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Unified description for hopping transport in organic semiconductors including both energetic
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We developed an analytical model to describe hopping transport in organic semiconductors including both
energetic disorder and polaronic contributions due to geometric relaxation. The model is based on a Marcus
jump rate in terms of the small-polaron concept with a Gaussian energetic disorder, and it is premised upon
a generalized effective medium approach yet avoids shortcomings involved in the effective transport energy
or percolation concepts. It is superior to our previous treatment [Phys. Rev. B 76, 045210 (2007)] since it is
applicable at arbitrary polaron activation energy Ea with respect to the energy disorder parameter σ . It can be
adapted to describe both charge-carrier mobility and triplet exciton diffusion. The model is compared with results
from Monte Carlo simulations. We show (i) that the activation energy of the thermally activated hopping transport
can be decoupled into disorder and polaron contributions whose relative weight depend nonlinearly on the σ/Ea

ratio, and (ii) that the choice of the density of occupied and empty states considered in configurational averaging
has a profound effect on the results of calculations of the Marcus hopping transport. The σ/Ea ratio governs also
the carrier-concentration dependence of the charge-carrier mobility in the large-carrier-concentration transport
regime as realized in organic field-effect transistors. The carrier-concentration dependence becomes considerably
weaker when the polaron energy increases relative to the disorder energy, indicating the absence of universality.
This model bridges a gap between disorder and polaron hopping concepts.
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I. INTRODUCTION

Hopping transport of charge carriers and neutral excitons in
disordered organic materials can, in principle, be controlled by
both disorder and polaron effects depending on their relative
weight.1,2 Polaron formation occurs upon adding or removing
an electron from a molecule, so the molecular skeleton changes
because of the readjustment of the individual bond lengths.
The hopping quasiparticle (polaron) is thus a charge associ-
ated with a molecular distortion. The change in molecular
configuration can also occur upon exciton transfer in an
organic solid resulting in the formation of a “polaron exciton.”
Polaron formation in organic materials is usually treated in
terms of the small-polaron model suggested by Holstein3 and
Friedman4 and further developed for nonadiabatic polaron
transfer between sites with different energies by Emin.5 At
high enough temperatures, the small polaron model gives a
jump rate equivalent to a Marcus expression.6,7

In conventional disordered organic semiconductors charge-
carrier transport is dominated by disorder,2,8–12 while polaron-
controlled transport prevails in some systems for triplet
excitons13,14 that feature a narrower density-of-states (DOS)
distribution due to their nonpolar nature and consequently
a weak interaction with external polarization. The Gaussian
disorder model (GDM)8,9,11 has been the most widely used
formalism to describe charge-carrier mobility in amorphous
organic materials. The model is premised on the argument
that charge-carrier transport occurs by hopping through a
Gaussian DOS distribution of energetic width σ . There were
several important improvements of the initial GDM suggested

by Bässler.8 First, spatial correlations of the energies of
transport sites in disordered media has been taken into account
in order to properly describe the field dependence of the
charge mobility.15 Another prominent recent advancement
was accounting for the partial DOS filling at a large-carrier
concentration to describe the carrier-concentration effect on
the charge-carrier mobility. The latter led to developing a so-
called extended Gaussian disorder (EGD) model16–19 which is
now conventionally applied to describe charge-carrier mobility
in organic field-effect transistors (OFET) and light emitting
diodes (OLEDs) in which the current is space-charge limited.

Disorder models are conventionally based on a Miller-
Abrahams jump rate20 and thus they neglect any polaron
effects. While considerable efforts have been made for the
last two decades in developing the disorder formalism, an ade-
quate description of the charge-carrier transport in disordered
organic materials that includes the presence of polaron effects
is not yet fully elaborated. In principle, polaron formation can
be incorporated in the disorder formalism by using a polaron
jump rate model. Some 20 years ago Bässler, Borsenberger,
and Perry21 suggested that the activation energy of the charge
transport in a system with superimposed disorder and polaron
effects can heuristically be parametrized by splitting the
activation energy into a disorder and a polaron term. Later
on, Parris et al.22 used the Marcus rate model in Monte Carlo
simulations of the charge transport in a disordered organic
solid and demonstrated that polaronic carriers with moderate
polaron binding energy are consistent with experimental
observations. They found that the temperature dependence
of the charge mobility in the zero field limit can indeed be
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decoupled into a polaron and a disorder induced contribution
as

μ(T ) ∝ exp

[
− Ea

kBT
− C

(
σ

kBT

)2]
, (1)

where Ea is the (small) polaron activation energy, which is
equal to half of the polaron binding energy (Ea = Ep/2), σ is
the width of the DOS distribution, and the constant C weighs
the relative contribution of disorder and polaron effects. Parris
et al.22 deduced C = 0.31 for σ = 80 meV and Ea = 75 meV.
Fishchuk et al.23 applied his effective medium approximation
(EMA) theory to consider polaron transport in the limiting case
of strong polaron effects relative to the disorder contribution
(Ea > σ ) using the so-called symmetrical jump rate, in which
the quadratic term in the Marcus expression is neglected, and
obtained C = 1/8. This would imply that factor Ccould not
be a constant but depends on the σ/Ea ratio. In the present
paper we address this problem for Marcus hopping using
Monte Carlo simulations and EMA analytic calculations at
an arbitrary σ/Ea ratio.

Recently Cottaar et al.24 compared Marcus and Miller-
Abrahams hopping mobilities calculated using a percolation-
type theory and found that carrier-concentration dependence
of the mobility μ(n/N ), where n/N is carrier concentration
per site, is invariant with the strength of polaron effects, i.e.,
it is universal for an arbitrary σ/Ea ratio. This contradicts
the previous EMA calculations19 that predicted a μ(n/N )
dependence to be much weaker for large polaron binding
energies as compared to that for small polaron binding energies
and to the dependencies typically observed experimentally in
conventional organic semiconductors with disorder-controlled
charge-carrier transport.17

In the present paper we develop a unified model based on a
Marcus jump rate model and Gaussian disorder to bridge a gap
between disorder-controlled and polaron-controlled transport
descriptions that avoids the approximations inherently made
in transport models using the effective transport energy or
percolation. The model will be compared against results from
Monte Carlo simulations. We show that thermally activated
hopping transport can indeed be decoupled into a disorder
and a polaron contribution but their relative weights depend
nonlinearly on the σ/Ea ratio. We will also show that the σ/Ea

ratio governs the dependence of the charge-carrier mobility on
the carrier concentration. Therefore, there is no universality
regarding the trade-off between disorder and polaron effects.

