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Role of the plasmon-pole model in the GW approximation
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Band gaps and band-edge energy levels are computed using the many-body perturbation theory within the GW

approximation, with four common plasmon pole models (PPMs) and numerical integration employed to evaluate
the dynamic screening matrix. Although the Hybertsen-Louie PPM is often adopted in GW calculations because
it predicts band gaps best matching experimental data, we show that it is the Godby-Needs construction that
agrees consistently with numerical integration on dynamic screening for materials with distinct characteristics.
The variation in predicted band gaps due to different PPMs used can be as large as 1 eV in strongly localized
electronic systems, and the band-edge energy levels are more sensitive to the choice of PPM than band gap even
in simple semiconductors.
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I. INTRODUCTION

Density functional theory (DFT)1,2 calculations employing
simple exchange-correlation functionals, such as the local
density approximation (LDA) and the generalized gradient
approximation (GGA), severely underestimate the funda-
mental band gaps, Eg, of semiconductors and insulators3–6

due to the lack of derivative discontinuity with respect
to the number of electrons.7–9 While the orbital-dependent
density functionals,10,11 such as the hybrid functionals,12–14

could significantly improve electronic-structure calculations,
their accuracy depends on parametrization and varies among
different materials.

The standard method for obtaining the quasiparticle (QP)
energies is based on the single-particle Green function G

and the self-energy � within the framework of the many-
body perturbation theory.15,16 A practical and successful
scheme for quantitatively computing self-energy is the GW

approximation,3–6 in which � is approximated by the linear
expansion of G and the dynamically screened Coulomb
interaction W , symbolically designated as

� = iGW. (1)

Self-consistent GW calculations17–21 are extremely demand-
ing. In practice, the single-shot G0W0 (Refs. 3,22, and 23)
has been widely adopted, since it offers sufficient accuracy
on Eg for many crystals including simple semiconductors and
insulators. However, different levels of self-consistency (such
as G0W0, GW0, and GW ) in GW calculations might change
Eg as much as 1 eV in some transition-metal oxides.20,24–26

Furthermore, the plasmon-pole approximation4,5,27–30 is com-
monly made to efficiently obtain the dynamic screening.
Many plasmon-pole models (PPMs)3,31–34 based on differ-
ent considerations have been constructed, and most GW

calculations were carried out by simply choosing one PPM
that best reproduces the experimental data of band gaps.
Moreover, pseudopotentials and the treatment of the semicore
states4,5,20,25,35–37 could also have major impacts on electronic
band structures. Thus, the true performance of the GW approx-
imation is obscured by these additional approximations, which
need to be investigated separately in order to systematically
assess and then improve the GW method.

In this work, we carry out G0W0 calculations on a variety
of materials. To single out the effects of the PPM, we
compare our results using four usual PPMs with those obtained
by numerical integration of dynamic screening, instead of
experimental data. For systems with highly localized valence
electrons the predicted Eg can vary as much as 1 eV using
different PPMs, while for strongly delocalized electronic
systems Eg barely changes with respect to the numerical
integration results; however, the energies of the band-edge
states are much more sensitive to the choice of PPM. Our
calculations and analysis suggest that the simplest PPM
satisfying no f -sum rules, i.e., the Godby-Needs model,31,32

best describes the dynamic screening.

II. METHOD

Calculations were performed using the ABINIT package.38

Convergences on the size of the reciprocal mesh, the cutoff en-
ergies, and the number of conduction bands were carefully ex-
amined, so that a 6 × 6 × 6 k mesh was used for C and Si while
a 4 × 4 × 4 k mesh was found large enough for the remaining
materials we studied, and cutoff energies up to 80 Ry were
used. Norm-conserving pseudopotentials are employed; in
particular, the Zn semicore states 3s, 3p, and 3d are treated as
valence states. The number of conduction bands used to evalu-
ate electronic screening vary from about 200 for Si to over 2000
for ZnO, and four PPMs, namely Godby-Needs (GN),31,32

Hybertsen-Louie (HL),3 von der Linden–Horsch (vdLH),33

and Engel-Farid (EF),34 together with numerical integration,
were employed. The contour numerical integration method for
obtaining self-energy is described in detail in Refs. 39 and 40;
because the integrand is quite smooth, 12–20 frequencies in a
range from 0 to 30–60 eV along both axes are found sufficient
to obtain well-converged results for these materials.

