)
=

(
A

jn

1 A
jm

2

Akn
3 Akm

4

)
E

(
cn

1

cm
2

)
, (A23)

where

M
jn

1 = εn
1δjn + 〈

�
j

1

∣∣Vb

∣∣�n
1

〉
, (A24)

M
jm

2 = εm
2

〈
�

j

1

∣∣�m
2

〉 + 〈
�

j

1

∣∣Va

∣∣�m
2

〉
, (A25)

Mkn
3 = εn

1

〈
�k

2

∣∣�n
1

〉 + 〈
�k

2

∣∣Vb

∣∣�n
1

〉
, (A26)

Mkm
4 = εm

2 δkm + 〈
�k

2

∣∣Va

∣∣�m
2

〉
, (A27)

and A
jn

1 = δjn, A
jm

2 = 〈�j

1|�m
2 〉, Akn

3 = 〈�k
2|�n

1〉, as well
as Akm

4 = δkm. This generalized eigenvalue problem can be
solved numerically with an eigenvalue solver.52 Because in
this case matrix A is invertible, its possible to reduce the
generalized eigenvalue problem to an (ordinary) eigenvalue
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problem. Therefore, we have to solve⎡⎣(
A

jn

1 A
jm

2

Akn
3 Akm

4

)−1(
M

jn

1 M
jm

2

Mkn
3 Mkm

4

)⎤⎦(
cn

1

cm
2

)
= E

(
cn

1

cm
2

)
.

(A28)

The eigenvalues and eigenfunctions of this equation have to
be understood as the single-particle result for the electronic
structure of the QD molecule, which can then be used as input
in the many-particle semiconductor Bloch equations.

Furthermore, we want to consider a sufficiently weak
external electric field, i.e., an electric field that can be
included in the LCAO calculation of the QD molecules. For
electrons, one includes in the potential Va + Vb in (A22)
a contribution from the electric field Fz, where F is the
electric field. For holes, the sign of the electric potential is
reversed. The results of this semianalytical approach for QD
molecules without electric field were again checked against
the k · p calculation.45,46 The approach was found to yield a
qualitatively correct description of the electronic structure of
the QD molecules studied in this paper.

APPENDIX B: CORRELATION CONTRIBUTIONS DUE TO
CARRIER-PHONON AND CARRIER-CARRIER

INTERACTIONS

We investigate a QD/QD molecule of the ensemble with
Me electron and Mh hole states embedded in a quantum well.

We make a single-band approximation for the quantum well
and assume that all electron and hole states are spin or pseudo-
spin degenerate, respectively. So every state in the QD/QD
molecule can be labeled by λ = (b,�k = m,s), where b ∈
{c,v} is the band index, m ∈ {1, . . . ,Me}/ {1, . . . ,Mh},s ∈
{↑ , ↓}. States in the quantum well are labeled by λ =
(b,�k = �k‖,s). Thus, we introduce the notation λ1 with λ1 =
(b1,�k1,s) for all states. With this unified index λ1 = (b1,�k1,s1)
a simplification of the carrier-phonon interaction matrix
elements

M
λ1λ2
λ3λ4

= M
λ1λ2
λ3λ4

δb1b2δb3b4 (B1)

and the carrier-carrier interaction matrix elements

W
λ1λ2
λ3λ4

= W
λ1λ2
λ3λ4

δb1b2δb3b4 (B2)

follows. With the derivation described in Sec. III B and a
generalized notation ρλ1λ2 for the density matrix we obtain for
dephasing and scattering processes due to the carrier-phonon

interaction in Markov approximation the following set of
equations:

S
cp

λ1λ2
= π

h̄

∑
λ3

ρλ3λ2 (t)Kcp

1 + π

h̄

∑
λ3

ρλ1λ3 (t)Kcp

2

− π

h̄

∑
λ3

ρ∗
λ3λ2

(t)Kcp

3 − π

h̄

∑
λ3

ρ∗
λ1λ3

(t)Kcp

4 , (B3)

where

K
cp

1 =
∑
λ4λ5

M
λ1λ5
λ4λ3

ρ∗
λ4λ5

(t)
∑
±

(
N + 1

2
∓ 1

2

)
g

(−̃ελ5 + ε̃∗
λ3

± h̄ωLO

)
, (B4)

K
cp

2 =
∑
λ4λ5

M
λ3λ5
λ4λ2

ρ∗
λ4λ5

(t)
∑
±

(
N + 1

2
∓ 1

2

)
g

(−̃ελ3 + ε̃∗
λ4

∓ h̄ωLO

)
, (B5)

K
cp

3 =
∑
λ4λ5

M
λ1λ5
λ4λ3

ρλ4λ5 (t)
∑
±

(
N + 1

2
∓ 1

2

)
g

(−̃ελ5 + ε̃∗
λ3

∓ h̄ωLO

)
, (B6)

K
cp

4 =
∑
λ4λ5

M
λ3λ5
λ4λ2

ρλ4λ5 (t)
∑
±

(
N + 1

2
∓ 1

2

)
g

(−̃ελ3 + ε̃∗
λ4

± h̄ωLO

)
. (B7)

Here, we have used the abbreviation g(z) = i
πz

, and, as discussed in connection with Eq. (9), ε̃λ1 = ελ1 + �ε − i� is a complex
single-particle energy with an energy shift �ε and a damping �, which represents an energetic broadening and thus a finite
quasiparticle lifetime due to the electron-phonon interaction.

Further, we need an expression for dephasing and scattering processes due to carrier-carrier interaction as described in
Sec. III B. For the carrier-carrier interaction in Markov approximation one obtains

Scc
λ1λ2

= π

h̄

∑
λ3...λ9

(
ρλ3λ2 (t)Kcc

1 + ρλ1λ3 (t)Kcc
2 − ρ∗

λ3λ2
(t)Kcc

3 − ρ∗
λ1λ3

(t)Kcc
4

)
, (B8)

where

Kcc
1 = W

λ6λ7
λ1λ4

(
W

λ9λ8
λ3λ5

)∗
ρ∗

λ4λ5
(t)ρλ9λ6 (t)ρ∗

λ7λ8
(t)g

(−̃ελ5 + ε̃∗
λ9

− ε̃λ8 + ε̃∗
λ3

)
−W

λ6λ7
λ1λ4

(
W

λ9λ8
λ3λ5

)∗
ρ∗

λ4λ8
(t)ρλ9λ6 (t)ρ∗

λ7λ5
(t)g

(−̃ελ5 + ε̃∗
λ9

− ε̃λ8 + ε̃∗
λ3

)
, (B9)

Kcc
2 = W

λ6λ7
λ3λ4

(
W

λ9λ8
λ2λ5

)∗
ρ∗

λ4λ5
(t)ρλ9λ6 (t)ρ∗

λ7λ8
(t)g

( − ε̃λ3 + ε̃∗
λ4

− ε̃λ6 + ε̃∗
λ7

)
−W

λ6λ7
λ3λ4

(
W

λ9λ8
λ2λ5

)∗
ρ∗

λ4λ8
(t)ρλ9λ6 (t)ρ∗

λ7λ5
(t)g

(−̃ελ3 + ε̃∗
λ4

− ε̃λ6 + ε̃∗
λ7

)
, (B10)
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Kcc
3 = W

λ6λ7
λ1λ4

(
W

λ9λ8
λ3λ5

)∗
ρλ4λ5 (t)ρ∗

λ9λ6
(t)ρλ7λ8 (t)g

(−̃ελ5 + ε̃∗
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)
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, (B11)
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