Apart from the fundamental aspects the current work
is important for analyzing experimental results. Whether
transport data is interpreted in terms of a disorder model
or a polaron model significantly changes the conclusions
drawn about what affects charge-carrier mobility. The usual
way to distinguish between polaron and disorder effects is
to measure the temperature dependence of the charge-carrier
mobility. A ln(μ) ∝ T −2 dependence is taken as a signature of
disorder-controlled transport, while a conventional Arrhenius
type of behavior is indicative of polaron transport. However,
in view the usually quite limited temperature range, such a
discrimination can be ambiguous. In this case the distinction
has to rely on a physically meaningful set of transport
parameters and a conceptually correct assessment of the
interplay of disorder and polaron effects.

II. MONTE CARLO SIMULATIONS

Monte Carlo (MC) simulations have been carried out for
excitations hopping on a three-dimensional (3D) rectangular
lattice. The excitation can, in principle, be equally well a
charge carrier or a triplet exciton since the transfer of a triplet
can be described as a correlated exchange of two charges.25

The physical meaning of the excitation depends on the value
chosen for the energetic disorder and the reorganization energy.
The advantage in adopting parameters describing a triplet
exciton is that the results of the MC simulations can be
compared and verified against data available from phospho-
rescence measurements on poly-(p-phenylene) (PPP) type
polymer chains, and for this reason we have used parameters
compatible with the description of a triplet exciton.14,26 The
lattice for the simulation was chosen with a spacing of 1.68 nm
between lattice points in the z direction and with a spacing
of 1.5 nm between lattice points in the x and y directions.
1.68 nm corresponds to the center-to-center distance between
two repeat units, and 1.5 nm is a typical interchain distance.
The direction of a polymer chain is thus identified with the
z direction. The anisotropy inherent to a polymer chain can
be included by using asymmetric coupling strengths described
by different inverse localization lengths, i.e., γ‖ for hopping
in the z direction and γ⊥ for hopping in the x or y directions.
In contrast, isotropic transport results when choosing identical
values for the inverse localization lengths. Energetic disorder
is incorporated in the lattice by assigning each site an energy
drawn at random from a Gaussian distribution of width σ

centered around 0 eV. In this simulation we have not taken any
measures to explicitly include the effect of conjugation length
or of correlated disorder.

For one trial in the simulation, an excitation is placed at
a site i randomly chosen at the time t = 0. The excitation
thus has a random energy out of the Gaussian distribution.
At each Monte Carlo step, the excitation may either hop
to a neighboring site j or it may decay. Either of the two
events is associated with a certain waiting (dwell) time. For
the case of a hop from site i to j , the dwell time is given
by τij = −k−1

ij ln(X), where X is a random number from a
box distribution between 0 and 1, and kij is the hopping rate.
The dwell time for the decay of a triplet exciton is given by
τdecay = −τex ln(X), with τex being the lifetime of the triplet
exciton. At each MC step, the two dwell times are calculated
and the event with the shorter time is chosen. If the chosen
event is the decay, the trial is terminated and subsequently
a new trial is started with a new exciton at a random site.
Monitoring the spatial positions of the initial and final site the
exciton has visited, we can deduct values for the effective,
mean diffusion coefficient D = �x2/�t . A few thousand
trials are averaged to obtain meaningful values.

The hopping process depends critically on the rate chosen.
In this work we have used a Marcus-type rate given by

kij = J 2
ij

h̄

√
π

4EakBT
exp

[
− Ea

kBT
− εi − εj

2kBT
−

(
εi − εj

)2

16EakBT

]
,

(2)

with Jij = J0 exp(−2γ rij ). Energy Ea is related to the
reorganization energy λ by Ea = λ/4,25 γ is the inverse
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localization radius related to the electronic coupling matrix
element between adjacent sites, rij is the distance between
two sites i and j , and J0 is a prefactor in the transfer integral.
Using the EMA approach, Fishchuk et al.23 could show that the
discrete rate of Eq. (2) results in the macroscopic equivalent
mobility given by Eq. (1) with C = 1/8.

III. THEORETICAL FORMULATION

Within the EMA approach the disordered organic medium
with localized states for charge carriers is replaced by an
effective ordered cubic 3D lattice with spacing a = N−1/3

equal to the average distance between localized states, where
N is the density of the localized states. We consider that energy
ε of the localized states is randomly distributed and their DOS
can be described by a Gaussian function

g (ε) = N

σ
√

2π
exp

[
−1

2

(
ε

σ

)2]
, (3)

where σ is the width of the DOS. Such kinds of the
DOS distribution are applicable for both charged and neutral
excitations (excitons) in organic disordered solids.2,8 It is worth
mentioning that since the exchange interactions governs both
charge carrier and triplet energy transfer, their diffusion can
be described by the same theoretical model as long as the
charge-carrier concentration is very low and the electric field
acting on charge carriers is sufficiently low so that eF�xij �
σ , where �xij is the separation of the hopping sites. For the
sake of generality, however, we will first formulate a theory of
the effective diffusivity of charge carriers at arbitrary carrier
concentration and then apply it also to the low concentration
limit for both charge carriers and triplet excitations.