III. RESULTS AND DISCUSSION

Table I summarizes the calculated Eg of materials ranging
from simple semiconductors and insulators to transition-metal
oxide ZnO and molecular solid noble gas Ne. Compared with
experimental data corrected by excluding the electron-phonon
interactions,41 which normally lead to a reduced band gap,42–46

Eg in AlN, GaAs, ZnO, and Ne have relatively large errors,
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TABLE I. Calculated G0W0 band gaps (in eV) using the four
plasmon-pole models of GN, HL, vdLH, and EF, compared to
numerical integration and experimental data, which exclude the
electron-phonon interaction. The last column reports the invariant
part of the localization length (σ inv

el ) of valence electrons.

GN HL vdLH EF Numerical Expt. σ inv
el (Å)

Si 1.20 1.25 1.23 1.26 1.21 1.24 1.465
C 6.10 6.25 6.25 6.29 6.15 6.11 0.838
Ge 0.68 0.72 0.70 0.71 0.69 0.85 1.533
Ne 19.65 20.99 20.51 19.99 19.41 21.50 0.879
AlN 5.55 5.73 5.71 5.74 5.59 6.29 0.891
GaN 3.51 3.61 3.62 3.66 3.54 3.44 1.064
GaAs 1.13 1.15 1.14 1.16 1.13 1.59 1.527
MgO 7.13 7.61 7.46 7.39 7.13 7.85 0.838
ZnO 2.27 2.80 2.30 2.37 2.17 3.53 0.920

requiring self-consistent GW computations19,20 and/or more
accurate DFT wave functions to construct G and W .37,47–50

Here we focus on the effects of the PPM on band structures,
and our calculations suggest that for Si, Ge, and GaAs all
four PPMs give very close Eg values (within 0.1 eV) to those
from numerical integration. For AlN, GaN, and C, variations
in Eg are in the range 0.1–0.2 eV, while for MgO, ZnO, and
Ne the differences in Eg are larger than 0.5 eV using various
PPMs. For all these materials the GN PPM always agrees very
well with the numerical integration, whereas the other three
PPMs tend to overestimate Eg, which is especially significant
in MgO, ZnO, and Ne.

We also studied the effects of the PPM on the many-
body corrections to individual QP energies, as summarized
in Table II for the conduction-band minimum (CBM) and
valence-band maximum (VBM). Although the variations in
�Eg (EG0W0

g − EDFT
g ) of Si and C are negligible using these

four PPMs, the many-body corrections to CBM (�Ec) and
VBM (�Ev) vary noticeably. We find that (1) the GN results
are very different from the HL, vdLH, and EF results, which
are relatively similar; (2) for solid Ne, �Ec is not sensitive to
the choice of PPM, while �Ev depends strongly on the PPM;

TABLE II. Calculated G0W0 corrections (in eV) to DFT CBM
(�Ec), VBM (�Ev), and band gaps (�Eg) using the four plasmon-
pole models of GN, HL, vdLH, and EF, compared to numerical
integration.

GN HL vdLH EF Numerical

Si �Ec 0.50 0.22 0.21 0.26 0.51
�Ev −0.15 −0.48 −0.47 −0.45 −0.11
�Eg 0.65 0.70 0.68 0.71 0.62

C �Ev 1.16 0.77 0.75 0.82 1.09
�Ec −0.19 −0.73 −0.75 −0.72 −0.30
�Eg 1.35 1.50 1.50 1.54 1.39

Ne �Ec 2.80 2.67 2.69 2.74 2.84
�Ev −5.48 −6.95 −6.45 −5.88 −5.20
�Eg 8.28 9.62 9.14 8.62 8.04

ZnO �Ec 0.79 0.13 0.22 0.51 0.78
�Ev −0.61 −1.80 −1.21 −0.99 −0.52
�Eg 1.40 1.93 1.43 1.50 1.30

(3) both �Ec and �Ev for ZnO change considerably when
varying the PPM; and (4) for all these materials the GN results
of �Ec and �Ev agree excellently with those from numerical
integration, which is consistent with the previous work.51

Since the PPM approximates the dynamic screening, which
is strongly correlated to the level of electron delocalization,52,53

we quantify this by computing the localization length (σel)
of valence electrons. Here σel = √

S/N , and the spread
functional S of an N -band crystal in real space is defined as

S =
N∑

n=1

[〈r2〉n − 〈r〉2
n

]
. (2)

S can be decomposed into one gauge-invariant term S inv and
a variant term S̃, and the minimized S̃ can be obtained by
employing the WANNIER90 code52,54 to search over a range of
unitary transformations to the wave functions.

The last column of Table I shows the calculated invariant
part of the localization lengths σ inv

el , which clearly suggests that
for the highly delocalized electronic systems, such as Si, Ge,
and GaAs, these four PPMs behave very similarly to numerical
integration on band gaps, whereas for the strongly localized
systems such as MgO, ZnO, and Ne, the G0W0 band gaps
differ significantly with different PPMs used, as visualized in
Fig. 1. We note that although C has a σ inv

el comparable to those
of ZnO and Ne, its lattice constant is much smaller than those
of ZnO, Ne, and Si; therefore, its valence electrons are much
less localized than ZnO and Ne, as graphically demonstrated
in Fig. 2: ZnO and Ne have strongly localized valence electron
distributions, whereas the valence electrons in Si and C are
much more extended.
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FIG. 1. (Color online) Performance of four PPMs on band gap
(Eg) with respect to localization length (σ ) of valence electrons. Here
the vertical axes are the difference in computed Eg using PPMs and
numerical integration; (a) the horizontal axis is the invariant part of
the localization length, and (b) it is scaled by lattice constant alatt.
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FIG. 2. (Color online) Isosurfaces of the valence charge densities
for (a) Si, (b) C, (c) Ne, and (d) ZnO. Here four valence bands for
Si, C, and Ne and six for ZnO are included, and the corresponding
isosurface values are set to be identical in four panels, with high to
low values ranging from red (dark) to yellow (light) colors.

To understand why the performances of these PPMs
compared with numerical integration depend on the electron
delocalization level, we briefly describe how these PPMs were
constructed. In the GW approximation, self-energy � is the
product of the QP Green function G and the screened Coulomb
interaction

W = ε−1V, (3)

where ε is the dielectric response function and V the bare
Coulomb interaction. Evaluation of ε−1(r,r′,ω), or its Fourier
transformation in the reciprocal space, ε−1

G,G′ (q,ω), with G
and G′ the reciprocal lattice vectors and q a wave vector in
the first Brillouin zone, remains a major numerical challenge
due to spatial nonlocality and frequency (ω) dependence. The
plasmon-pole approximation takes advantage of the fact that
ε−1 is usually flat except for a peak at the plasma frequency,
ωp, assuming that reproducing the actual shape of ε−1 is less
important than reproducing the convolution of G and W in
the frequency space. Thus ε−1

G,G′ (q,ω) can be approximated by
a single-pole function in ω, with the effective strength and
frequency of the plasmon excitation modeled by imposing
certain constraints and/or exact values and limits, such as the
static dielectric function.

The earliest PPM15 was simply a Dirac δ function for
a homogenous electron gas, which can replicate the major
features of the GW integral fairly well. The GN PPM,31,32

constructed by fitting ε−1
G,G′(q,ω) at two points along the

imaginary frequency axis, is little more than the Dirac δ-
function solution with a rapidly decaying tail. On the contrary,
the HL,3 vdLH,33 and EF34 models use the zero-frequency
limit and the f -sum rule analogous to Johnson’s formalism55,56

to fix their parameters.
Specifically, in the GN and HL PPMs, the Kramers-Kronig

relation between the real and imaginary parts of ε−1 is
enforced, so that

Im
[
ε−1

G,G′ (q,ω)
]

= AG,G′ (q) [δ(ω − ω̃G,G′(q)) − δ(ω + ω̃G,G′(q))], (4a)

Re
[
ε−1

G,G′ (q,ω)
] = δG,G′ + �2

G,G′(q)

ω2 − ω̃2
G,G′(q)

. (4b)