For the carrier-concentration n the Fermi energy level εF is
determined from the transcendental equation

n =
∫ ∞

−∞
dεg(ε)f (ε,εF ), (4)

where f (ε,εF ) is given by the Fermi-Dirac statistics

f (ε,εF ) = 1

1 + exp
(

ε−εF

kBT

) . (5)

In the present work we will apply both the Miller-Abrahams
(MA) rates applicable at a weak electron-phonon coupling
and/or low temperatures and the Marcus rate model applicable
at the strong electron-phonon coupling and/or high tempera-
ture limit to describe an elementary hopping transition between
two individual sites. For the MA hopping the jump rate Wij

for the bare charge carrier between starting (εi) and target (εj )
states is given as20

Wij = W1 exp

[
−|εj − εi | + (εj − εi)

2kBT

]
,

(6)
W1 = ν0 exp

(
−2

a

b

)
,

where ν0 is the attempt-to-escape frequency and b is a carrier
localization radius. On the other hand, the Marcus hopping
model6 is applied to account for polaron formation. It describes
the polaron hopping with a rate given by Eq. (2), which we

rewrite in a form more convenient for further EMA treatment:

Wij = W2 exp

[
−εj − εi

2kBT
− (εj − εi)2

16EakBT

]
,

(7)

W2 = W0 exp

(
− Ea

kBT

)
,

where Ea is the is the small polaron activation energy and
W0 = (J 2

0 /h̄)
√

π/4EakBT exp (−2a/b).
It is worth nothing that for calculating the effective mobility

of charge carrier in disordered media it has already become
a common practice to use the concept of so-called effective
transport energy. This concept assumes that all carriers jump
to target sites of a specific transport energy Etransp, which
can be calculated by the condition that transition rates to this
energy are the highest. An attractive feature of the transport
energy approximation is that it effectively reduces the complex
hopping transport to a multiple trapping and release formalism.
The transport energy Etransp has been calculated for the MA rate
in many works11,18,19,27–30 and also for a so-called symmetric
Marcus-type transition rate.19 The latter is an approximate
description for the case of high polaron binding energy Ea �
(εj − εi), when the quadratic term in the Marcus equation can
be neglected.19 When using the full Marcus jump rate equation
[cf. Eq. (7)] we found that, unfortunately, the calculation of
Etransp in this case is problematic if the same mathematical
definition for Etransp is used. To the best of our knowledge,
no calculation of Etransp for the original Marcus rate has been
reported so far.

To circumvent the problem regarding the Marcus hopping,
we first pursue an alternative approach for calculating the
effective conductivity. This is a key aspect of the present
theoretical treatment because this approach does not require
calculating Etransp explicitly. Instead, we use direct configu-
rational averaging over a distribution of empty and occupied
states of the DOS, which allows us to obtain the effective
carrier mobility for both MA and Marcus rates using the
Einstein relation at arbitrary polaron activation energies.
Since this approach avoids the approximations inherent in the
transport energy concepts and the percolation approach, it is
more rigorous because it considers not only hopping transitions
at a discrete Etransp level. Rather, the whole distribution of
unoccupied localizes states, i.e., hopping to all potentially
accessible hopping target states, is taken into account. It worth
noting that the validity of the Einstein relation in disordered
semiconductors under thermal equilibrium condition has been
recently confirmed.31

In the present work we proceed from calculation of
conductivity using an EMA method suggested earlier by
Kirkpatrick.32 Kirkpatrick has considered the average effects
observed in a network of random resistors using an approach
of an effective medium. The latter has been defined so that
the medium in which the total field inside is equal to the
external field. Such a medium must be homogeneous. For
simplicity it was assumed to be composed by a set of equal
resistors (with conductance Ge) connecting nearest neighbor
nodes on the cubic lattice. Ge is determined by the following
condition—the extra voltages (the local fields), being induced
upon replacing Ge in this medium with random individ-
ual conductances G12, should average to zero.32 Sequential
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theoretical treatment based on the above condition has resulted
in the following relation for the effective conductivity σe =
Ge/a characterizing the whole disordered system [Eq. (5.4)] in
Ref. 8: 〈

σ12 − σe

σ12 + (d − 1)σe

〉
= 0, (8)

where σ12 = G12/a is conductivity in two-site cluster approx-
imation, d is dimensionality of the hopping transport system,
G12 is two-site conductance, and the angular brackets 〈· · ·〉
denote the configuration averaging. In general, configurational
averaging of some value Q is performed by solving a double
integral 〈Q〉 = ∫ ∞

−∞ dε1
∫ ∞
−∞ dε2P (ε1) P (ε2) Q, where P (ε1)

and P (ε2) denote certain distribution functions for ε1 and ε2,
respectively, as detailed below.

The conductance G12 can be determined for the MA rate
[cf. Eq. (6)] according to Refs. 33 and 34:

G12 = G1

exp
(−|ε1−ε2|

2kBT

)
4 cosh

(
ε1−εF

2kBT

)
cosh

(
ε2−εF

2kBT

) , G1 = e2W1

kBT
(9)

and for the Marcus rate [cf. Eq. (7)] as

G12 = G2

exp
[− (ε1−ε2)2

16EakBT

]
4 cosh

(
ε1−εF

2kBT

)
cosh

(
ε2−εF

2kBT

) , G2 = e2W2

kBT
. (10)

To calculate the effective conductivity σe one has to perform
a configuration averaging in Eq. (8). It should be pointed out
that the appropriate averaging method turns out to be crucial
for an adequate description of kinetic characteristics. Site
energies ε1 and ε2 enter Eqs. (9) and (10) symmetrically, i.e.,
σ12 = σ21. An elementary method of configurational averaging

would be to separately average over starting site ε1 and
target site ε2 energies using the product of Gaussian functions
P (ε1) P (ε2) = g (ε1) g (ε2) given by Eq. (3). Hereafter we
shall refer to this averaging method in abbreviation as
“averaging B.” However, in reality, a charge-carrier jump
occurs from an occupied hopping site with energy ε1 to an
empty site with energy ε2, and vice versa. Therefore, it is more
appropriate to average over the occupied density-of-states
(ODOS) distribution for starting site energies and over the
unoccupied density-of-states (UDOS) distributions for the
target site energies. The localized states occupied by carriers
are described by the ODOS distribution P (ε1) normalized to
unity:

P (ε1) = g (ε1) f (ε1,εF )∫ ∞
−∞ g (ε) f (ε,εF ) dε

. (11)

The empty localized states are described by UDOS distri-
bution P (ε2) which in normalized to unity form is given as

P (ε2) = g(ε2)[1 − f (ε2,εF )]∫ ∞
−∞ g(ε)[1 − f (ε,εF )]dε

. (12)