Here ω̃G,G′(q) is the plasmon frequency with effective strength
amplitude AG,G′ (q), and �2

G,G′(q) = −AG,G′ (q)ω̃2
G,G′(q). The

GN PPM reproduces ε−1
G,G′ (q,ω) at ω → 0 and ω → iωp, while

Hybertsen and Louie imposed a generalized f -sum rule,∫ ∞

0
dω ω Im

[
ε−1

G,G′ (q,ω)
]

= −π

2
ω2

p

(q + G) · (q + G′)
|q + G|2

ρ(G − G′)
ρ(0)

, (5)

where ρ is the electron density. In the HL construction the
off-diagonal dielectric matrix elements are unphysical, and it
is nontrivial to generalize the HL model to systems without
inversion symmetry.57 The vdLH and EF PPMs improve the
off-diagonal matrix elements over the HL PPM. The vdLH
model33 adds the frequency dependence to the eigenvalues of
the dielectric matrix ε−1, making the off-diagonal elements
physically meaningful, whereas the EF34 PPM introduces
frequency dependence to both the eigenvalues and the eigen-
vectors of inverse polarizability χ−1, and the χ−1 matrices are
diagonalized in the limits of ω → 0 and ω → ∞, so that the
f -sum rule is followed.

We analyze the properties of the dielectric functions ob-
tained using the plasmon-pole approximation, in comparison
with those obtained by numerical integration. Figures 3 and 4
plot Re[ε−1(q = 0,ω)] along the imaginary and real frequency
axes, respectively, for G = G′ = 0, the Brillouin zone center.
The results for the GN and HL PPMs are shown for four
representative materials, Si, C, ZnO, and Ne; since the HL,
vdLH, and EF PPMs were all constructed by enforcing the
f -sum rule, here we only discuss the GN and HL PPMs,
expecting the vdLH and EF PPMs to behave somewhat
similarly to the HL PPM.

Figure 3(a) indicates that for Si the GN and HL PPMs
both reproduce the actual Re[ε−1] at G = G′ = 0 along the
imaginary ω axis very well. This is because both models
become exact for the homogeneous electron gas, and the
screening of highly delocalized valence electrons in materials
such as simple semiconductors can be approximated by a
uniform gas locally, which is analogous to the local density
approximation for the exchange-correlation functional. For C,
the GN PPM also reproduces the actual Re[ε−1(iω)] very
well, while the HL PPM is less accurate, underestimating
Re[ε−1(iω)] noticeably, as shown in Fig. 3(b). This is in line
with the fact that the valence electrons in C are less delocalized
than those in Si. In contrast, Figs. 3(c) and 3(d) indicate that in
Ne and ZnO, where the valence electrons are strongly localized
[Figs. 2(c) and 2(d)], values of Re[ε−1(iω)] computed by the
HL PPM are significantly lower than the actual values, while
the GN PPM still makes good matches to the numerical results
of Re[ε−1(iω)].

The same trend holds for Re[ε−1] at G = G′ = 0 along
the real ω axis. Figure 4 demonstrates that for Si and C,
the GN and HL PPMs both can well reproduce the actual
values of Re[ε−1(ω)], except for the region near the plasma
frequency ωp, while for Ne and ZnO both models are too
crude to capture the fine features of Re[ε−1(iω)] over a broad
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FIG. 3. (Color online) The real part of the inverse dielectric function at G = G′ = 0 along the imaginary frequency axis for (a) Si, (b) C,
(c) Ne, and (d) ZnO, using the GN and HL PPMs, compared to those obtained by numerical integration.

region centered about the plasma frequency. However, even
in strongly localized electronic systems such as Ne and ZnO,
the GN model is still better than the HL model in that the HL
PPM overestimates the plasma frequency due to enforcing the
f -sum rule, whereas the GN PPM asserts the actual plasmon
pole positions.

We also computed values of Re[ε−1] at G and G′ other
than the � point, which are plotted in Figs. 5 and 6 and
show the similar trend is also revealed. Thus our calculations
demonstrate that in highly delocalized electronic systems such
as Si and C, the GN and HL PPMs (together with the vdLH
and EF PPMs) behave similarly; however, in strongly localized

FIG. 4. (Color online) The real part of the inverse dielectric function at G = G′ = 0 along the real frequency axis for (a) Si, (b) C, (c) Ne,
and (d) ZnO, using the GN and HL PPMs, compared to those obtained by numerical integration.