Let us call this “ODOS-UDOS” averaging method as
“averaging A” for short. In the limiting case of van-
ishing carrier concentration the above relations reduce
to P (ε1) = (1/σ

√
2π ) exp[−(1/2σ 2)(ε1 − ε0)2] and P (ε2) =

(1/σ
√

2π ) exp[−(1/2σ 2)(ε2)2], where ε0 = −σ 2/kBT . We
will apply first the averaging A method. Substituting Eqs. (11)
and (12) into Eq. (8) leads to the following transcendental
equation for σe in the case of the MA hopping conductance
[Eq. (9)]:

∫ ∞

−∞

∫ ∞

−∞
dt1dt2

exp
[− 1

2

(
t2
1 + t2

2

)]
{1 + exp [x(t1 − xF )]} {1 + exp [−x(t2 − xF )]}

x
4

exp(− x
2 |t1−t2|)

ϕ(t1,t2,xF ) − Xe

x
4

exp(− x
2 |t1−t2|)

ϕ(t1,t2,xF ) + 2Xe

= 0. (13)

Using the Marcus rate for the hopping conductance [Eq. (10)] it becomes

∫ ∞

−∞

∫ ∞

−∞
dt1dt2

exp
[− 1

2

(
t2
1 + t2

2

)]
{1 + exp [x(t1 − xF )]} {1 + exp [−x(t2 − xF )]}

x
4

exp
[
− x(t1−t2)2

16xa

]
ϕ(t1,t2,xF ) − Ye

x
4

exp
[
− x(t1−t2)2

16xa

]
ϕ(t1,t2,xF ) + 2Ye

= 0. (14)

Here Xe = σe/σ1, σ1 = e2W1/aσ , Ye = σe/σ2, σ2 =
e2W2/aσ , x = σ/kBT , xa = Ea/σ , xF = εF /σ , and
ϕ (t1,t2,xF ) = cosh [(x/2) (t1 − xF )] cosh [(x/2) (t2 − xF )].
The effective mobility μe and effective diffusivity De can be
obtained as

μe = σe

en
, De = kBT

e
μe, (15)

where n is the charge-carrier concentration given by
Eq. (4).

Let us consider first the charge-carrier transport in the
limiting case of very low carrier concentration when carrier
concentration per site n/N → 0. Oelerich et al.35 have shown

that in this case Eq. (4) yields

εF = −1

2

σ 2

kBT
+ kBT ln

(
n

N

)
. (16)

It should be noted that the first term in the right side of
Eq. (16) should not be confused with the conventional relation
describing the thermal quasiequilibrium energy level, as this
arises here as a consequence of a Gaussian-shaped DOS and
plays a minor role since the second term dominates Eq. (16).
At vanishing carrier-concentration εF /σ → −∞. Therefore,
hopping transitions from the Fermi level in a Gaussian DOS are
eliminated in the low-carrier-concentration transport regime.
Instead, the hopping transport is dominated by transitions
from the quasiequilibrium energy level ε∞ = −σ 2/kBT at
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which, on average, charge carriers migrating within a Gaussian
DOS distribution settle in the limit of very weak carrier
density.

Substituting Eqs. (15) and (16) into Eq. (13) one obtains a
transcendental equation for the effective diffusivity De in the
low-carrier-concentration limit in the case of MA rate:

∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
− (t1 + x)2 + t2

2

2

]
exp

[− x
2 |t1 − t2| − x

2 (t1 + t2) − 1
2x2

] − Me

exp
[− x

2 |t1 − t2| − x
2 (t1 + t2) − 1

2x2
] + (d − 1)Me

= 0. (17)

For the Marcus rate the effective diffusivity can be obtained by substituting Eqs. (15) and (16) into Eq. (14) and it reads

∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
− (t1 + x)2 + t2

2

2

] exp
[−xxa − x

16xa
(t1 − t2)2 − x

2 (t1 + t2) − 1
2x2

] − Ne

exp
[−xxa − x

16xa
(t1 − t2)2 − x

2 (t1 + t2) − 1
2x2

] + (d − 1)Ne

= 0, (18)

where Me = De/D1, Ne = De/D2, D1 = a2W1, and D2 = a2W0. Note that the Fermi level does not enter in Eqs. (17) and (18),
in contrast to Eqs. (13) and (14) derived for the diffusivity in the high-carrier-concentration limit. We should recall that Eqs. (17)
and (18) can be used for calculating the effective diffusivity De of both charge carriers and triplet excitations.

As pointed out above, there could also be another averaging method—averaging B. Using this method one obtains instead of
Eqs. (13) and (17) the following transcendental equations for the MA rate for arbitrary carrier concentration:

∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
−1

2

(
t2
1 + t2

2

)] x
4

exp(− x
2 |t1−t2|)

ϕ(t1,t2,xF ) − Xe

x
4

exp(− x
2 |t1−t2|)

ϕ(t1,t2,xF ) + 2Xe

= 0. (19)

At vanishing carrier concentration it reduces to∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
−1

2

(
t2
1 + t2

2

)] exp
[− x

2 |t1 − t2| − x
2 (t1 + t2) − 1

2x2
] − Me

exp
[− x

2 |t1 − t2| − x
2 (t1 + t2) − 1

2x2
] + (d − 1)Me

= 0. (20)

When using the case of the Marcus rate, the averaging B method yields instead of Eqs. (14) and (18) the following relation:

∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
−1

2

(
t2
1 + t2

2

)] x
4

exp
[
− x(t1−t2)2

16xa

]
ϕ(t1,t2,xF ) − Ye

x
4

exp
[
− x(t1−t2)2

16xa

]
ϕ(t1,t2,xF ) + 2Ye

= 0. (21)

For vanishing carrier concentration it becomes∫ ∞

−∞

∫ ∞

−∞
dt1dt2 exp

[
−1

2

(
t2
1 + t2

2

)] exp
[−xxa − x

16xa
(t1 − t2)2 − x

2 (t1 + t2) − 1
2x2

] − Ne

exp
[−xxa − x

16xa
(t1 − t2)2 − x

2 (t1 + t2) − 1
2x2

] + (d − 1)Ne

= 0. (22)

As it will be shown below, this averaging B method lead to
results obtained in Ref. 24 in which the Marcus rate has been
used.

IV. RESULTS OF ANALYTIC CALCULATIONS

A. The temperature dependence of the charge mobility
at vanishing carrier concentration

Temperature dependencies of the diffusion coefficient
De/D1 calculated by Eq. (17) in the low-carrier-concentration
limit using both averaging methods A and B [Eq. (20)] are

De = D1 exp(−0.43x2) (averaging A) (23)

and

De = D1 exp(−0.53x2) (averaging B) (24)

and are shown in Fig. 1 (curves 1 and 2). Equations (23)
and (24) are functionally the same but differ regarding the
numerical factor in the exponent. It turns out that only Eq. (23)
is consistent with literature work.8,9

In the case of Marcus hopping the total activation energy
of the effective diffusivity De is determined by the sum of the

FIG. 1. (Color online) Diffusion coefficient De/D1 as a function
of temperature in a 3D disordered medium at vanishing carrier
concentration calculated for the Miller-Abrahams rate by Eqs. (17)
and (20) using averaging A and B (curve 1 and 2, respectively).
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FIG. 2. (Color online) The De/[D2 exp(−Ea/kBT )] vs (σ/kBT )2

calculated for Marcus hopping in a 3D system at vanishing carrier
concentration by Eq. (16) using averaging A (red solid curves) and
by Eq. (22) using averaging B (blue thin curves) for different Ea/σ

ratios at Ea = 0.03 eV. Factor C denotes the slope of the temperature
dependencies.

polaron activation energy Ea and a contribution due to ener-
getic disorder [cf. Eq. (1)]. The energy disorder contribution
can be evaluated as De/[D2 exp(−Ea/kBT )]. Figure 2 shows
the temperature dependence of De/[D2 exp(−Ea/kBT )] cal-
culated for the Marcus rate in a 3D system by Eq. (16) using
averaging A (red bold curves) and by Eq. (22) using averaging
B (blue thin curves) at a polaron activation energy Ea =
0.03 eV and different Ea/σ ratios. It is evident from Fig. 2 that
the temperature dependencies calculated for the Marcus rate
depend drastically on the method of configurational averaging
used. While the averaging B predicts a temperature dependence
of De/[D2 exp(−Ea/kBT )] independent of the Ea/σ ratio
(Fig. 2, blue thin curves), the averaging A method results
in temperature dependence that does depend on Ea/σ and
becomes progressively weaker with increasing Ea/σ ratio (red
curves). Below we will show that only the latter calculation
method yields results consistent with Monte Carlo simulation
data.

B. Carrier-concentration dependence of the charge mobility

Now we consider hopping transport at an arbitrary carrier
density for the Marcus rate. Figure 3(a) presents the carrier-
concentration dependencies of the Marcus hopping mobility
μe/μ2 = (N/n) Ye exp (−xxa) calculated for different tem-
peratures by Eqs. (14) and (15) using the averaging A
method both at a large relative polaron activation energy
Ea/σ = 3 (dashed curves) and for a small Ea/σ = 0.5 ratio
(solid curves). The calculations clearly show that the effective
charge-carrier mobility depends very weakly on the carrier
concentration even at low temperatures in the case when

FIG. 3. (Color online) The charge-carrier mobility μe/μ2 =
(N/n) Ye exp (−xxa) vs carrier-concentration n/N calculated for the
Marcus rate by Eqs. (14) and (15) using averaging A (a) and by
Eqs. (15) and (21) using averaging B (b) for different temperatures
at Ea/σ = 0.5 (solid curves) and Ea/σ = 3 (dashed curves).

polaron effects dominate over the energy disorder effects
(Ea > σ ), while this dependence appears to be strong, espe-
cially at low temperatures, when the polaron activation energy
is relatively small (Ea < σ ).

For comparison, the carrier-concentration dependencies of
the Marcus hopping mobility calculated using the averaging
B method for different temperatures and two different Ea/σ

ratios are presented in Fig. 3(b). Apart from a vertical shift of
the calculated dependencies with respect to each other, these
dependencies are virtually invariant with Ea/σ ratio, and at
low temperatures they are similarly strong in a system with
large (Ea/σ = 3) and small (Ea/σ = 0.5) polaron activation
energy as depicted in Fig. 3(b) by dashed and solid curves,
respectively. Thus, the averaging B method, when applied to
the Marcus rate, is independent to the relative weight between
polaron and disorder contributions to the charge transport. This
is at variance with results obtained by employing the averaging
A method [see Fig. 3(a)].

Figure 4 shows the carrier-concentration dependencies of
the Marcus hopping mobility calculated by averaging A and B

methods at a constant temperature (σ/kBT = 4) parametric in
Ea/σ ratios. The results shown in Fig. 4 show clearly that when
using the averaging A method the carrier-concentration effect
depends strongly on the Ea/σ ratio. This dependence becomes
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FIG. 4. (Color online) The carrier-concentration dependencies of
Marcus hopping mobility normalized to the zero carrier-concentration
mobility (c = n/N → 0) calculated by Eqs. (14), (15), and (21) using
averaging A (red solid curves) for σ/kBT = 4 and using averaging B
(blue dashed curves) for several Ea/σ ratios indicated in the figure.
Note that all four dashed curves coincide.

weaker as the polaron contribution to the activation energy to
transport becomes more important (red solid curves). In the
case of averaging B the carrier-concentration dependencies
are invariant with Ea/σ ratio and the calculated curves merge
(blue dashed curves).

For completeness sake we compare the averaging methods
A and B for calculating the carrier-concentration dependencies
of the charge-carrier mobility also for the MA rate. Figure 5
shows the effective mobility μe/μ1 = (N/n) Xe calculated as
a function of carrier concentration for MA rate by Eqs. (13),
(15), and (19) using both averaging methods. Evidently that
when using the MA hopping rate both averaging A and
B methods yield similar dependencies on the charge-carrier
concentration (Fig. 5), indicating that the choice between these
averaging methods is irrelevant. The latter is in contrast to the

FIG. 5. (Color online) The charge-carrier mobility [derived via
conductivity as μe/μ1 = (N/n) Xe] vs carrier-concentration n/N

for different temperatures calculated for Miller-Abrahams rate by
Eqs. (13), (15), and (19) using averaging A (solid lines) and B (dashed
lines).

case of the Marcus hopping where the averaging method does
matter [cf. Figs. 3(a) and 3(b)].