125205-4



ROLE OF THE PLASMON-POLE MODEL IN THE GW . . . PHYSICAL REVIEW B 88, 125205 (2013)

FIG. 5. (Color online) The real part of the inverse dielectric function along the imaginary frequency axis for (a) Si, (b) C, (c) Ne, and
(d) ZnO, using the GN and HL PPMs, compared to those obtained from numerical integration. Here G = G′ �= 0.

electronic systems such as Ne and ZnO, the GN and HL
PPMs differ notably, and the choice of PPM greatly affects the
magnitude of Eg. Although Eg obtained using the HL PPM
in general best agrees with experimental data among these
PPMs, especially for strongly localized electron systems, it

is the GN PPM that can predict Eg more accurately than the
other three PPMs, compared with the numerical integration
results.

The HL PPM tends to underestimate screening and thus
exaggerate the many-body corrections to the Kohn-Sham

FIG. 6. (Color online) The real part of the inverse dielectric function along the real frequency axis for (a) Si, (b) C, (c) Ne, and (d) ZnO,
using the GN and HL PPMs, compared to those obtained from numerical integration. G = G′ �= 0.
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energy levels,51 largely due to the enforcement of the f -sum
rule. The fulfillment of the sum rule is not critical for accurately
evaluating the matrix elements of ε−1,51,58 and it is difficult to
both satisfy the sum rule and match the overall shape of the
dielectric function. The HL, vdLH, and EF PPMs average over
a broad range of frequencies, but the weight is concentrated
more on the larger frequencies. On the other hand, the GN PPM
fits its parameters to two explicitly computed values of ε−1 at
ω = 0 and iωp, leading to good overall match to the actual
ε−1, especially in the small-frequency area, which is crucial
for evaluating the self-energy � for the near-gap states. The
summation over a broad range of frequencies diminishes the
importance of low-energy excitations, whereas using a single
plasma frequency, as in the GN PPM, enhances the importance
of the strongly localized states such as the semicore d electrons
in ZnO.

The GN PPM agrees not only with the numerical integration
very well on Eg, but also on the many-body corrections
for individual QP states, as indicated by Table II for the
VBM and CBM. In contrast, the HL together with the vdLH
and EF PPMs often underestimate �Ec while overestimating
the magnitude of �Ev , though in general, the vdLH and
EF PPMs improve over the HL PPM. These results further
emphasize that the GN PPM is more reliable than the other
three; even in the simple semiconductors such as Si and
Ge, it is the error cancellation between �Ec and �Ev that
leads to the calculated Eg using the HL, vdLH, and EF
PPMs close to the numerical integration results. But this
error cancellation works less well for more localized systems,
where the negative shift of EVBM is too large, causing these
three PPMs based on the f -sum rule to often overestimate
Eg.

IV. SUMMARY AND CONCLUSION

In summary, we conclude that since the accuracy of GW

calculation depends on a number of approximations besides
the plasmon-pole model, examining the performance of a PPM
is complicated. Our results show that even though Eg obtained
by the HL PPM agree best with experimental data, the GN PPM
best reproduces the electronic screening. In highly delocalized
electronic systems the f -sum-rule-based PPMs usually predict
very similar Eg to that of the GN PPM due to error cancellation
between the band-edge states, whereas in strongly localized
systems these three PPMs would dramatically overestimate Eg

because the enforcement of the f -sum rule exaggerates elec-
tronic screening. But the band-edge energy levels are sensitive
to the choice of PPM even in simple semiconductors, in agree-
ment with previous work on the Si/SiO2 junction,59 which
makes it difficult to accurately determine the energy-level
alignment at semiconductor interfaces. The GN model is ap-
parently the most reliable, and the discrepancy between experi-
mental data and the G0W0 results cannot be resolved by merely
using or building a PPM that happens to offer a correct band
gap; instead, better DFT wave functions and eigenenergies,
e.g., using LDA/GGA+U ,37,60,61 self-consistent GW 17–21

procedures, and the vertex correction,19,20 are necessary.
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