C. Comparison with computer simulation results

As demonstrated in the preceding section, the calculation of
the charge-carrier mobility for the Marcus rate is very sensitive
to the averaging method used in Eq. (8). For instance, for
Ea/σ = 2 the averaging A [cf. Eq. (18)] yields

μe = μ2 exp(−xxa − C1x
2), C1 = 0.15, (25)

while using the averaging B method [Eq. (22)] one obtains

μe = μ2 exp(−xxa − C2x
2), C2 = 0.44 (26)

Thus, coefficients C1 and C2 for the same ratio Ea/σ = 2
differ considerably for these two methods. To resolve the
discrepancy, the present EMA calculations were compared
with Monte Carlo (MC) simulations data obtained for the
temperature dependent diffusion of triplet excitons. The latter
approach could be regarded as a “computer experiment” and
it actually allows us to check the validity of approximations
in analytical treatments that are based on the same physical
principles. The MC simulations themselves had been verified
by comparison against phosphorescence data.14

Figure 6 shows results of MC simulations of the temperature
dependent diffusivity of triplet excitations in a 3D lattice using
the Marcus rate [Eq. (2)] at Ea = 30 meV and different width
of the DOS σ over a broad temperature range. The use of
the Marcus rate implies that the resulting diffusivity depends
on both the polaron activation energy Ea and the energetic
disorder σ 2/kBT , analogous to the mobility [Eq. (1)]. In order
to extract only the disorder contribution, and in particular
the weighing factor C, we have divided the diffusivity by
exp(−Ea/kBT ) and plotted the resulting quantity as a function
of 1/T 2. The C factor can then readily be read off from
the slope of the curve in the high-temperature branch. From
Fig. 6 it is clearly apparent that the slope is not identical

FIG. 6. (Color online) Monte Carlo simulation of temperature
dependencies of the coefficient of diffusion D/exp(−Ea/kBT ) of
triplet excitons parametric in the width of the DOS which varies as
follows: σ = 15, 20, 25, 30, 35, 40, 50, 70, and 100 meV. Simulations
are done for an isotropic 3D lattice using a Marcus rate at Ea =
30 meV. Four slopes are indicated for illustration.
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FIG. 7. (Color online) Factor C vs σ/Ea obtained for Marcus
hopping in 3D system by Monte Carlo simulations (triangles); derived
from De = (kBT /e) μe using the mobility calculated by the present
EMA theory adopting both configuration averaging A and B for
Ea = 30 meV (solid and dashed blue curves, respectively), and
by the percolation-based scaling theory from Ref. 24 (squares with
green connecting line). Short dotted lines 1 and 2 shows results from
Refs. 22 and 23, respectively.

for different ratios of σ/Ea . We focus here only on the
high-temperature branches of the data which corresponds
to the nondispersive transport regime of triplet excitations
which are in thermal equilibrium. At low temperatures,
transport becomes dispersive featuring different temperature
dependencies (Fig. 6). This nonequilibrium transport regime
has been discussed in an earlier publication.14

Figure 7 shows the factor C derived from the MC
simulations data from Fig. 6 (symbols) for different σ/Ea

ratios as well as the C factor obtained by translating the
charge-carrier mobility into diffusivity by using the Einstein
relation De = (kBT /e) μe from the present EMA theory using
both configuration averaging A and B. The factor C obtained
by the MC simulations decreases with decreasing σ/Ea ratio,
i.e., with decreasing the relative strength of the disorder effects.
At large σ/Ea it approaches the predicted value 0.44 as in the
case of Miller-Abrahams hopping.

Figure 7 clearly show that the averaging A method provides
a reasonably good agreement with MC simulation data (solid
curve), while the results obtained when using the averaging B

method are in disagreement with the simulation. Evidently the
averaging A method is superior to the averaging B method.
In passing we note that the present calculations are in good
agreement with the previous EMA calculations19,23 performed
before for Marcus hopping in the limiting case of large polaron
activation energy Ea/σ � 1 and using the transport energy
concept. The latter corroborates the approach employed in
Ref. 19.

Figure 8 presents the factor C vs σ/Ea for different
degree of system anisotropy obtained for Marcus rate by MC
simulations (symbols) and the EMA calculations utilizing the
averaging A for two values of the dimensionality d (solid
curves). Here to fit the MC data for an anisotropic system,
the d was formally taken as a fitting parameter in the EMA
calculations.

FIG. 8. (Color online) Factor C vs σ/Ea at different anisotropy
of a disordered system obtained for Marcus hopping by Monte Carlo
simulations (symbols) and by the present EMA theory by Eq. (18)
using configuration averaging A for Ea = 30 meV (solid curves).
“Dimensionality” d = 1.15 was just chosen as a fitting parameter to
match the simulation data.

The MC simulations show that in a system with anisotropic
transport the C factor changes more strongly with the σ/Ea

ratio and approaches C ≈ 1 at large ratios as expected for 1D
transport.36 As one can see from Fig. 8, the present EMA model
fits the MC simulation data reasonably well at least at moderate
σ/Ea ratios and correctly predicts the change of the C(σ/Ea)
dependence in an anisotropic system except for a highly
anisotropic system with σ/Ea > 2. It is conceivable that under
this circumstance one enters the Marcus inversion region.

It is important to compare the above results obtained by
the averaging A method [cf. Eq. (25)] with the recent results
obtained by Cottaar et al.24 who employed several calculations
methods including a similar EMA Kirkpatrik’s approach32 and
also the numerical master equation method. Let us consider
the data from Table 1 in Ref. 24 for Marcus hopping where
the authors fitted their Eq. (5a) to μ0 (T ) ∝ exp(−C∗x2) and
for values σ/Ea = 0.4, 1.33, 4 they obtained C∗ = 0.69,
0.49, 0.44, respectively. Analyzing those data show that if
one fits their data to the relation μ0 (T )/exp (−Ea/kBT ) ∝
exp(−Cx2) used in the present EMA theory, then the factor
C = 0.44 is found to be the same for all ratios σ/Ea (for
0.4, 1.33, and 4) used in Ref. 24. Thus, the calculations in
Ref. 24 predict C = 0.44 invariant with the ratio σ/Ea (Fig. 7,
squares). This is in sharp contrast to both the Monte Carlo
simulation data and the present EMA calculations utilizing
the averaging A method (triangles and solid line in Fig. 7,
respectively).

On the other hand, our calculations yield basically the same
results as in Ref. 24 provided that the “averaging B” method
is employed [i.e., using the product of Gaussian functions
P (ε1) P (ε2) = g (ε1) g (ε2) given by Eq. (3)]. The discrepancy
arises only for the Marcus mobility in the case when the
“averaging A method” is used and this straightforwardly
proves that the averaging method is a key cause for the
difference observed. In this respect it should be noted that
the master equation method usually neglects any correlations
between the occupational probabilities of different sites and
assumes that a site i is given by its energy which is drawn
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randomly37 from a Gaussian distribution with variance σ .
This is basically equivalent to the our averaging B method
and therefore it seems to be natural that results of our EMA
calculations using such an averaging method coincide with
the results of Ref. 24. The fact that the result of Ref. 24 has
been recovered using the averaging B method testifies to the
applicability of our approach. On the other hand, averaging
A implies configurational averaging over ODOS and UDOS
distributions for the starting and target states, respectively, and
this was never used in the master equation calculations. The
fact that a different result is obtained with the averaging A

method is evidence that the physics question, i.e., which part
of the DOS is considered, is central to the problem.

Finally, a hint for the possible origin of the discrepancy
coming from different averaging methods can be obtained
from the following simplified analysis which shows that it
is not about a technical issue of how to perform an averaging
procedure but it is about the physical question of which part
of the DOS to consider. Let us assume for simplicity that
hopping target states ε2 are located at the maximum of the DOS
distribution and consider the vanishing carrier-concentration
limit. Furthermore, we assume that energies of the starting
hopping states ε1 are given by the DOS and ODOS distribution
and calculate integrals of exponents from Eqs. (17), (18),
(20), and (22) yielding the “intersite mobility” (left-hand
summands in numerators) for the MA and Marcus hopping
transitions from the starting DOS and ODOS hopping states to
the maximum of the DOS distribution. The quadratic term in
the Marcus jump equation can be ignored here at σ/Ea � 1.
In other words, we calculate the following values:

ZMA
DOS(ODOS) =

∫ ∞

−∞
dε1gDOS(ODOS) (ε1)

× exp

[
−|ε1| + ε1

2kBT
− 1

2

(
σ

kBT

)2]
, (27)

ZMarcus
DOS(ODOS) =

∫ ∞

−∞
dε1gDOS(ODOS)(ε1)

× exp

[
− Ea

kBT
− ε1

2kBT
− 1

2

(
σ

kBT

)2]
. (28)

Here

gDOS(ε1) = 1

σ
√

2π
exp

[
−1

2

(
ε1

σ

)2]
,

gODOS(ε1) = 1

σ
√

2π
exp

[
−1

2

(
ε1 − εeq

σ

)2]
, (29)

εeq = − σ 2

kBT
.

From Eqs. (27)–(29) for σ/kBT = 2.5 one obtains

ZMA
ODOS

ZMA
DOS

= 1.55,
ZMarcus

ODOS

ZMarcus
DOS

= 22.76. (30)

From the above ratios one can conclude that the intersite
mobility integral Eq. (27) changes just slightly (=1.55) for
the MA rate when configurational averaging over the ODOS
is used instead of the DOS. This fact is also reflected
in the calculated effective MA mobility (cf. Fig. 1)—the
latter was found to be virtually insensitive to the method of

configurational averaging. However, the situation is drastically
different in the case of the Marcus rate [see the right-
hand part of Eq. (30)], where the intersite mobility integral
Eq. (28) changes much strongly (=22.76) upon changing the
configurational averaging method. This corresponds well to
the considerable change of the effective Marcus mobility found
above (cf. Fig. 2) resulting in the significant change of the C

parameter (Fig. 7), which was also confirmed by the Monte
Carlo simulations for the Marcus rates at σ/Ea � 1. Thus, the
choice of certain averaging method becomes important only in
the case of Marcus rates at Ea/σ � 1. Therefore, there is no
reason to expect a universal behavior with respect to the rate
model claimed in Ref. 24.

V. DISCUSSION AND CONCLUSIONS

The present results prove that the way of configurational
averaging in Eq. (8) for calculating the conductivity for the
Marcus hopping regime plays a crucial role in disordered
organic solids. While the averaging A method yields the
calculated C factor at different σ/Ea ratios in perfect agree-
ment with MC simulation data, the averaging B method
results in a virtually constant C factor (Fig. 7) that is in
sharp contrast with the above simulations. This could be
used as a critical test for applicability of the calculation
method and validates the approach based on averaging A.

In the latter case, one considers averaging the energies ε1

of starting sites and ε2 for target sites over the ODOS and
UDOS distributions, respectively. The normalized ODOS and
UDOS distributions with respect to the DOS calculated at large
carrier concentration by Eqs. (11) and (12), respectively, are
shown in Fig. 9. The calculated Fermi level is also shown

FIG. 9. (Color online) Normalized ODOS (blue line) and UDOS
(red line) distributions in a disordered organic system with a Gaussian
DOS (patterned curve) calculated by Eqs. (11) and (12), respectively,
at large carrier concentration. The arrow indicates the position of
the Fermi level calculated by Eq. (5) for the considered carrier-
concentration εF /σ = −1 that corresponds to n/N = 1.9 × 10−1.
Note that all curves are normalized by integral area to unity.
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in Fig. 9 by an arrow. The averaging A method takes into
account that at high-carrier concentration carriers can only
jump to unoccupied states located in the upper part of the
DOS described by P (ε2) [Eq. (12)] since the lower states
are occupied. At the vanishing carrier-concentration limit,
when the Fermi level is settled in deep tail states, hopping
transitions to any sites are in principle possible since the DOS
is virtually empty, and Eq. (12) becomes equivalent to the DOS
distribution g (ε) [Eq. (3)]. The ODOS distribution [Eq. (11)]
is located in lower part of the DOS (Fig. 9) and describes which
energy levels a carrier visits in the course of its hopping motion.

A key result of the present combined MC simulations
and the analytical calculations studies is that the C factor,
which weighs the relative contribution of disorder and polaron
effects as represented by the σ/Ea ratio, is not a constant
but significantly decreases with decreasing σ/Ea , i.e., with
increasing polaron formation energy in the same disordered
system. This agrees with previous studies where C = 0.31 and
1/8 (cf. Fig. 7, short dotted lines) was obtained in Refs. 22 and
23, respectively. It is, however, at variance with results reported
in Ref. 24, where the authors applied a percolation-based
theory and EMA calculations based on the same Kirkpatrick’s
method32 for calculation of the charge-carrier mobility and
found the C factor independent on the σ/Ea ratio. The
latter behavior is also shown in our EMA calculations based
on the averaging B method which we therefore regard as
inappropriate in the case of Marcus hopping. Furthermore,
the present EMA calculations based on the averaging A

demonstrated that the carrier-concentration dependence of the
charge-carrier mobility μ(n/N ) is not universal as claimed in
Ref. 24 but also depends on the σ/Ea ratio (cf. Fig. 4). The
present results corroborate a very weak μ(n/N ) dependence19

found before in calculations using the symmetrical jump rated
model in a system with σ/Ea = 0.33.

The above formalism that relates the C factor to the
transport parameters σ and Ea can be used to establish
guidelines for the assessment of the relative weight of disorder
and geometric distortion effects on electronic transport. Since
the formalism is independent of the strength of coupling it is
applicable to both charge carriers as well as neutral excitons
as long as the electric field acting on charge carriers is low
enough so that the drop of the electrostatic potential across
the transport sites is much less that the difference of the
site energies themselves. Disorder and reorganization effects
are comparable when the activation energies that enter the
exponents in Eq. (1) are equal. This is defines a critical
temperature Tc,

Tc = C

kBEa

σ 2. (31)

For T > TC transport is polaron controlled, while for
T < TC it is disorder controlled. Based upon the established
correlation between the C factor and the pertinent transport
parameters σ and Ea one can calculate Tc as a function of σ

parametric in the σ/Ea ratio. If the C factor was constant,
Tc would vary quadratically with σ . When inserting into
Eq. (27) the calculated dependence of the C factor on σ/Ea

that is displayed in Figs. 7 and 8 for Ea = 30 meV for the
three-dimensional case, one arrives at an approximate relation
Tc ∼ σ 2.5. This is illustrated in Fig. 10 for different values of

FIG. 10. (Color online) The variation of Tc on the disorder
parameter σ for different values of Ea as indicated in the figure.

Ea . The important message evident from Fig. 10 is that the
critical temperature Tc scales approximately with σ 2/Ea , i.e.,
it increases superquadratically with the disorder parameter σ

but only linearly with 1/Ea . Therefore, the relative disorder
contribution increases with increasing (static) disorder.

This phenomenon is borne out by experimental results on
the transport of triplet excitons as well as charge carriers. In the
case of triplet excitons the disorder parameters are amenable
from the inhomogeneous broadening of phosphorescence
spectra, and the geometric reorganization can be inferred from
their Huang-Rhys factors that determine the relative strength
of the vibronic components. An analysis of phosphorescence
spectra of a series of π -conjugated polymers with phenylene
as the central building unit in the polymer chain shows that σ

increases from 29 meV for the weakly disordered methyl-
substituted ladder-type poly(para-phenylene) (MeLPPP) to
70 meV for the more strongly disordered alkoxy-substituted
poly-phenylene (DOO-PPP),38 while the polaron activation
energy Ea are between 65 meV (MeLPPP) and 81 meV
(DOO-PPP).26 Using the data from Fig. 7 this yields C factors
ranging from 0.125 to 0.2. Such C factors translate into critical
temperatures from 17 K (MeLPPP) to 140 K (DOO-PPP). This
indicates that, for triplet excitons at moderate temperatures
and in particular at room temperature, transport is controlled
by geometric reorganization. Disorder effects prevail only at
lower temperatures. This is consistent with simulation work.14

When estimating those Tc temperatures one should be aware,
though, the theory developed above rests upon the notion
of quasiequilibrium. This is no longer granted at very low
temperatures when σ/kBT exceeds 3.5–4.0 and transport
becomes dispersive.

The situation is reversed when considering charge transport.
The reason is that a triplet excitation is a neutral, localized two
particle entity as compared as a single, more spread-out, charge
that is highly susceptible to fluctuations in the environmental
polarization.25 We recently investigated hole transport in a
series of π -conjugated copolymers.39 When measuring the
temperature dependence of the hole mobility σ values have
been obtained ranging from 91 to 109 meV, quite consistent
with many other disordered organic semiconductors2 and
significantly higher than the σ values of triplets. Values for
Ea , inferred from DFT calculations, range between 25 and
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46 meV,39 i.e., half that for triplet exciton transport (see above).
The corresponding values for the C factor are 0.40 to 0.44
and the Tc values are between 1100 and 1300 K. It is obvious
that the increased disorder combined with the lower reorgani-
zation energy of charge carriers ensures that at an experimen-
tally relevant temperature range charge transport is dominated
by disorder, tractable in terms of Miller-Abrahams rate instead
of the computationally more demanding Marcus rates.
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2H. Bässler and A. Köhler, Top. Curr. Chem. 312, 1 (2012).
3T. Holstein, Ann. Phys. 8, 325 (1959).
4L. Friedman, Phys. Rev. 135, A233 (1964).
5D. Emin, Phys. Rev. Lett. 32, 303 (1974).
6R. A. Marcus, J. Chem. Phys. 81, 4494 (1984).
7R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
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